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In this article we consider a microscopic model for the host-vector disease transmis-
sion based on configuration space analysis.Wemodel transmissionwith a birth-death
mechanism in the vector component and mobility in the host component. Our inten-
sion is to show that a Vlasov type scaling, which is a mean-field-like scaling of an
interacting particle system, leads to the known equations used in epidemiology to
model host-vector disease spread on the kinetic level. Configuration space analysis
is here a very powerful tool. The concepts of harmonic analysis in this framework
are used to derive first the dynamics of correlation functions - giving a hierarchical
system of equations comparable to the well known BBGKY hierarchy in Hamilto-
nian dynamics. A proper Vlasov type scaling guaranties that the resulting Vlasov
hierarchy is closed and possesses the property of preservation of chaos. The limiting
system of time evolution equations is non-linear and strongly related to the well-
known Fisher-KPP equations. A numerical analysis strengthens the analytical results.
Moreover, the dynamics of case numbers over time gives qualitatively the solution of
a SISUV-ODE system. The microscopic dynamics hence leads to the right behavior
in the scaling limit.

KEYWORDS:
Heterogeneous Disease Models; Vector-Host Dynamics; Agent-Based Modelling.

1 INTRODUCTION

In recent years much about the modeling and understanding of various types of disease spreading and epidemic behavior have
been studied. In principle, one can distinguish two types of models for disease spread. On the one hand, there is the classical
SIR model from Kermack and McKendrick (48) which describes the time evolution of the number of susceptible (S), infected
(I) and recovered (R) individuals by a system of ordinary differential equations. This model has been developed and extended
exhaustively in the last 90 years. Among those extensions are the introduction of new compartments to model vector-bourne
diseases, see e.g. (60, 53), delay equations to model incubation time, e.g. (52), models considering the age and wealth structure
etc. A main drawback of the models described above is that they do not provide any information about the spatial spread of
a disease. Nevertheless, there have been various approaches to link many different SIR areas to obtain spatial behavior. In the
SIR model case, an advection-diffusion equation has been identified as the limiting equation, see e.g. (15). Another approach in
incorporating spatial information for the SIR model may also be found in (59). A series of different models for vector-bourne
diseases such as Dengue fever including stochastic and deterministic models, fractional differential equations or the effect of
climate on the mosquito have been proposed, see e.g. (51, 53, 30, 36, 34, 35, 40, 55, 33, 4, 5, 2, 14) and references therein.
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Of course, there are also many models and far too many to have a comprehensive list, for other arboviruses like Malaria and
Chikungunya which are comparable, see e.g. (1, 3, 12, 13).
Although the SIR-model and all its extensions are very flexible in describing the different aspects of disease dynamics, the

modeling assumptions of the disease spread are purely on the macroscopic level. However, for many different diseases, the
infection mechanism is only known on the microscopic, i.e., particle-to-particle or agent-to-agent level. Especially in disease
spread, it is known how in principle the dynamics looks like on the agent-to-agent level. On the other side, the dynamics of case
numbers like the SIR or SIRUV or SISUV model are very well studied and can be fitted to data at least on a small time scale.
The modeling of spatial disease spread from a microscopic agent-to-agent model has been already done in a cancer model by
(19) and in (8, 9) for a disease with no movement. Partial differential equation (PDE) models for a spatial dynamics have been
proposed, however, up to the authors knowledge, there has not been shown yet, that these PDE models are well-defined scaling
limits arising from a particle system model on the agent-to-agent-interaction, hence the microscopic level. Understanding the
mechanism of disease transmission is one of the core ingredients in fighting diseases and epidemia. For a good forecast of the
outbreak of a disease a sound and profound modeling of different aspects of the disease dynamics has to be done.
One way to consider both microscopical modeling and spatial resolution is to describe the disease dynamics by means of an

interacting particle system on a proper state space with suitable interaction potentials. Fundamental in this area are dynamics
in so-called marked configuration spaces (26, 29). The classical configuration spaces and their application have been studied
by (39). On the note (18) an introduction into the geometry of configuration spaces is provided. The emphasis is given to the
"lifting" procedure which turns out to coincide with the direct approach introduced in (7). The analysis and the geometry for a
class of infinite dimensional manifolds, namely, compound configuration spaces have been exhibited (43). The paper (42) deals
with Poisson measure on configuration spaces. The geometry on configuration spaces with marked Poisson measures used in
statistical physics has been developed by (46). Before, Poisson spaces have been studied by e.g. (44). In (41) Gibbs measures
on configuration spaces are investigated.
Configuration space analysis is a tool to give mathematical rigor to dynamics of particles interacting with each other. There

are definitely more tools than that, see e.g. (32) and the references therein. The framework has, however, an advantage if one has
interactions, which can not be expressed by Newton’s law of motion. Typical examples are spin-flip processes, like magnetization
in the Ising model (31), the voter model (16, 38), the contact process (37), or a model for a lattice gas (56). Further examples
of such a type may be found e.g. in (49, 50, 58). From the modeling point of view, the systems can be compared to cellular
automata but continuous in space. The rules are described by linear operators acting on functions or observables on subsets of a
metric space. A refinement of the models can in many cases be achieved by introducing new aspects of the dynamics due to the
incorporation of newMarkov pre-generators. Since this can often be done by just adding the corresponding linear operators, the
systems can be seen as modular. The configuration space techniques together with a proper scaling of the microscopic system,
a so-called Vlasov type scaling, have been recently used to model the dynamics of cancer cells (19).
In our approach, the components of particle configurations consist of susceptible and infected/infectious particles that interact
with one another. One may also easily incorporate other types of particles to model recovery or short time immunity. The
microscopic dynamics then results from suitable "spin-flip"-processes (particle changes the type). The methods to construct
dynamics on multi-component configuration spaces have been extensively developed in (29). One may also consider dynamics
with birth, death, and mobility of particles. It is straightforward to include these parts by adding suitable Markov pre-generators
in the evolution equations. In these models, disease transmission represents the contact between host individuals in directly
transmitted diseases and between host and vector individuals in host-vector diseases.
The intent of this work is to apply a strategy to link suitable microscopic disease models with the classical disease models

on the kinetic level via a scaling limit. Dynamical processes in large interacting systems are often approximately described by
kinetic equations, see e.g. (57, 58). There is definitely a large number of scaling limit methods, such as diffusive scaling limit
(27), Vlasov type scaling limits (28), hydrodynamic limits (47), etc. The proper choice of the method of scaling depends on the
desired macro-, or mesoscopic quantity one wants to observe. A famous scaling limit method is the Vlasov scaling which is a
proper scaling limit for infinite particle system of Hamiltonian motion. The convergence in the Vlasov scaling limit was shown
by (10) for the Hamiltonian dynamics and by (17) for more general deterministic dynamical systems. A general strategy for the
derivation of Vlasov type equations in the framework of continuous particle systems is described in (20). It is based on a proper
scaling of the hierarchical equations for the evolution of correlation functions and can be interpreted in terms of the rescaled
Markov generators. This scaling is actually of mean-field type which is adapted to preserve the spatial structure. A Vlasov type
scaling for such a dynamics leads to a generalized Boltzmann nonlinear equation for the particle density (28). The existence of
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the rescaled and limiting evolution of correlation functions and the convergence to the limiting evolution have been studied, see
e.g. (21, 25, 24).
Our aim is to apply this approach to the framework of a host-vector disease dynamics with birth-death mechanism in the vector

component and mobility in the host component. A Vlasov type scaling leads on to a time evolution of the underlying correlation
functions. Considering correlation functional of a particular type and under a prescribed structure of initial distributions of the
underlying interacting particle system, we obtain the corresponding kinetic equations. A kinetic description of disease spread
dynamics is widely used and often a starting point of theoretical studies in epidemiology.
We first provide the basic notions that are necessary in order to develop the underlying setting. We give a brief overview of

analysis in one-component configuration spaces. In particular, we describe the configuration space,

Γ ∶=
{

 ⊂ ℝ2 ∶ #( ∩ Λ) <∞ for every compact Λ ⊂ ℝ2} ,

and the finite configuration space Γ0 ∶= { ∈ Γ ∶ #() <∞}. For fixed Radon measure � on (ℝ2,(ℝ2)), we derive the corre-
sponding Lebesgue-Poisson measure ��z on (Γ0,(Γ0)) and the Poisson measure ��z on (Γ,(Γ)). Furthermore, we define and
present some properties of the K-transform, a mapping which maps functions defined on Γ0 into functions defined on Γ. The
main feature of this transform is its purely combinatorial property. We provide the dual operator of theK-transform, denoted by
K∗. The mapping K∗ maps probability measures � on Γ into measures �� on Γ0. Following the terminology used in statistical
mechanics, we call the measures �� correlation measures. For the special case, �� being a measure on Γ0 absolutely contin-
uous with respect to the Lebesgue-Poisson measure, the corresponding Radon-Nykodym derivative yields the corresponding
correlation functional k�. After introducing the concept of correlation measures and functionals, we use those to derive the
time evolution of a particular type of correlation functionals from the corresponding Markov pre-generators representing our
model for host-vector disease dynamics with birth-death mechanism in vector and mobility in host on the microscopic level.
An approach to the study of such a dynamics is based on combinatorial harmonic analysis on configuration spaces. The use
of the K-transform provides the relations between observables and states to quasi-observables and correlation measures. The
starting point for this approach is the Markov pre-generator of the dynamics, denoted by L, related to the forward Kolmogorov
(or Fokker Planck) equation for observables

d
dt
Ft = LFt, Ft|t=0 = F0.

We assume that the linear operator L determines a Markov process on Γ with initial distribution �. The relations between
observables, states, quasi-observables, correlation measures and correlation functionals yield a description of the underlying
dynamics in terms of those elements, through the corresponding forward Kolmogorov or Fokker-Planck equations. We con-
struct the multi-component configuration space needed in the modeling of host-vector disease transmission. The definition of
configuration spaces can be extended to multi-component configuration spaces. For host-vector diseases a fundamental model
in terms of ordinary differential equations is the SISUV model. Encoding the basic mechanisms of this model in a correspond-
ing interacting particle system, we have four types of particles (compartments) that are susceptible host (S), infected host (I),
susceptible vector (U), and infected vector (V). This results in the four-component configuration space,

Γ4 ∶=
{

 =
(

S , I , U , V
)

∈ ΓS × ΓI × ΓU × ΓV ∶  i ∩ j = ∅, for i ≠ j, i, j ∈ {S, I, U, V }
}

.

We use the structure of the multi-component configuration spaces to model the disease spread. The interactions in the particle
systems modeling a disease dynamics are described via interaction potentials. Therefore, we have a look at possible potentials
and then on rates which indicate the influence of the surrounding configuration on an infection transition. In our model, we
provide infection, recovery, birth, death, and jump dynamics of particles. A Vlasov type scaling limit is performed in terms of the
stochastic evolution to the full system. This Vlasov type scaling yields the corresponding kinetic equationswhich provide a space-
dependent mean-field-like approximate description of the evolution of large particle systems. The Vlasov type scaling leads on
to an evolution of the underlying correlation functionals of particular type which reflects with the right choice of the potentials a
classical kinetic description of the disease dynamics. Thereby, we explain the scaling for direct contact and host-vector disease
transmission. The scaling of dynamics includes infection, recovery, birth, death, and jump transition. TheMarkov pre-generators
are defined on a proper space of functions on the multi-component configuration space. Some numerical simulations of the host-
vector disease dynamics are provided. We simulate and analyze the particle dynamics in spatial simulation. A comparison of
the particle model and the kinetic model is shown. Both models are in good agreement for a large number of simulations and
particles.
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2 PRELIMINARIES IN CONFIGURATION SPACE ANALYSIS

Configuration space analysis is a tool to give mathematical rigor to dynamics of agents interacting with each other. There are
definitely more tools than that, see e.g. (32). The framework has however an advantage if one has interactions, which can not be
expressed by Newton’s law of motion. Typical examples are spin-flip processes, like magnetization in the Ising model or birth
and death processes (27). From the modeling point of view the systems can be compared to cellular automata but continuous
in space. The rules are described by linear operators acting on a proper space functions defined on configuration space, also
called observables. A refinement of the models can in many cases be achieved by introducing new aspects of the dynamics due
to the incorporation of new Markov pre-generators. Since this can often be done by just adding the corresponding operators,
the systems can be seen as modular. We will give a brief introduction to (one-component) configuration spaces in this section.
However we will not exceed the theory needed throughout this paper. For details we refer the interested reader to (7), (39), (45)
and the references therein.

2.1 One-component configuration space
In configuration space analysis one is dealing with locally finite subsets of an underlying metric space. Here the choice of the
underlying metric space is the real plane, which is appropriate to model the spread of a disease. The metric is induced by the
norm coming from the euclidean scalar product. This leads us to the following first definition.

Definition 1 (Configuration space). The configuration space Γ over ℝ2 is defined by

Γ ∶= Γℝ2 ∶=
{

 ⊂ ℝ2 ∶ #( ∩ Λ) <∞ for every compact Λ ⊂ ℝ2},

where #(⋅) denotes the cardinality of a set.

The configurations are thus a union of singletons, which are of finite number if restricted to a compact set. However be aware
that there can be infinite many singletons in a configuration.
The local finiteness (on a compact set) now leads to the fact, that one can identify each  ∈ Γ with the positive, integer-valued
Radon measure

∑

x∈
�x ∈(ℝ2).

Here �x is the Dirac measure at x,
∑

x∈∅ �x is the zero measure, and (ℝ2) denotes the space of all non-negative Radon
measures on the Borel �-algebra(ℝ2). In terminology of interacting particle systems one can see this measure as unnormalized
empirical measure. Elements in ℝ2 are by this procedure identified with analytic objects one can deal with. Indeed in this way,
Γ can be endowed with the vague topology on(ℝ2), i.e. the coarsest topology on Γ with respect to which all mappings

Γ ∋  → ⟨f, ⟩ ∶= ∫
ℝ2

f (x) d(x) =
∑

x∈
f (x) ∈ ℝ, f ∈ Cc(ℝ2),

are continuous. Here Cc(ℝ2) denotes the set of all continuous functions on ℝ2 having compact support. With respect to this
topology, we can define the Borel �-algebra over Γ which we will denote by (Γ).

In order to provide more structure on Γ, we study at first configurations of a given number of particles, e.g. the 5 particle
configurations. To obtain such statements we consider the so called space of finite configurations.

Definition 2 (Space of finite configurations). We define

Γ0 ∶=
∞
⨆

n=0
Γ(n), where Γ(n) ∶=

{

 ∈ Γ ∶ #() = n
}

, n ∈ ℕ and Γ(0) ∶= {∅},

and call it the space of finite configurations.

For n ∈ ℕ there is a natural bijection between the spaces Γ(n) and the symmetrization ̃
(

ℝ2
)n∕Sn of

̃(ℝ2
)n ∶=

{

(x1,… , xn) ∈
(

ℝ2)n |
|

|

xi ≠ xj if i ≠ j
}

under the permutation group Sn over {1,… , n}. That means we can identify elements from both
spaces. As a direct consequence the particles in a configuration are considered as indistinguishable. To provide an analysis we
can use the fact that this bijection induces a metrizable topology on Γ(n). We endow Γ0 with the metrizable topology of disjoint
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union of topological spaces. Again we can define Borel sets and denote the corresponding Borel-�-algebra on Γ(n) and Γ0 by
(Γ(n)) and (Γ0), respectively.
Let b(ℝ2) denote the family of all bounded Borel sets of ℝ2 and for Λ ∈ b(ℝ2) let ΓΛ ∶=

{

 ∈ Γ ||
|

 ⊂ Λ
}

. Evidently,

ΓΛ =
∞
⨆

n=0
Γ(n)Λ , where Γ

(n)
Λ ∶= ΓΛ ∩ Γ(n), n ∈ ℕ0 ∶= ℕ ∪ {0},

leading to a situation similar to the one of Γ0, described above. We endow ΓΛ again with the topology of disjoint union of
topological spaces and with the corresponding Borel-�-algebra (ΓΛ). With the help of the measurable spaces

(

ΓΛ,(ΓΛ)
)

we
are ready to define probability measures on the configuration space (Γ,(Γ)).
Let � be a non-atomic Radon measure on

(

ℝ2,(ℝd)
)

with �(ℝ2) = +∞. Consider e.g., the Lebesgue measure on
(ℝ2,(ℝ2)). We equip ((ℝ2)n,((ℝ2)n)) with the n-dimensional product measure �(n) ∶= �1 ⊗⋯ ⊗ �n. For z ∈ (0,∞) the
Lebesgue–Poisson measure on (Γ0,(Γ0)) with intensity measure �z ∶= z � is given by

��z ∶=
∞
∑

n=0

zn

n!
�̂(n),

where �̂(n), n ∈ ℕ, is the image measure on (Γ(n),(Γ(n))) of the product measure �(n) under the mapping

sym(n) ∶ ̃
(

ℝ2
)n∕Sn ∋

(

x1,… xn
)

→
{

x1,… xn
}

∈ Γ(n).

For n = 0 one sets �̂(0)
(

{∅}
)

∶= 1. Taking into account that

��z
(

ΓΛ
)

=
∞
∑

n=0

zn

n!
�̂(n)(ΓΛ) =

∞
∑

n=0

zn �(Λ)n

n!
= exp

(

�z(Λ)
)

,

we define a probability measure �Λ�z ∶= exp(−�z(Λ))��z on (ΓΛ,(ΓΛ)). Using for Λ ∈ b(ℝ2) the projection

Γ ∋  → pΛ() ∶=  ∩ Λ ∈ ΓΛ,

and applying a version of Kolmogorov’s theorem for projective limit spaces we obtain a unique measure ��z as the limit of the
family {(ΓΛ,(ΓΛ)) ∶ Λ ∈ b(ℝ2)}. ��z is called Poisson measure on (Γ,(Γ)) with respect to the intensity measure �z.
Dealing with dynamics of configurations, hence Radon measures, a very important tool is a configuration space version of a

Fourier transform. Indeed such a combinatorial version of the Fourier-transform is given by the so called K-transform.

Definition 3 (K-transform). Let G be a (Γ0)-measurable function with local support, i.e. G|Γ⧵ΓΛ ≡ 0 for some bounded
Borel set Λ ⊂ b(ℝ2). The K-transform of G is the mapping

KG ∶ Γ→ ℝ, (KG)() =
∑

�⊂
#(�)<∞

G(�).

The K-transform hence maps functions defined on Γ0 into functions defined on Γ. Since in the above definition the sum
has only a finite number of summands non-zero, due to the local support property, KG indeed is well defined. In particular
(KG)|ΓΛ is (ΓΛ)-measurable and (KG)|ΓΛ(Λ) = (KG)() for every configuration  ∈ Γ, hence KG fulfills the properties of
a cylinder function in the classical sense. In particular, in the case G is a bounded (Γ0)-measurable function with bounded
support, i.e. G|Γ0⧵⨆N

n=0 Γ
(n)
Λ
≡ 0, for some natural number N and Λ ∈ b(ℝ2), one finds |(KG)()| ≤ C(1 + |Λ|)N , for C ≥ |G|

and all  ∈ Γ. Which means KG is polynomially bounded. Since this is a very special and important class in our consideration
we define the following space:

Definition 4. The space of bounded (Γ0)-measurable functions with bounded support is denoted by Bbs(Γ0).

As theK-transform can be seen as combinatorial version of the Fourier transform, indeed one can show the following theorem,
linking cylinder functions and the K-transform.

Theorem 1 ((45, 39)). TheK-transform is a linear isomorphism which inverse mapping is defined on cylinder functions by

(K−1F )(�) ∶=
∑

�⊂�
(−1)|�⧵�|F (�), � ∈ Γ0.

Of all elements in the domain of the K-transform the so-called coherent states e�(f ) play a special role.
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Definition 5 (coherent state). A coherent state e�(f ) corresponding to a(ℝn)-measurable function f with compact support
is defined by

e�(f, �) =
∏

x∈�
f (x), � ∈ Γ0 ⧵ {∅}, e�(f,∅) ∶= 1.

If f has compact support, then the image e�(f ) under the K-transform is a well-defined function on Γ given by

(Ke�(f ))() =
∏

x∈
(1 + f (x)),  ∈ Γ.

Our aim in Section 3 is to identify the dynamics on the configuration space as the time evolution of certain measures. For this
purpose it is important to consider also the dual operator K∗ of the K-transform K .

Definition 6. Let1
fm(Γ) denote the set of probability measures on (Γ,(Γ)) with finite local moments of all orders, i.e.

∫
Γ

#( ∩ Λ)n d�() <∞ for all n ∈ ℕ and all Λ ∈ b(ℝ).

For � ∈1
fm(Γ) we define the correlation measure �� ∶= K∗� corresponding to � by

∫
Γ0

G(�) d��(�) = ∫
Γ

(KG)() d�(), G ∈ Bbs(Γ0). (1)

Observe that �� is a measure on (Γ0,(Γ0)) andK|G| is �-integrable under the above conditions, thusBbs(Γ0) ⊂ L1(Γ0, ��).

Moreover, by Definition 6, the inequality ‖KG‖L1(Γ;�) ≤ ‖G‖L1(Γ0;��) holds on Bbs(Γ0), allowing an extension of the K-
transform to a bounded linear operator K ∶ L1(Γ0; ��)→ L1(Γ;�) in such a way that (1) still holds for G ∈ L1(Γ0; ��). For the
extended operator the explicit representation still holds now �-a.e. Moreover, we have that �� is locally finite, i.e., ��

(

Γ(n)Λ
)

<∞
for all n ∈ ℕ0 and Λ ∈ b(ℝ2).

3 THE GENERAL STRATEGY

In this section we provide the general strategy of our approach which will be applied in a later section to the particular problem
of a host-vector disease dynamics. This approach is developed in (26) for stochastic dynamics in (one-component) config-
uration space and generalized in (29) to the situation of stochastic dynamics in a multi-component configuration space. A
multi-component configuration space is serving as state space in our application. In this section we provide the ideas originated
and worked out in detail in (26).

3.1 Markov generators and related evolution equations
Heuristically, the stochastic evolution of an infinite particle system is described by a Markov process on Γ, which is determined
by a Markov generator L defined on a proper space of functions on Γ.
In applications there is a need of knowledge on certain characteristics of the stochastic evolution in terms of mean values

rather than point wise These characteristics concern e.g. observables, i.e., measurable functions defined on Γ for which expected
values are given by

⟨F , �⟩ ∶= ∫
Γ

F () d�(),

where � is a probability measure on (Γ), i.e., a state of the system. Suppose that the initial distribution of particles in our
system, i.e., the initial state of our system, is a probability measure �0 with all moments finite. For t > 0 let �t be the distribution
of particles at time t, i.e., the state of the system at time t. This leads to the following time evolution problem on states,

d
dt
⟨F , �t⟩ = ⟨LF , �t⟩, �t

|

|

|t=0
= �0. (2)
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For F being of type F = KG with some G ∈ Bbs(Γ0) we use (1) to obtain

∫
Γ0

(K−1LK)G(�) d��t(�) = ∫
Γ

K(K−1LKG)() d�t() =
d
dt ∫

Γ

KG() d�t() =
d
dt ∫

Γ0

G(�) d��t(�).

Moreover, setting L̂ ∶= K−1LK we have

∫
Γ0

L̂G(�) d��t(�) =
d
dt ∫

Γ0

G(�) d��t(�), ��t
|

|

|t=0
= ��0 . (3)

Definition 7 (correlation functional). If for � ∈ 1
fm(Γ) the corresponding correlation measure �� is absolutely contin-

uous with respect to the Lebesgue-Poisson measure �� on 
(

Γ0
)

, its Radon-Nikodym derivative k� ∶=
d��
d��

is called the
correlation functional corresponding to �.

Now assuming that the correlation measures ��t for t ≥ 0 are absolutely continuous with respect to the Lebesgue-Poisson

measure �� , we can rewrite (3) in terms of correlation functionals kt ∶= k�t , t ≥ 0, see Definition 7. This reads
d
dt
⟨⟨G, kt⟩⟩ = ⟨⟨L̂G, kt⟩⟩, kt

|

|

|t=0
= k0, (4)

where ⟨⟨⋅, ⋅⟩⟩ is the usual pairing
⟨⟨G, k�⟩⟩ ∶= ∫

Γ0

G(�) k�(�) d��(�). (5)

A strong version of Equation (4) is given by
d
dt
kt = L̂∗kt, kt

|

|

|t=0
= k0, (6)

with L̂∗ being the dual operator of L̂ in the sense defined in (5).
One may associate to any correlation functional k� on Γ0 a sequence

{

k(n)�
}

n∈ℕ0
, where

k(n)� ∶= k�
|

|

|{�∈Γ0 ∶ #(�)=n}
, (7)

are symmetric functions on (ℝ2)n, n ∈ ℕ0. These functions are called the n-point correlation functions corresponding to the
measure �.

Remark 1. For n ∈ ℕ0, k(n)� describes the n-th moment of the state � and in the special case n = 1 the one point correlation
function k(1)� is the particle density of the system in state �. This can be seen as follows. LetA ⊂ ℝ2 be bounded and consider
the observable

Γ ∋  → NA() ∶= #(A ∩ ) ∈ ℕ0,
i.e., we observe the number of particles in A. Moreover, we need the quasi-observable (a measurable function on Γ0)

G ∶ Γ0 → ℝ, � →
{

1A(x) if � = {x}, x ∈ ℝ2

0 else .

Hence for a system in state � the expected number of particles in A is given by

∫
Γ

NA() d�() = ∫
Γ

∑

x∈
1A(x) d�() = ∫

Γ

(KG)() d�() = ∫
Γ0

G(�) d��(�) = ∫
A

k(1)� (x) dx, (8)

where here the intensity measure for the Lebesgue-Poisson measure is taken to be the Lebesgue measure, i.e., � ∶= dx and
z ∶= 1. The right hand side of (8) is a measure on A and therefore, k(1)� is the particle density of the system.

Related to (6) one has a countably infinite number of equations having a hierarchical structure,
d
dt
k(n)t = L̂∗k(n)t , k(n)t

|

|

|t=0
= k(n)0 , n ∈ ℕ0, (9)

where each equation only depends on a finite number of coordinates. Let us stress that (9) is nothing else but a hierarchical system
of equations corresponding to the Markov generator L. This system has the same meaning as the BBGKY hierarchy in the case
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of Hamiltonian dynamics. As a result we have reduced the infinite dimensional problem (2) to the infinite system of equations
(9). However, recall that due to (4) we are only interested in weak solutions to (9). To derive solutions to (2) from solutions to
(4) an additional analysis is needed, namely, to distinguish the correlation functionals from the set of solutions to (4).

3.2 Vlasov type scaling
The so-called Vlasov type scaling or kinetic scaling starts with scaling the Markov generator of the underlying dynamics with
respect to a parameter " > 0 in a proper way. Therefore, we get scaled versions of equations (6) and (9), i.e., L̂∗" instead of L̂

∗. The
next important step in the Vlasov type scaling concerns the proper rescaling of the initial state of the system. Or, equivalently,
in the language of n-point correlation functions, it means the proper rescaling of the initial conditions of the evolution of n-
point correlation functions. More precisely, at the beginning we scale k(n)0 with parameter " > 0 in such a way that the resulting

functions k(n)0," as "→ 0 behave as follows

r(n)0,"(�) ∶= "
nk(n)0,"(�)→ r(n)0 (�), "→ 0, � ∈ Γ0, (10)

where for n ∈ ℕ0 the symmetric functions r(n)0 are a subject of choice for our concrete example.
An important case is to take

r(n)0 (x1,… , xn) = �0(x1) ⋅… ⋅ �0(xn) = e�(�0, {x1,… , xn}), �0 ∶ ℝ2 → (0,+∞),

corresponding to an independent initial distribution of particles.
It is clear that such a rescaling of the initial condition leads to a singular function with respect to " > 0. In applications, this

fact can be interpreted as the growth of density of the system with " → 0. For n ∈ ℕ0 we denote by k(n)t," the solution of the
functional evolution

d
dt
k(n)t," = L̂

∗
"k
(n)
t," , k(n)t,"

|

|

|t=0
= k(n)0,".

One can expect that this solution will be also singular with respect to " > 0. Moreover, we should choose a type of scaling of
the generators which preserves the order of this singularity. Namely, for n ∈ ℕ0 and " > 0 we consider

r(n)t," ∶= "
nk(n)t," ,

and assume that
r(n)t," → r(n)t , "→ 0.

This is equivalent to investigating the Cauchy problem for the operators L̂∗",ren = R"L̂∗"R"−1 , " > 0, where for � > 0 and a
correlation functional k� we have (R�k�)(�) ∶= �#(�)k�(�). Hence the associated Cauchy problem reads

d
dt
rt," = L̂∗",renrt,", rt,"

|

|

|t=0
= r0,",

where we use the identification via (7). We seek for the limit L̂∗",ren → V as " → 0. Using the initial condition rt|t=0 = r0,

where r0 is associated to the sequence (r
(n)
0 )n∈ℕ0 in (10), the solution rt of the Vlasov equation

d
dt
rt = V rt, rt

|

|

|t=0
= r0, (11)

clearly implies that the associated sequence
(

r(n)t
)

n∈ℕ0
is again of the form

r(n)t (x1,… , xn) = �t(x1) ⋅… ⋅ �t(xn) = e�(�t, {x1,… , xn}), �t ∶ ℝd → (0,+∞),

where �t is determined by the kinetic equation

)
)t
�t = v(�t) (12)

and v is derived from the (nonlinear) limiting operator V .
In other words, considering the Vlasov equation (11) with initial condition r0 of the form

r0(�) ∶= e�(�0, �), � ∈ Γ, (13)

the solution rt at time t ≥ 0 is of the same type, i.e.

rt(�) = e�(�t, �), � ∈ Γ, (14)
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and �t is determined by the kinetic equation (12).

Remark 2. The fact that solutions of the Vlasov equation (11) with initial condition (13) are of type (14) for all times t ≥ 0,
is in literature known as preservation of chaos. Note that this property is guarantied when applying the above described
Vlasov type scaling.

4 MARKOV EVOLUTIONS IN A HOST-VECTOR DISEASE DYNAMICS

The application in this article is devoted to the vector-borne disease spread. We identify the agents (host and vector) with their
corresponding positions in ℝ2. Since host and vector have to be distinguished and moreover, since the fact that one can not be
infected and susceptible at the same time should be a feature of the model, we put all of these agents in different compartments
(we deal with particles of four types). For this purpose an appropriate state space for the disease spread dynamics turns out to
be the four-component configuration space.

4.1 Four-component configuration space
The underlying state space is built up with the help of the (one-component) configuration space Γ, see Subsection 2.1.

Definition 8 (state space for host-vector disease dynamics). Let ΓS , ΓI , ΓU and ΓV be four copies of the configuration space
Γ. The configuration space for a host-vector disease spread model is defined as

Γ4 ∶=
{

 =
(

S , I , U , V
)

∈ ΓS × ΓI × ΓU × ΓV ∶  i ∩ j = ∅, for i ≠ j, i, j ∈ {S, I, U, V }
}

,

and the finite configuration space as

Γ40 ∶=
{

� =
(

�S , �I , �U , �V
)

∈ ΓS0 × Γ
I
0 × Γ

U
0 × Γ

V
0 ∶ �i ∩ �j = ∅, for i ≠ j, i, j ∈ {S, I, U, V }

}

.

We endow Γ4 and Γ40 with the product topology induced by the topological spaces Γ
S ,ΓI ,ΓU ,ΓV and ΓS0 ,Γ

I
0 ,Γ

U
0 ,Γ

V
0 , respec-

tively, and with the corresponding Borel-�-algebras. Moreover, we consider the corresponding product measures on (Γ4,(Γ4))
and (Γ40,(Γ

4
0)), respectively, obtained from the constructed measures in the one-component situation.

Next we generalize the K-transform, well-known in the one-component case, to the four-component setting. We make use of
functions with bounded support

Bbs
(

Γ40
)

∶=
{

G ∶ Γ40 → ℝ measurable ∶ G||
|Γ40⧵

(

⊔NSn=0Γ
n
ΛS

)

×
(

⊔NIn=0Γ
n
ΛI

)

×
(

⊔NUn=0 Γ
n
ΛU

)

×
(

⊔NVn=0 Γ
n
ΛV

)

for some compact ΛS ,ΛI ,ΛU ,ΛV ⊂ ℝd andNS , NI , NU , NV ∈ ℕ0
}

,

where a (Γ40)-measurable function G is called quasi observable, to define the K-transform of G:

(KG)
(

S , I , U , V
)

∶=
∑

�S⊂S
#(�S )<∞

∑

�I⊂I
#(�I )<∞

∑

�U⊂U
#(�U )|<∞

∑

�V ⊂V
#(�V )<∞

G
(

�S , �I , �U , �V
)

.

Even in this more general situation, we have all the properties discussed in Subsection 2.1. In particular, K ∶ Bbs(Γ40) →
K(Bbs(Γ40)) is a linear and positivity preserving isomorphism whose inverse mapping is defined by

(

K−1F
)

(�S , �I , �U , �V ) ∶=
∑

�S⊂�S

∑

�I⊂�I

∑

�U⊂�U

∑

�V ⊂�V
(−1)|�S⧵�S |+|�I⧵�I |+|�U⧵�U |+|�V ⧵�V |F (�S , �I , �U , �V ).

The corresponding definitions of the correlation measures and the correlation functionals follow straight forward as in the
one-component case.

4.2 Markov generators and related evolution equations in host-vector disease dynamics
Heuristically, the stochastic evolution of an infinite four-component particle system is described by a Markov process on Γ4,
which is determined by a Markov generator L defined on a proper space of functions on Γ4. In this section we provide the
Markov pre-generator in the particular application of a host-vetor disease dynamics with birth-death mechanism in the vector
components and mobility in the host components. We use the terminology of a Markov pre-generator, since we do not show
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here, that the given linear operator is indeed the generator of an associated Markov process. Such a construction could be done
using the theory of operator semi groups, see e.g. (23).

4.2.1 Evolution of observables
We consider the host-vector disease transmissionwith birth-death in vector andmobility in host.We assume here that the lifespan
of a host is much longer than that of the vector. Here we have humans and mosquitoes in mind. The model could also be adapted
with birth-death dynamics of humans and mobility of vectors. However for the sake of simplicity these considerations are taken
out from this article. For a short time span of some month the dynamics however will reflect the disease spread mechanism.
In the following we will introduce the different Markov pre-generators used for the modeling of the disease spread. All of them
are combined in the complete model given by the Markov pre-generator L ∶= Lℎ +Lv, where Lℎ is provided in (15) and Lv is
given by (16).

Infection
The pre-generator of the infection has to cope the following reaction equation:

S + V → I + V ,

with a certain rate. This means we have have a mechanism, which takes a particle at a location x ∈ ℝ2 from the compartment
of susceptible (S) and puts it in the compartment of infected hosts (I). The rate is dependent on the compartment of infected
vectors (V). On the host level we obtain the pre-generator:

(Lℎ,infF )() ∶=
∑

x∈S
cℎ
(

x, V
)

(

F
(

S∖x, I ∪ x, U , V
)

− F
(

S , I , U , V
)

)

.

On the vector side, an infection of a vector occurs if an infected host gets in contact with a susceptible vector. The dynamics is
an analogue to the one for the hosts. We obtain

(Lv,infF )() ∶=
∑

x∈U
cv
(

x, I
)

(

F
(

S , I , U∖x, V ∪ x
)

− F
(

S , I , U , V
)

)

.

Specification of the infection rate. In our model the prescribed flip from a healthy host (vector) getting infected by the sur-
rounding infected vectors (hosts) happens with a certain rate of infection cℎ (cv). With R ∈ (0,∞) we denote the maximal
distance of possible infection for a single healthy individual at direct contact with an infected one. Via the function

[0,∞) ∋ r → �R(r) ∶= �(r) ∈ [0,∞),

we describe the potential of infection for a healthy individual depending on distance to a single infected individual, where �R
is e.g. of the form given in Figure 1 . For fixed x ∈ ℝ2 the rate of infection for host and vector are given by

cℎ
(

x, V
)

∶=
∑

y∈V
�ℎ�(|x − y|) and cv

(

x, I
)

∶=
∑

y∈I
�v�(|x − y|) ,

where the constants �ℎ, �v ∈ [0, 1] are risk of infection for host and vector, respectively.

FIGURE 1 Distance dependent risk of infection for a susceptible individual in range of an infected one (R = 0.05)
.
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Mobility
The transport of particles is done by a so-called Kawasaki dynamics. In our model just the hosts move due to a kernel function
depending on the configuration.We have thus to specify a mechanism taking a host from the susceptible or infected compartment
at a location x and then put it back in the same compartment but in a location x′. We have:

(Lℎ,mobF )() ∶=
∑

x∈S
∫
ℝ2

aS(x, y)
(

F
(

S∖x ∪ y, I , U , V
)

− F
(

S , I , U , V
)

)

dy

+
∑

x∈I ∫
ℝ2
aI (x, y)

(

F
(

S , I∖x ∪ y, U , V
)

− F
(

S , I , U , V
)

)

dy.

Thus the disease dynamics on the agent-to-agent level for host and vector is provided by

(LℎF )() ∶=
∑

x∈S
cℎ
(

x, V
)

(

F
(

S∖x, I ∪ x, U , V
)

− F
(

S , I , U , V
)

)

(15)

+
∑

x∈I
�ℎ
(

F
(

S ∪ x, I∖x, U , V
)

− F
(

S , I , U , V
)

)

+
∑

x∈S ∫
ℝ2
aS(x, y)

(

F
(

S∖x ∪ y, I , U , V
)

− F
(

S , I , U , V
)

)

dy

+
∑

x∈I ∫
ℝ2
aI (x, y)

(

F
(

S , I∖x ∪ y, U , V
)

− F
(

S , I , U , V
)

)

dy

and

(LvF )() ∶=
∑

x∈U
cv
(

x, I
)

(

F
(

S , I , U∖x, V ∪ x
)

− F
(

S , I , U , V
)

)

(16)

+ ∫
ℝ2
b
(

F
(

S , I , U ∪ x, V
)

− F
(

S , I , U , V
)

)

dx

+
∑

x∈U
dU

(

F
(

S , I , U∖x, V
)

− F
(

S , I , U , V
)

)

+
∑

x∈V
dI
(

F
(

S , I , U , V ∖x
)

− F
(

S , I , U , V
)

)

,

where the function cℎ
(

x, V
)

≥ 0 is infection rate for host, the constant �ℎ ∈ [0, 1] is recovery rate for host, the function
cv
(

x, I
)

≥ 0 is infection rate for vector, the constants b ∈ [0, 1] birth rate for vector, dU ∈ [0, 1] death rate for susceptible
vector, dV ∈ [0, 1] death rate for infected vector, the functions aS(x, y) mobility rate for susceptible host and aI (x, y) mobility
rate for infected host.
Since we now have the Markov pre-generator L ∶= Lℎ + Lv, defined for suitable functions on Γ4, in hand, we can state the

time evolution problem on states
d
dt
⟨F , �t⟩ = ⟨LF , �t⟩, �t

|

|

|t=0
= �0,

where �0 is a probability measure on (Γ4,(Γ4)) with all moments finite describing the initial state of the system and �t is the
state of the system at time t > 0.

4.3 Evolution of correlation functions
Recall that our goal is to describe the time evolution of the particle density in our four-component system. Following the proce-
dure as outlined in Section 3, we have to go for the time evolution of the corresponding 1-point-correlation functions. Thus we
need to specify the time evolution problem for correlation functionals first. We obtain the following

Corollary 1. The dual operator L̂∗ℎ corresponding to L̂ℎ ∶= K
−1LℎK is given by

(L̂∗ℎk)(�) =
∑

x∈�S
∑

x∈�V �ℎ�(|x − y|) k
(

�S ∪ x, �I∖x, �U , �V
)

−
∑

x∈�S
∑

x∈�V �ℎ�(|x − y|) k
(

�S , �I , �U , �V
)

+
∑

x∈�S ∫
ℝ2
�ℎ�(|x − y|) k

(

�S ∪ x, �I∖x, �U , �V ∪ y
)

dy

−
∑

x∈�S ∫
ℝ2
�ℎ�(|x − y|) k

(

�S , �I , �U , �V ∪ y
)

dy

+
∑

x∈�S �ℎk
(

�S∖x, �I ∪ x, �U , �V
)

− #�I �ℎk
(

�S , �I , �U , �V
)
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+
∑

x∈�S ∫
ℝ2
aS(x, y)

(

k
(

�S∖x ∪ y, �I , �U , �V
)

− k
(

�S , �I , �U , �V
)

)

dy

+
∑

x∈�I ∫
ℝ2
aI (x, y)

(

k
(

�S , �I∖x ∪ y, �U , �V
)

− k
(

�S , �I , �U , �V
)

)

dy

and the dual operator L̂∗v corresponding to L̂v ∶= K
−1LvK is given by

(L̂∗vk)(�) =
∑

x∈�U
∑

x∈�I �v�(|x − y|) k
(

�S , �I , �U ∪ x, �V ∖x
)

−
∑

x∈�U
∑

x∈�I �v�(|x − y|) k
(

�S , �I , �U , �V
)

+
∑

x∈�S ∫
ℝ2
�v�(|x − y|) k

(

�S , �I ∪ y, �U ∪ x, �V ∖x
)

dy

−
∑

x∈�S ∫
ℝ2
�v�(|x − y|) k

(

�S , �I ∪ y, �U , �V
)

dy +
∑

x∈�U b k
(

�S , �I , �U∖x, �V
)

−#�U dUk
(

�S , �I , �U , �V
)

− #�V dV k
(

�S , �I , �U , �V
)

.

Thus for L̂ ∶= K−1LK we have that L̂∗ = L̂∗ℎ + L̂
∗
v.

The corresponding time evolution of correlation functionals then reads
d
dt
kt = L̂∗kt, kt

|

|

|t=0
= k0.

In order to examine the time evolution of the density of particles, we consider the time evolution of correlation functionals of
the following type,

Definition 9 (1-point correlation functions in the host-vector disease spread model).

ℝ2 ∋ x → kS(x) ∶=
{

k(�S , �I , �U , �V ) if � = {x}, �I = ∅, �U = ∅, �V = ∅
0 else

= k(1,0,0,0)
(

�S , �I , �U , �V
)

∈ ℝ,

ℝ2 ∋ x → kI (x) ∶=
{

k(�S , �I , �U , �V ) if � = ∅, �I = {x}, �U = ∅, �V = ∅
0 else

= k(0,1,0,0)
(

�S , �I , �U , �V
)

∈ ℝ,

ℝ2 ∋ x → kU (x) ∶=
{

k(�S , �I , �U , �V ) if � = ∅, �I = ∅, �U = {x}, �V = ∅
0 else

= k(0,0,1,0)
(

�S , �I , �U , �V
)

∈ ℝ,

ℝ2 ∋ x → kV (x) ∶=
{

k(�S , �I , �U , �V ) if � = ∅, �I = ∅, �U = ∅, �V = {x}
0 else

= k(0,0,0,1)
(

�S , �I , �U , �V
)

∈ ℝ,

ℝ2 ×ℝ2 ∋ (x, y) → kSV (x, y) ∶=
{

k(�S , �I , �U , �V ) if �S = {x}, �I = ∅, �U = ∅, �V = {y}
0 else

= k(1,0,0,1)
(

�S , �I , �U , �V
)

∈ ℝ

and

ℝ2 ×ℝ2 ∋ (x, y) → kIU (x, y) ∶=
{

k(�S , �I , �U , �V ) if �S = ∅, �I = {x}, �U = {y}, �V = ∅
0 else

= k(1,0,0,1)
(

�S , �I , �U , �V
)

∈ ℝ.



13

Using Definition 9 the resulting time evolution of these correlation functions at x ∈ ℝ2 for t ≥ 0 is given by

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

d
dt
kSt (x) = − ∫

ℝ2
�ℎ�(|x − y|) kSVt (x, y) dy + �ℎk

I
t(x) + ∫

ℝ2
aS(x, y)

(

kSt (y) − k
S
t (x)

)

dy
d
dt
kIt(x) = ∫

ℝ2
�ℎ�(|x − y|) kSVt (x, y) dy − �ℎk

I
t(x) + ∫

ℝ2
aI (x, y)

(

kIt(y) − k
I
t(x)

)

dy
d
dt
kUt (x) = − ∫

ℝ2
�v�(|x − y|) kIUt (y, x) dy + b − d

UkUt (x)
d
dt
kVt (x) = ∫

ℝ2
�v�(|x − y|) kIUt (y, x) dy − d

V kVt (x).

(17)

Remark 3. The above system of equations (17) is not closed. I.e., the time evolution of the 1-point correlation functions kSt ,
kIt and k

U
t , k

V
t depends on the time evolution of the 2-point correlation functions kSVt and kIUt , respectively.

In order to close the time evolution of particle density, we apply the Vlasov type scaling method, described in Subsection 3.2
. We obtain the resulting renormalized pre-generator V ∶= Vℎ + Vv for the dynamics of correlation functionals, where Vℎ and
Vv are given by

(Vℎk)(�) =
∑

x∈�S ∫
ℝ2
�ℎ�(|x − y|) k

(

�S ∪ x, �I∖x, �U , �V ∪ y
)

dy −
∑

x∈�S ∫
ℝ2
�ℎ�(|x − y|) k

(

�S , �I , �U , �V ∪ y
)

dy

+
∑

x∈�S �ℎk
(

�S∖x, �I ∪ x, �U , �V
)

− #�I �ℎk
(

�S , �I , �U , �V
)

+
∑

x∈�S ∫
ℝ2
aS(x, y)

(

k
(

�S∖x ∪ y, �I , �U , �V
)

− k
(

�S , �I , �U , �V
)

)

dy

+
∑

x∈�I ∫
ℝ2
aI (x, y)

(

k
(

�S , �I∖x ∪ y, �U , �V
)

− k
(

�S , �I , �U , �V
)

)

dy

and

(Vvk)(�) =
∑

x∈�S ∫
ℝ2
�v�(|x − y|) k

(

�S , �I ∪ y, �U ∪ x, �V ∖x
)

−
∑

x∈�S ∫
ℝ2
�v�(|x − y|) k

(

�S , �I ∪ y, �U , �V
)

+
∑

x∈�U b k
(

�S , �I , �U∖x, �V
)

−
∑

x∈�U dUk
(

�S , �I , �U , �V
)

−
∑

x∈�V dV k
(

�S , �I , �U , �V
)

.

Hence we analyze the Vlasov equation
d
dt
rt
(

�S , �I , �U , �V
)

= (V rt)
(

�S , �I , �U , �V
)

with initial condition
r0
(

�S , �I , �U , �V
)

= e�
(

�S0 , �
I
0 , �

U
0 , �

V
0 , �

S , �I , �U , �V
)

with given initial densities �l0 ∶ ℝ
2 → ℝ for l ∈ {S, I, U, V }. For t ≥ 0 in the particular situation where we pass to renormalized

versions of 1-point correlation functions, as provided in Definition 9,

ℝ2 ∋ x → �St (x) ∶= r
(1,0,0,0)
t

(

�S , �I , �U , �V
)

∈ ℝ,
ℝ2 ∋ x → �It (x) ∶= r

(0,1,0,0)
t

(

�S , �I , �U , �V
)

∈ ℝ,
ℝ2 ∋ x → �Ut (x) ∶= r

(0,0,1,0)
t

(

�S , �I , �U , �V
)

∈ ℝ,
ℝ2 ∋ x → �Vt (x) ∶= r

(0,0,0,1)
t

(

�S , �I , �U , �V
)

∈ ℝ,

this analysis results in the system of equations

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

d
dt
�St (x) = −�ℎ

(

� ∗ �Vt
)

(x)�St (x) + �ℎ�
I
t(x) + ∫

ℝ2
aS(x, y)

(

�St (y) − �
S
t (x)

)

dy
d
dt
�It(x) = �ℎ

(

� ∗ �Vt
)

(x)�St (x) − �ℎ�
I
t(x) + ∫

ℝ2
aI (x, y)

(

�It(y) − �
I
t(x)

)

dy
d
dt
�Ut (x) = −�v

(

� ∗ �It
)

(x)�Ut (x) + b − d
U�Ut (x)

d
dt
�Vt (x) = �v

(

� ∗ �It
)

(x)�Ut (x) − d
V �Vt (x)

(18)

where ∗ denotes the convolution operator.

Remark 4. The system of equations (18) provides the kinetic description of the host-vector disease dynamicswith birth-death
and mobility mechanism obtained via a Vlasov type scaling.
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Note that the scaled and renormalized dual operator L̂∗",ren of the operator L̂∗ as provided in Corollary 1 is given in Appendix
APPENDIX A:. In this representation the particular nature of the proper scaling gets visible.

5 NUMERICAL SIMULATION

To illustrate the above analytical considerations, we show computational results of both the particle system and the corresponding
kinetic equations. However, one has to be careful about the direct comparison of the particle system in the numerical simulation
and the dynamics of particles in the framework of configuration spaces. In the latter, one has that the configurations are locally
finite but can indeed have infinite many particles, which is of course not possible in simulations. In addition to this fact, the
particle dynamics is implemented with boundary conditions, leading to a dynamics in the unit square, which is also different
from the setting in configuration space. However, using the above mentioned choice of the interaction potentials an increase of
the number of particles approximates the resulting kinetic equations obtained from the Vlasov type scaling in the configuration
space framework.
The spread of the disease is modeled via a flip from susceptible to infected states. The flip is performed according to an

infection rate. Since the infected vectors (hosts) influence the infection rate of host (vector) at a certain point in the area, the
computation of these rates is themain task during the numerical evaluation. After the infection rates of host (vector) are computed
for every susceptible host (vector), a uniformly distributed random variable is chosen and compared to the infection rate of host
(vector) in order to transmit the host (vector) from the susceptible to the infected state or not.

t = 0 t = 0.5 t = 1

t = 2 t = 5 t = 10

FIGURE 2 Microscopic system of host-vector disease transmission

In the particle simulation - as mentioned above - we consider the space [0, 1] × [0, 1] ⊂ ℝ2. We choose the risk of infection
for host �ℎ = 0.1 and vector �v = 0.2, the recovery rate for host � = 0.14, the mobility rate for host from x to y aS(x, y) =
aI (x, y) = ∫ℝ2

1
|y−x|�+1

dx with � = 0.2, the birth rate for vector b = 0.5, and the death rate for vector dU = dV = 0.3. The
potential of infection is �R as given in Figure 1 . As initial condition, we have 2500 hosts and 800 vectors. The spread of the
disease is shown in Figure 2 . Susceptible hosts are depicted as black spots, infected hosts as red spots, susceptible vectors as
blue spots, and infected vectors as yellow spots. In the simulation we fix two spaces for vector, i.e. the squares [0, 0.4] × [0, 0.4]
and [0.6, 1] × [0.6, 1]. Figure 2 shows a spatial distribution of hosts and vectors evolving in time. We also simulate the kinetic
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equations to compare them with the particle simulation. For this purpose, we choose the same parameters as in the particle
simulation. In order to tackle the problem numerically, we partition the domain [0, 1] × [0, 1] in 2500 sub-domains. The system
of kinetic equations is solved via a standard finite differences method with Δx = 0.02 and Δt = 0.01. Figure 3 shows a spatial
solution of the kinetic equations for infected hosts. For infected vectors, the spatial solution of kinetic equations is comparable
with the one obtained from the particle dynamics averaged over hundred runs. The comparison between the dynamics in the
kinetic and the particle approximation is shown in Figure 4 .

t = 0 t = 0.5 t = 1

t = 2 t = 5 t = 10

FIGURE 3 Numerical solution of the kinetic equations for the infected host

It is interesting to see, that the case numbers reflect the a standard SISUV system, see Fig.4. The kinetic equations and the
particle dynamics vary slightly in comparison of case numbers. Especially in the host dynamics this difference is evident. The
very good agreement in the case of vectors is due to the larger number of vectors compared to the number of hosts. Moreover, the
average here is just performed over 100 runs with uniform initial conditions, which maybe is too few to really find the averaged
particle dynamics in the asymptotic regime. Although the small number of simulations one finds both qualitatively already in
good agreement. The influence of the initial conditions such as the number and spatial distribution of infected hosts and vectors
reflects in the case numbers just in the speed of disease spread. In the classical SISUV model, different initial conditions would
lead to a different infection rate. This can also be directly seen in the Vlasov type limit, namely in the convolution term, which
is then - to obtain just the case numbers in time - integrated over the spatial variable.

6 CONCLUSION

The intention of this article is to show that the Vlasov type scaling, which is a mean-field-like scaling of an interacting particle
system, leads to the known equations used in epidemiology to model host-vector disease spread on the kinetic level. Configu-
ration space analysis is here a very powerful tool to model the dynamics on the microscopic level using Markov pre-generators
known from hop and flip processes. The concepts of harmonic analysis in this framework, established e.g. in (45), are used
to derive first the dynamics of correlation functions - giving a hierarchical system of equations comparable to the well known
BBGKY hierarchy in Hamiltonian dynamics. Then a proper Vlasov type scaling guaranties that the resulting Vlasov hierarchy
is closed and possesses the property of preservation of chaos. The limiting system of time evolution equations is non-linear and
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FIGURE 4 Dynamics of the particle model averaged over a hundred runs and the kinetic equations for susceptible and infected
compartment of (a) host and (b) vector

strongly related to the well-known Fisher-KPP equations. A numerical analysis strengthens the analytical results. Moreover, the
dynamics of case numbers over time gives qualitatively the solution of a SISUV-ODE system. The microscopic dynamics hence
leads to the right behavior in the scaling limit.
It is however still an open question, if this is the only possible scaling leading to such a system of equations or if another

kind of scaling procedure provides the same kinetic and hence mesoscopic dynamics. The spatial resolution of the problem
however can give rise to study spatial control of such systems or predict outbreaks from spatially knownmicroscopic data. These
considerations will be postponed for a later study.
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APPENDIX A: RENORMALIZED SCALED DUAL OPERATORS FOR THE HOST-VECTOR
DISEASE DYNAMICS

In order to close the time evolution of the particle density, we apply a Vlasov type scaling as described in Section 3.2. Here we
provide the corresponding rescaled operators.
First, we scale the infection operator using �" = "�,

(L̂∗ℎ,inf ,",renk)
(

�S , �I , �U , �V
)

= "#(�S )+#(�I)+#(�U )+#(�V )

×

(

∑

y∈�I
∑

ỹ∈�V �ℎ �"
(

|y − ỹ|
)

"−(#(�S∪{y})+#(�I⧵{y})+#(�U )+#(�V ))

×k
(

�S ∪ {y}, �I ⧵ {y}, �U , �V
)

−
∑

x∈�S
∑

ỹ∈�V �ℎ �"
(

|x − ỹ|
)

"−(#(�S )+#(�I )+#(�U )+#(�V ))k
(

�S , �I , �U , �V
)

+
∑

y∈�I ∫ℝ2 �ℎ �"
(

|y − ỹ|
)

"−(#(�S∪{y})+#(�I⧵{y})+#�U+#(�V ∪{ỹ}))
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×k
(

�S ∪ {y}, �I ⧵ {y}, �U , �V ∪ {ỹ}
)

dỹ

−
∑

x∈�S ∫ℝ2 �ℎ �"
(

|x − ỹ|
)

"−(#(�S )+#(�I )+#(�U )+#(�V ∪{ỹ}))

×k
(

�S , �I , �U , �V ∪ {ỹ}
)

dỹ

)

=
∑

y∈�I
∑

ỹ∈�V �ℎ "�(|y − ỹ|) k
(

�S ∪ {y}, �I ⧵ {y}, �U , �V
)

−
∑

x∈�S
∑

ỹ∈�V �ℎ "�(|x − ỹ|) k
(

�S , �I , �U , �V
)

+
∑

y∈�I ∫ℝ2 �ℎ "�(|y − ỹ|) "−1k
(

�S ∪ {y}, �I ⧵ {y}, �U , �V ∪ {ỹ}
)

dỹ
−
∑

x∈�S ∫ℝ2 �ℎ "�(|x − ỹ|) "−1k
(

�S , �I , �U , �V ∪ {ỹ}
)

dỹ
=
∑

y∈�I
∑

ỹ∈�V �ℎ "�(|y − ỹ|) k
(

�S ∪ {y}, �I ⧵ {y}, �U , �V
)

−
∑

x∈�S
∑

ỹ∈�V �ℎ "�(|x − ỹ|) k
(

�S , �I , �U , �V
)

+
∑

y∈�I ∫ℝ2 �ℎ �(|y − ỹ|) k
(

�S ∪ {y}, �I ⧵ {y}, �U , �V ∪ {ỹ}
)

dỹ
−
∑

x∈�S ∫ℝ2 �ℎ �(|x − ỹ|) k
(

�S , �I , �U , �V ∪ {ỹ}
)

dỹ.

Taking "→ 0 we obtain the renormalized operator

(Vℎ,infk)
(

�S , �I , �U , �V
)

∶= lim"→0(L̂∗ℎ,inf ,",renk)
(

�S , �I , �U , �V
)

=
∑

y∈�I ∫ℝ2 �ℎ �(|y − ỹ|) k
(

�S ∪ {y}, �I ⧵ {y}, �U , �V ∪ {ỹ}
)

dỹ
−
∑

x∈�S ∫ℝ2 �ℎ �(|x − ỹ|) k
(

�S , �I , �U , �V ∪ {ỹ}
)

dỹ.

For the birth operator we consider b" =
b
"
,

(L̂∗v,birth,",renk)
(

�S , �I , �U , �V
)

= "#(�S )+#(�I )+#(�U )+#(�V )

×

(

∑

x̃∈�U b" "
−(#(�S )+#(�I)+#(�U⧵{x̃})+#(�V )k

(

�S , �I , �U ⧵ {x̃}, �V
)

)

= "
∑

x̃∈�U
b
"
k
(

�S , �I , �U ⧵ {x̃}, �V
)

=
∑

x̃∈�U b k
(

�S , �I , �U ⧵ {x̃}, �V
)

.

Taking "→ 0 we obtain the renormalized operator

(Vv,birthk)
(

�S , �I , �U , �V
)

∶= lim"→0(L̂∗v,birth,",renk)
(

�S , �I , �U , �V
)

=
∑

x̃∈�U b k
(

�S , �I , �U ⧵ {x̃}, �V
)

.

For the recovery, death and jump operator no scaling is needed. Finally, we obtain the renormalized generator for the dynamics
of correlation functionals,

(Vℎk)
(

�S , �I , �U , �V
)

=
∑

y∈�I ∫ℝ2 �ℎ �(|y − ỹ|) k
(

�S ∪ {y}, �I ⧵ {y}, �U , �V ∪ {ỹ}
)

dỹ
−
∑

x∈�S ∫ℝ2 �ℎ �(|x − ỹ|) k
(

�S , �I , �U , �V ∪ {ỹ}
)

dỹ
+
∑

x∈�S �ℎ k
(

�S ⧵ {x}, �I ∪ {x}, �U , �V
)

− #(�I ) �ℎ k
(

�S , �I , �U , �V
)

,

and

(Vvk)
(

�S , �I , �U , �V
)

=
∑

ỹ∈�V ∫ℝ2 �v �(|ỹ − y|) k
(

�S , �I ∪ {y}, �U ∪ {ỹ}, �V ⧵ {ỹ}
)

dy
−
∑

x̃∈�U ∫ℝ2 �v �(|x̃ − y|) k
(

�S , �I ∪ {y}, �U , �V
)

dy
+
∑

x̃∈�U b k
(

�S , �I , �U ⧵ {x̃}, �V
)

−
∑

x̃∈�U dUk
(

�S , �I , �U , �V
)

−
∑

ỹ∈�V dV k
(

�S , �I , �U , �V
)

.
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