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Abstract

In this paper, we deal with the numerical approximation of the coupled wave equation of Kirchhoff type with
nonlinear boundary damping and memory term. Since the equation is a nonlinear equation, the Raviart-Thomas
mixed finite element method is one of the most suitable techniques to obtain the approximated solution. In this paper,
we will show that using the Raviart-Thomas method the optimal convergence order of the scheme can be achieved.
To that end, we prove the necessary lemmas and the main theorem. Finally, the efficiency of the method is certified
by numerical examples.
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1. Introduction

Mixed finite element method is one of the most useful methods to solve second-order differential equations; there-
fore, this method has been considered in lots of research works. For instance, in [1], a mixed finite element Galerkin
method is analyzed for a strongly damped wave equation. Liu et al. [2], presented an H'-Galerkin mixed finite el-
ement method for a class of second-order Schrodinger equation. Liu et al. [3], considered a new numerical scheme
based on the H'-Galerkin mixed finite element method for a class of second-order pseudo-hyperbolic equations. In
[4] the authors presented two splitting mixed finite element schemes for the pseudo-hyperbolic equation. In that work,
a mixed finite element method for approximating the solution of nearly incompressible elasticity and Stokes equations
was presented as well.

The author in [5] presented a new weak Galerkin mixed finite element method for the Helmholtz equation with
large wave numbers. In [6], the space-time discretization using a combination of mixed finite element method

(Raviart-Thomas) and a finite difference scheme for the time discretization was applied to a wave equation. A splitting
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positive definite mixed finite element method used for second-order viscoelasticity wave equation in [7]. The authors
of [8] presented an H'-Galerkin mixed finite element methods for parabolic partial integro-differential equations. In
[1], a mixed finite element Galerkin method and a second-order implicit-time discretization scheme were presented to
solve a strongly damped wave equation. In [9], an extended Raviart-Thomas mixed finite element method was applied
to approximate the solution of damped Boussinesq equation. In [10], the solution of a viscoelasticity wave equation
using mixed finite element approximations were studied. In [11], an H'-Galerkin mixed finite element method for
parabolic partial differential equations was applied. In [12], the authors presented a priori error estimates for mixed
finite element displacement formulations of the acoustic wave equation. In [13], some mixed finite element methods,
explicit and implicit in time, for a fourth-order wave equation were studied. The authors in [14]] applied Galerkin
mixed finite element methods to approximate the solution of a class of second-order pseudo-hyperbolic equations. In
[15], a new family of quadrangular (two dimensional) or cubic (three dimensional) mixed finite elements for the ap-
proximation of elastic wave equation was used. In [16], a new mixed finite element weak Galerkin (WG) method for
the second order elliptic equation was introduced. The more interested readers can see [17, 18, 19] for more details.

This paper is concerned with the Raviart-Thomas mixed finite element method for the following coupled Kirchhoff

type wave equation with nonlinear boundary damping and memory term [20, 21, 22]:

Un(x,0) = (1 + VUG + |IVVIR) AU(x, 1) = AU(x, 1) = f(x,1) xeQ, 1€[0,T], (1a)
Va(x,0) = (L4 IIVUIR + IVVIR) AV(x, 1) = AVi(x.0) = f(x,1) xeQ, 1e0.T], (1b)
U av
v=v=Y_%_ onZ; =Ty x[0,T], (lc)
ov  ov
U oU,
(1+1IVUIR, +IVVI) ot ot U U +gOIUI Ui =g |UPU onZo =Ty x[0,T], (1d)
4 v
) NI
(14 IVUIG +IVVIR) o= + =+ V + V, + gWIViPV, = g VIV on, % =Tox[0,T],  (le)
Ux,00=Uo(x)  Uix,0)=Ui(x) xeQ, 1f)
V(x,0)=Vo(x)  Vi(x,0) = Vi(x) x€Q, (g

where U and V represent the transverse displacements, Q is a polygon domain of R? with a boundary I' := dQ such

thatI' = 'y UT; and I’y and T'; have positive measures. Here, (1a) has its origin in the mathematical description of

o

5 = VU - v where v is the unit outer

small amplitude vibrations of an elastic string [22]. Furthermore, we define
normal vector pointing towards Q2 and

t

2, (|oU
_ 2 ._ aed
gru)= [ gt ruidr, IVUIR =2 [ |5
=13

0

2
dx,

and 0 < g < ) (a constant), y > 0, p > y. We have the following assumptions on the kernel g of the memory term
o % [2(0,00) NL(0,0),

e g(t) >0 >ty where f is a constant,



e 8(N =g (1) < —mg(t) Vrel0,1n],
* 20)=0 [ <mg@) Vitel0,1n],

for some mg, my,my > 0,m; >2(y +2)and 1 — fooo g(r)dr. The function f satisfies the mentioned conditions of [21]
which guaranties its meaningfulness. Let us define W := {u € H'(Q)| u = 0 on I';} and assume Uy, U;, V; and V;

belong to H*?(Q) N W should satisfy the following assumptions:

(1 +|IVUI3 + ||Vv0||g)AU0 + AU, = (1 + VU3 + ||V\/0||§2)AV0 +AV,  onQ, (2a)
Uy _ oV,
Up=Vo=—2==-2=0 onQ, (2b)
By v
al, oU
(1+ VUGl +IVVolly) =2 + =% + Up + U + I Uy = on T, (20)
av v
(1+1VUoIIg, + ||VV0||Q) —° + a_l +Vo+ Vi +g0IViIPV, = on Ty, (2d)

Now, we review the history and the background of (1). The first Kirchhoff equation was of the form

L
WU _ +E_hfa_02d
Plae = P07 oL ox )
0

where this equation extends the classical d ’Alembert’s wave equation by considering the effects of the changes in the

U

W’ € [0, L] R > O, (3)

length of the strings during the vibrations. Eq. (3) is called the wave equation of the Kirchhoff type because Kirchhoff

was the first one who introduced this equation in the study of oscillation of stretched strings and plates [23].

L
En ((oU\  |&*U
p0+if(a) d_x]ﬁ:q(x,t) )CE[O,L], tZOs
0

is a mathematical Kirchhoff model of nonlinear transverse vibration, neglecting the displacements along the string’s

The equation

PU  oU
phﬁ + CE +

axis and averaging tension N over its length L. In this equation, p is the density of the string material, E is the
Young modulus of the latter, C is the viscous damping parameter, py is the initial string tension value and g(x, f) is the

transverse load intensity [24]. Here, we consider the following equation [25]

~¢(IVUIR) AU - aAU, = BUFU  in Qx (0, 00),
Ux,)=0 on Iy X (0,00),
, @)
¢ (IVUIIR) 52 +a%% = g (U) on Ty % (0, 00),
U(x,0) =U,, U, (x,0)=U, in Q.
In the special case of (4), the dynamics of the moving string in Figure 1 can be described by
o*U ’rU Eh ou U
h— - = + — dx + 0,L 5
o2 Yo = | P f(ax) ]62 f. x€[0,L], (5)
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Figure 1: Schematic diagram of the axially moving Kirchhoft string.

where U = U(x, ¢t) is the lateral displacement at the space coordinate x and the time ¢. Additionally, E, p, h, po, a and f
are the Young modulus of the latter, the mass density, the cross-section of the area, the length, the initial axial tension,
the resistance modulus, respectively. Physically, Eq. (4) occurs in the study of vibrations of damped flexible space
structures in a bounded domain in R" .The term a Ay, is the internal material damping of Kelvin-Voigt type of the
structure. The Kirchhoff-Carrier equations for a freely vibrating fixed-fixed string with two polarised displacements

U, and U, described by [26, 27]

phZU — (py + N)ZU =0, xe[0.L]. 120,

oaxr

(6)

phZL — (oo + N) 2L =0, xe[0,L], 120,

oxz

where N is the axial tension created by the large amplitude motions and the coupling with the transverse motion and

defined by
Eh [((oUn\2 (U
1
N=— — | +|—=] |dx. 7
2L ((ax) (ax))x ™
0
In these equations p is density, E is Young’s modulus, /4 is the crosse section, py is the tension and L is the length.

In fact, Eq. (1) is a nonlinear PDE with a gradient term. In order to obtain the optimal convergence rate for the
approximation technique, the efficient strategy is converting the equation into a system of two nonlinear first-order
equations (using an auxiliary variable). Then, the Raviart-Thomas mixed finite element can be employed to solve the
system.

The paper is organized as follows. In Section 2, the semi-discrete Raviart-Thomas mixed finite element method
[28] for solving (1) is introduced in details. In Section 3, we prove the theorem about the convergence of semi-
discretized Raviart-Thomas mixed finite element method for solving the equation and obtain the optimal degree of

convergence. In Section 4, we demonstrate the accuracy of theoretical results using a numerical example. Finally, the

4



conclusions are drawn in Section 5.

2. Mixed finite element method

In this section, we first mention the necessary definitions. Afterwards, we propose the Raviart-Thomas mixed
finite element method for solving Eq. (1). It enables us to discuss convergence analysis of the method in the next

sections.

Definition 2.1. Suppose Q c R¢, d € N. For 1 < p < oo, let

L7 (Q) := {ul u is measurable on Q and ||ul|;»q) < oo},

1

where [|u|;, ) := t{lu X)P dX) . In particular, the space L*(Q) is a Hilbert space equipped with the inner product

(u,v)g = f uX)v(X)dX, Yu,ve L*(Q),
Q

umm=(j$%xmx

Q

and norm 1

2

, YueLX(Q), X =(x1,x,....x5) € R

Definition 2.2. [29, 30] Suppose Q c R and
L}, (@) :={fl f € L' (K) Vcompact K C interior Q |. 8)

Let k be a non-negative integer and f € L}OC (€2). Suppose that the weak derivatives D f [29], exist for all |a| < k. We

define the Sobolev norm ]

|vmg:[§hw%ﬁmJ,

|al<k

In this case, we define the Sobolev space
H Q) = {f € L, ()] Ifllq <o}

H* (Q) is a Hilbert space with respect to the inner product

(U Vg = Z [ D’"u(X)D’”v(X)dX],
Q

0<|m|<k



which induces the mentioned norm. Also H (Q), L~ ([0, T1, H (), L= ([0,T1, L (Q)) and L™ ([0, T1, H* (Q))

are define by
HE Q) = {f e H* @] fIr, =0},
L2 (10,71, Hf (@) := {1 £ (.0) € HE(Q) & f(x,.) € L* ([0, TD},
L2(10, 71, L2 Q) ={f1 f (.0) e 2(Q) & f(x,.) € LV ([0, T])},
L= (10,71, H* (@) := {1 f (.0 e H*(Q) & f(x,) € L*([0,TD},
H(div, Q) := {q (@) V-qe L2(Q)}
and we equip these spaces with the norms [|. [, 00, |- llok00. Il lloxo and ||.lle 0.0, respectively. Furthermore for

H(div, Q) we have

1/2
gl .0y = (lgl + 11V - gl ©)

Lemma 1. Under the mentioned assumptions for Eq. (1), this equation has unique solution U, V : Q — R such that
U, VeL([0,T], Hy (Q), U, V; € L* ([0, T1, H} (Q)) and Uy, Vi € L= ([0, T1, L*(Q)).
Proof. See [20].

Now, we present the Raiviart-Thomas mixed finite element method for solving Eq. (1) by introducing a variational
formulation for this equation. For this purpose, suppose X := L*(Q), M := H(div,Q), W := VU and Z := VV;

therefore, we can write (1) in the following form:

Uy(x,t) — (1 + (W3 + ||Z||?2)V cW(x, ) = AU(x, 1) = f(x,1) xeQ, te[0,T], (10a)
W=VU xeQ, te[0,T], (10b)
Viul(x, t) — (1 +[[WIIE + ||Z||é)V -Z(x,1) — AVi(x, 1) = f(x,1) xeQ rel0,T], (10c)
Z=VV xeQ te[0,T], (10d)
U=V=W-v=Z.-v=0 onX =T x[0,7T], (10e)
(1 + (W3 + ||Z||é)W v+ % +U+ U +g0)UlPU, =g=|U"UonXy =Ty x[0,T], (10f)
(1 + W3 + ||Z||é)Z v+ % +V+Vi+g0WViIPV, =g+ |V'V  onZXy=Tyx[0,T], (10g)
U(x,0) = Up(x), Uix,0)=U;(x), xeqQ, (10h)
V(x,0) = Vo(x) Vi(x,0) = Vi(x) xeQ, (101)



The mixed variational formulation of (1) based on (10) is given by:

0? 0
(—w) +(1 +||W||3+||Z||§)<W,V¢>Q+(V—U,Vso) + (U9,
Q Q

or? ot
+ EU + t'ﬁUpﬁU =(g*|UIU, o). +(f, @) eX 11
E ,soro g(®) pyid e ,soro— g o, + (), pEX, (11a)
W.¢)q = (VU ¥)q yeM, (11b)
(d—ZVso) +(1+ WIS + 1Z113) (Z, V) +(V3vw) +(V,9)
dtz ’ a Q Q ’ Q at ’ o ’ Ty
+ QV + g(1) ‘QVPEV =(@g*|VI"V,o)r +(f, @) eX (11c)
% ,saro s\ V| 7 ,wro— g @, + (fs 9o peX, c
(Z,¥)q = (VW ¥)q YyeM, (11d)
U
(U(0), 9)q = (Vo, ) (E ,<p) = U1, ¢)q pEX, (11e)
t=0 Q
v
(V(O), ‘10)9 = (VOs SD)Q (E 7‘10) = (Vh‘p)Q @ € X. (1 lf)
t=0 Q

The mixed finite element method for (1) is based on the weak formulation (11) and two finite element subspaces,
ie., X € X and M), C M associated with a prescribed finite element partition 7, for the domain Q. Let 7, be
a partition of Q into non-overlapping triangles such that no vertex of one triangle lies in the interior of an edge of
another triangle. (i.e., Q = Jger, K) and i denotes the maximum diameter of the partition. Let the finite dimensional
subspace X, € X and M), € M be the Raviart-Thomas-Nedlec spaces [31, 32] of order k + 1 where k£ > 0.

Finally, based on variational formulation (11) and the mentioned finite element spaces we define the Raviart-
Thomas mixed finite element method for (1):

find (up,vi) X (W, zn) € (Xp, Xp) X (My,, Mp,) such that



& 9
(—uh,so) +(1+||th|§2+IIZhIIé)(wh,Vsa)g+(V—uh,V¢) + (un, @)r,
Q Q

or? ot
+ (2 . (,)'ﬁ o = (¢ Il O)p, + (> @) X (120)
6tuh"’0r0 8 at”h atuh,SOro— & * |upl"Up, @), »Pla @ &€ Ap,
Wi ¥)a = (Vi ¥ ¥ € My, (12b)
d 1 2 2 \Y V(9 \Y
@vwﬂﬂ + vl + lizalig) @ Vedo + (Vv ¢) +ne,
+ (2 + g0 ‘3 4 = (g vl @), + (s ) X (120)
atvh,goro g atvh dtvh’(p N = & * Val" Vi, @), »Pla ¢ I
(Zn¥)o = (VWi ¥)q ¥ e My, (12d)
Huh
(uh(o)’ QO)Q = (U09 ()D)Q . X" = (Ul’ SD)Q ("2 € Xh’ (126)
ot =0 Q
19\/;,
r(0),0)g = Vo, | —| .¢] =WVi,0)q ¢ € X (12f)
ot =0 Q

The main theorem of the paper is given here. It derives the error estimation of the semi-discretized Raviart-Thomas

method for solving (1), i.e., Eq. (11).

Theorem 2. Convergence. Under Assumption 1, the following error estimation holds
U@ = un@)lig, + IV@) = vi@lig + IW@) = wa@llg, + 120 — za(Dllg, < CR* - 1 <1<k

The mentioned theorem will be proved in Section 3. Before we start to prove the theorem, some necessary lemmas
should be presented and proved. Before that, in this section we review some necessary lemmas which will be used in

the next section.

Lemma 3. (The Gronwall Lemma) [30] Let ¢ € C ([0,1,]) and ¢ € C' ((0, 1)), if there exists a constant @ € R and a

continuous function g, such that for t € (0, t;), ¢ satisfies the inequality

d
770 < ap®) + 1), 13)

or
t

(1) < ¢(0) + f[mp(s) + g1(9)]ds, (14)
0

then
t

() < e p(0) + fgl(s)e“(t’s)ds.
0



Lemma 4. Suppose for the function f € C([0,T] x Q) exists positive constants my and My such that [33, 34]:

mp(x—35) < ft,0)x— f(t,5)s <Ms(x-s), x20,5>0,1>0,
then there exist Cy > Cy > 0, such that for vectors u, v € R and t € [0, T] we have
If @Dy —f@luul < Cylv—ul,

Colv =l < (F (6 W) v — £ (&, by ) . (= v)..
Lemma S. There exist projection operators I, X R, : X X M — X;, X M}y, such that [35, 36]

1. The operatorII;, : X — X, is a L*-projection, i.e.,

(V- wh,u— yu)g = 0 Vwp € My, ue LAQ), (15)

llu = Tyl 2y < chllullpey 0<I<k+l. (16)

2. The operator R, : M — M}, with divR;, = I, div satisfies

V-w=Rw),90)o=0 Yo € X, weM, 17
w — Rywllg < chlwllq 0<I<k+1, (18)
IV - w = TLw)llg < ch'lIV - wll,q 0<I<k+1. (19)

3. Proof of the convergence theorem

The main purpose of this section is to prove a theorem about the convergence order of the scheme which mentioned
in Section 2. Hence, for the sake of simplicity and preventing the complexity of the proof, we separate it into some
lemmas. Afterwards, we employ the lemmas to prove the main theorem. From now on, we make the following

regularity assumption:

Assumptions 1. We suppose that U(t), V(t), W(t), Z(t) € H(Q), 1 < I < k + 1, are the exact solutions of (10)
and up(t), vi(t) € X and wy, 2z € My, are the approximate solutions of (10) that are obtained by solving (12).
Additionally, we assume that Uy, U, Vy, V € H@Q),1<I<k+1.

Let us define the error terms of U, V, W and Z as

ey = up — U exy = v, — IV,

e3p ‘= Wp — RhW, €4p = Zp — RhZ.



By subtracting (11a—11d) from (12a—12d), the following results are obtained

(92
( gl h,go) + (1+ Iwallgy + llzalld) wn, Vo) = (1 + WG, + IZ1I3) (W, Vo),
Q

P

0 0 0 0
Ve,V , - €Lhs O |z un| —un,
+( Pt 90)9 + (€1 @)r, + (atﬁ,h <P)r0 +8( )(‘at“} 5t QD)FO

0? 0
= (g * lunl"up, o), = (g * U U, ¢)r, + (ﬁ U - HhU),‘P) + (VE U - HhU),VGD)
Q

0
+(U -1LU, ¢, +(&(U_HhU)’90) ,

Iy

62
( ezwﬁ) + (14 Iwallgy + l1zall3) Gz, Vedo = (1 + W1 + 1Z113) (Z, V),
Q

or?
9 P
+ g(f)(‘a—tvh

0 0
+({V—ewn, Vo| + , +|=exn
( 5,62 90)9 (e21:9)r, ( Pyt ‘p)ro

0
+ V-1V, o), + (5 V-1LV), 4,0) ,
t To

(e3m:¥)g = (Vern ) + (LU = U), V- g + (W = R,W,¢)q,

(64,/,, l/l)Q = (V62,h,lﬂ)Q + ((HhV — V) ,V . lﬁ)Q + (Z — RhZ,(ﬂ)Q.

- g(t)(’

0 0
a—tvh,so)ro - g(”(’a_t"

9? 0
=@WW%@R%NWWWM+QEW—WW#)+65W—MWN4
Q

P

P

GU )
ot T

Q

P
Zy,
o “’)ro

Q

Plugging ¢ = azel » into (20) and ¢ = 62 » into (21) as well as adding these equations together yield

o 0 > 9 + V2 Vé 6 V2 + g
32 5 €1h + 5 em 5o A FraREs atelh 3t€2h, pR , €L 7 €L ;

0 0 0 0 0
+(5’2,h,a_teZh) (atelh,a elh) (atezma 6211) +Ly =L+ L3+ Ly+Ls + L,
Iy

where

10

0

(20)

ey

(22)

(23)

(24)



0 0
Ly = (1+ wallg, + l1zall3) (wh + zh,va—tel,h)ﬂ = (L+ W1 + 12113 (W + z,va—tez,h) :

Q
a "o 0 0 Pa 0 0
Ly = g(0) ((‘a—tuh 2 (.Ttel,h)ro - (’EU Erie elh)ro) +8(n) ((‘at

"9 -V 0 e - ‘QV ’ 3 0 —e
a o) ~Nal " a). )
4 0 4 9 4 9 4 9
Ly := g = |up uy, a_el’h =g * ML UPTILU, —e1n]| +\g* MLUIILU, —e1n| (g*|UMU, ——ern
t )k, ot o ), a " Jr,

Iy

0 0
- (8 * [va v, —ez,h) - (g * [, V"I,V 6—62,}1)
To !

0
11, V|'11,V, —
o (8*| wVI' I, at"’“)

0
(s vV Sens) |
(g*ll 6t62,h)

Iy Iy Iy

2

0? 0 0
Ly:= (— U -1,U), a_tel,h) (

0
vV -11,V), 72 h) ,
or o

0 0 0
Ls :=|V— I1 V— V— —1II V—
5 ( U -1,U), P 61,h) + ( P V-11,V), 6te2’h)g’

Q
0 0 0 0 0
Le .= U -11,U, — +|V =11V, — +| = U -11I,U), —ey, V-1I,V
6 ( / 61‘61,/1)1_0 ( h 6t62’h)r0 (at( »U) atel,/)ro (6( WV, 572

To obtain the mentioned error bound of Theorem 1 the challenging part is dealing with L; and L,. The bound of L,
will be proved in Lemma 9 where Lemma 7 and Lemma 8 are used employed for it. Regarding L,, the main proof

will be given in Lemma 10. Furthermore, the following lemma will be used in the proof process of Lemma 7.

Lemma 6. Using the above notations we have
||33h” €3h,V2€1h + ﬁ(W—RhW),esh , (25)
Q ot ) \ot "o

and

0 0
o ||€4 h”Q (64 hs Vaez,h)g + (6_t (Z -Rp2), €4,h)g~ (26)

Proof. By taking derivative with respect to t from (22) and (23), and puttin = ez and Y = ey, into these
y g )4 p 8 . y

equations, respectively yields

0 0 0
- ||m||g (m, vae.,h)g + (E (W —R,W), e3,h)g + (E (MU - V),V - es,h)g, 27)
and
Dol = [eanV2ern) +(2 @ -RiZy.ens] +( 2@V -1),V ey (28)
dt Q= \" o ), \or g \or ’ o
as well as using (17) we conclude
(é I1,U-0),V - es,h) =0, (29)
ot o
0
- (HhV - V) N V. €4 =0. (30)
ot a

Now combining (27)-(30), the results can be easily obtained.

11



Lemma 7. Suppose that Assumption 1 holds and let

. 2 2 0 2 0 2 0
Lo = Iwallgy (wns Vern),, = IRaWIG (RW, V2ern) ) +llzalle (25, Vi ean), = IRWZIG (RiZ, Vers),

therefore, we can write

1d 1d
Lioz 35— leslle, + 37 lesule, + Mo, GD

where

0 = (e ) (lesall + lesall) + (et + ) (el + ey

2

0 Lt (n* +n°l). (32)

1_4a L |
+ —||IV= + —||IV=
16” a1 16” P

Proof: First of all, by adding and subtracting some terms to L, o, we have

0 0 0
Lio = Iwallg (wh,vgel,h) ~ IRAWIlg, (Rhw,V—el,h) + [wallg (Rhw,V—el,h)
t g at g ot 7 )g

0 0 0
— wall3 (Rhw, V—el,h) + IR, W (wh,V—el,h) — IR, W, (wh,V—el,h)
Q

ot ot ot
+ 1zallA Vée —IRLZI%Z | RLZ Vﬁe +1zal3 [RLZ Vge (33)
ZnlligZn, ot 2.h 5 nlllg | Knt,s ot 2.h 5 Znllg (Int, ot 2.h R
—llzal (RLZ Vﬁe + IR, Z|12 Vée — IR, Z|2 Vge (34)
Znllg | Knk,s ot 2,h o nlllg |\ Zn, ot 2,h nlllo |\ Zn, ot 2.4 -

Rewording the above equation gives rise to

0 0
_ 2 2 _ 2
L= (||Wh||g + IRy, w||g) (es,h, V _6tel,h)g IR, Wllg (es,h, V 6tel,h)g

0 0
+ (Iwally = IR W) (Rhw,V—el,h) + (llzally + IR Z1) (e4,h,V—e2,h)
Q Q

ot ot
2 9 2 2 0
= IRLZ|g (6’4,h»va_telh) + (||Zh||Q - ”RhZ”Q) (RhZ, Vaez,h) , (35)
Q Q
employing Lemma 6 and using the fact that
lesslly & lesalle = 2 leslla-— Nleaallg & lleaslle, = 3 lleaal

we can obtain

1d 4 5 0 5 5 d
Lio 2 5= flesslo = IRsWIG (es,h, vaem) + (Iwalle, = IRAWIG) | RuW. Ve

Q Q

1d 4 2 9 2 2 9
+ 57 lleanlle — IRAZI (e4,h, vaez,h) + (lzally = IRZIG) (RiZ. Vo ea

Q Q

0 0
+ (IRAWIIG, + Iwali3) (E W - RhW>,e3,h) + (IRnZIG, + l1zall3) (a—t (Z-RiZ), e4,h) : (36)

Q Q

12



Considering the above formula, we conclude
1d 4 1d 4
Lio2 5 llesall, + 37 llesnllq + Mo. (37)
where

0 0
= (W1, - IR, W1 (e3,h,va—te1,h) + (Iwalley = IR W) (Rhw -W, Vael,h)

Q Q

0 0
2 2 2
+ (”Wh”Q - ”RhW“Q) (W, Vgel,h)g —[Wllg (63,h, VEel,h)Q

0 0
+ (1121, - IRWZ113,) (e4,h,va—tez,h)g + (llzallgy — IRAZIIE) (ha -z, vaez,h)g

0 0
+ (llzallg, = IRAZIIE) (z,va—tem) A (e4,h, Vgez,h)

Q Q

0 0
+ (IRAWIIG, + Iwallg) (5 (W - RhW),es,h) + (IRAZ1IG, + lzallp) (5 (Z-RiZ), e4,h)

Q Q

0 0
+ (IRAWIG, + 2113 (a—t (W = R,W), eg,h) — (IR W1, + 2113 (5 (W= R,W), eg,h)
Q Q

0 0
+ (IRWZIIg, + 212115, (a—t (Z-R,Z). m) ~ (IRWZIIg, + 2112115, (E (Z-R,Z), e4,h) : (38)

Q Q

Now applying the Cauchy-Schwarz and Young inequalities and Eq. (19) yields

|Md3quwﬁ9@ah

o+ 5 v e )+czh2’||W||,Q||e3h||Q+8||W||Q||e3h||9+8||W||Q||e3h||9

2 2
16” Sewn +cghz’||Z||,2,Q(||e4,h||§2 4H Zen )+c4h2’||zn,%g||e4,h||§§+8||Z||z§||e4,h||§2
2 4 2 2] 4 (9 2 1 4 6l 2 (9 2
#8021 ewsly + g [V gpeas] + et easlly |59+  lewally + 20 i | 2w

2

0 0
—Z
ot

1
+ 7 leasllg + 200n 1212 | =

2
+ et esalf W + s fleas 2|+ cun eus] 121

1,Q

and the proof is completed.

Lemma 8. Suppose

L = llzalley (i Vern), — IRAZIG (RaW, V Zern) , + Iwnlley (20 Viean) ) — IRAWIG (RiZ, Vi eas),

therefore, under Assumption 1, we have

d
Lip= 7 (”%,h”é H34,h||§2) +Lipo+ Lin, (39)

where

2
[L120] < 1 leaslly + ealleaslly + st lesally + e llesally + 5 [V 5714 (40)

ol
13



and

o] = e+ ) (||e3,h||;; llesall) # (e + ) (el  Nesall)

2

61/, —€h + C5/’l6]. (41)

yalgenl, v

Proof. Using the definition of L, » as well as adding and subtracting some terms yield

0 0 0
Lis = llzall? ,V=—ein| +IIR.Z|> ,V— + llzall2 | RAW, V=
12 ||Zh||g(€3,h 6[6”)9 IRy Z||g (63,h atel,h)g ||Zh||g( h prall .

0 0 0
—IRLZII3, (Wh, Va—tel,h) +wall (64,}1’ Vaez,h) +IRWII3, (64,}1’ Vaez,h)

Q Q Q

0 0 0
+ wallg (ha, Va—tez,h) — IR, Wi (zh, vgez,h) +IRLZIIG (Rhw, Va—tel,h)

Q Q Q

0 0 0
+||RhW||é(ha,v6—ez,h) —||RhZ||§2(Rhw,V—e1,h) —||RhW||g(ha,V—e2,h).
t 7 g ot 7 )q at 7 )a

By substituting (27) and (28) from Lemma 6, into the above formula, we arrive at

L = (lzally + IRZIZ) < llessll, + (lenll - IRAZIR) ((Rhw W, vgtel,h)g

+

0 0
(W elh)) (||RhZ||é—||Z||§))(e3,h,vae1,h) —||Z||§z(e3,h,v5e1,h)

Q Q

d 0
+ (Il + 1R WIR) = fleall + (Iwalle, — IRAWIR,) ((ha - z,va—tez,h)g

0 0
(z m)) (||RhW||é—||W||§,)(e4,h,v5ez,h) —||W||§)(e4,h,v6—tez,h)

Q Q

0 0
+ (Ilzallg, + IRAZ1) (5 (RyW - W>,e3,h) + (Iwallyy + IR W) (5 (RiZ - Z), e4,h)

Q Q

d d
> Neaslfy % lesslly + lesalfy 5 sl + Lo + Lz
d
& (lesslElesll) + 2o + Lo, >

where

0 0
= 2 —_ 2 —_ —_
Liso (”Zh”Q ”RhZ”Q) ((Rh w-w, Vatel,h)Q +(W, V _atel,h)g)

0 0
—(||ha||§—||Z||é)(e3,h,v5[e1,h) ~1ZII3 (ea,h,vael,h) , (43)

Q Q

14



and
Ll 21 - <||uh||“ ||13h” ||g!> IEhZ Z’ ; €2.h Z7 : €2h (Hlahll ||“ ||” ||“) €4.hs : €2n
- Bt ’ Q at ’ o) ’ at ’ Q

0 0
+ (Ilzallg, + IRAZ13) (67 (RyW = W), e3,h) + (1wl + IR WI) (E (RiZ - Z), e4,h)

Q Q

0 0
+ (IRAWIIG, + 2 W113,) (5 (W= R,W), eg,h) — (IRAWIIG, + 2 IW1I3) (87 (W= R,W). ez,h)
Q Q

0 0
+ (IRWZIIG, + 211213 (E (z - RhZ),e4,h) — (IRWZIIg, + 211213, (E (Z - RhZ),e4,h)

Q Q

0
— W13 (e4,h,va—ez,h) : (44)
1 Q

Employing the Cauchy-Schwarz and Young inequalities and Eq. (19), we conclude

+ 161WIR [lesn|]

o + c2h* 1211 llesallg + 16121 [lesally, + 5 IV G erally. @9

|Li20| < cth IWIGg “34»/1”?2

and

IZ1i2all}, < P 1ZIE |[ess|ls, + 16 1Z13 [[eas|ls, + csh™ IWIEG lean]lZ, + 16 1Z1% leas, +

1 o
RW@mQ

velesall[om] o+ §lesall e sG]+ co fesalf e + o eal | 27,
sl + ozt |22+ el 12 o
Considering (42), (45), and (46) we have completed the lemma.
Lemma 9. Under Assumption 1, we conclude
L 2 leaslf+ 4 Desslls + 3 esall + 13 Bewsll + 2 (esall leasll) + L1 + Luzo+ Luz + L1+ Mo,
47

where

0 0 o 0
Lij = ||RhW||§)(Rhw,vEe1,h) —||W||§,(W,v5e1,h) +||R;1W||3(ha,vaez,h) —||W||§)(z,va—tez,h),

Q Q Q

d d 9
—1ZI]3 | W, V= RiZIE R Z, YV —ern| —I1ZIBZ,V=e11] ,
Il ||g( 6tel’h)g+” h ||g( h atez,/)Q 1Z1]5, preX ,

Q

0
Lis:= IR ZII% (Rhw,va—el,h)
¢ Q

also Ly 20 and Ly 21 have been defined in (43) and (44), respectively and My can be found in (38). Moreover, we have

2
bisats ot ool ] :
|11| an” +oh + — 16 atelhg 16 atezhg, (48)
and
|Li3| < c1h® + coh™ + c3h + 1 Hva H 2 49)
13| = C1 c2 c3 16 6t€1,h 16 7162 o

15



Proof. By rearranging L we have
0 0
L= 63,h,Va—€1,h +lean,Vean| +Lio+Lig+ Lo+ Liz+Lig, (50)
g ot 7 )g
where L,y and L, > have been defined in Lemmas 7 and 8, respectively and

0 0
Ligy:=({R,W-W,V— +|(RWZ - Z,V— .
14 ( h 6t61,h) ( h atez,h)

Q Q

Now from (50), Lemmas 6, 7 and 8 we conclude

L L fesall L el + 2 feaally + 22 feaall+ £ (lesal eusl2)
+L]’1 +Ll,2,O+L1,2,l +Lly3 +M(). (51)
Moreover, by adding and subtracting some terms, L, | can be rewritten as

0 0
Ly = (IRAWIG, - W13 (Rhw - W, va—el,h) + W1 (Rhw - W, v—eu,)
t 7)o o ),

0 0
+ (IR W1, — IWII3) (W, Vael,h)g + (IR W1, — IWII3) (ha -z, Vaez,h)g

0 0
+ W1, (ha - z,va—tez,h) + (IR WIS = W13, (z, Va—tez,h)g.

Applying the Cauchy-Schwarz and Young inequalities and Eq. (19), we deduce that

Q

o 2
|Lii| < IIRsW - WG, (nRhW - Wil + vaem Q) +4|[WIIG, IR, W — W5,

2

2
nan Q) + [|R,W — WII, X

1|_d
R,W — W3 [ IW]13 —HV—
+|| A IIQ(II ||Q+4 Pt

"

2 2
Q) + 4 WIS IRLZ = ZIIG, +

.€2.h

0
-2+ |7, w6lvs
(||ha Z||Q+H oy <5

+IRW - W||Q(||Z||Q HV—ezh

2
41 4 21 2 4
) < ah™ Wl + cth™ [IWllig IWllg

a 2
w2 W IWIE + ot 7 L e H e + el IWRq 1215,
’ ot Q 16 ot ’ ’
21 2 4 21 2 4 21 a :
+ B ZIR WIS + 2 W 121 + et [0 Lens| H L (52)
i ’ ot Q 16 ot Q

Again, by adding and subtracting some terms, L 3 can be written in the following form

0 0
_ 2 _ 2 _ el 2 _ 2 el
Lis = (IRZIIG - 1Z113) (Rhw LAY mel,h)g + (IR, Z11, ||Z||Q)(W,v atel,h)g

0 0
+ 11213 (RhW -W, vaeu.) +(IRWZ1S — 1213 (ha -z, Vaez,h)

Q

0
+ (IRWZ13, — 1Z113) (z, vaez,h)g.

Q

0
+11Z113, (ha -Z, va—ez,h)
t Q

16



Using the Cauchy-Schwarz and Young inequalities and Eq. (19), the following inequality can be deduced
2

1 0
[L1a] < el 121 IWIEg + 2™ NI IWIE + sk NZI, IWIRg + 7o vateu, )

2
€2h

+ csh® Z0g + esh™ | ZI7 I1ZIIG + ceh™ 11 Z17o I 211, + 16” o

Now considering (51), (52) and (53), the proof is completed.
The next lemma investigates the error bounds of the last two terms of (20) and (21).

Lemma 10. Suppose Assumptionl holds, therefore, we conclude

d a |IP
Ly > cl||ewn|| + H—ez,h + Ly,
To ot To
where
a | o P e 2
Ly < CthI —U —e + CthI + H—ezh .
I ’ | ot lha * Q (91‘ LQ ot o

Proof. It is easy to see that

0 L]
Ly = g0) [(' =

0

ot

P
In
praiiend ”)ro)

o 0
v arl] atelh)ro]
i} 0
—I1,V, —
ot " atezh)ro]

P 6 d
14 :
o ateZh)ro)

ot

L) 0 0
HhU Y 6111) . - (‘—

L) 0
54 5 ,h) - (‘_HhU
Iy

+8(@) Ey

Vh» €2h) ( I,V

P9 0 0
—IL,V, — -|l=
"o eZh)ro (‘ﬁt

+ @)

(5
+8() ( 2
5

Therefore we can write

Ly =1y + Loy,

where

HUae ’aU”aUa
1Lul Lu, 2L,
LT N | P I TRl T

0 0
4] a_|Po_ 0
—II,,V, —(|= .
! af“k (bﬁImvaf”L)
0 0

V4
aHhU 661;,) )
To

+g() (( thV

It follows by Lemma 4 that

(7

2

0
.61,

E}

Iy

ot 0

Po 0 0
- II
5 5 elh)ro ('Bt WU
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(53)

(54)

(55)

(56)

(57)



and

o IPo 0 9 P 9 a |
. —|=1I,V| —I1,V, — >cl|l=
(( o 8" br e”)ro ('é)t "l e b e“)ro] “Nae Iy,
From (57) and (58) we have
a I 1o P
L, > cg(t)( —en|| +|men ) + L.
ot o 0 To
Finally, the Trace theorem and Cauchy-Schwarz inequality and Eq. (16) imply that
d 2 o | d 2 o |
|L2’2|Sa’2(6‘9 E(HhU_U) Q+ (&) Eelh )+a2 (6‘9 E(HhV_V) Q+ Cc (9_tez’h Q)
a I o | a_I? a |
< coh?||=U . =V
€10 o l,Q €l Q+CIO o I‘Q 2 €2h o

Now we return to the proof of the main theorem.

Proof of Theorem 2. Let us define

0 0
Ly = (g * [up|” up, a_el,h) - (g * I, U, U, —el,h)
t )k, ot

Iy

0 d
+ (8 * [V v, a_@z,h) - (g * [ VI'ILLY, —ez,h) ,
t )k, or ",

and

0 0
L3, := ( * [, U, U, 7¢! h) - (g = U U, a_el,h)
Fg ! Iy

d d
(8 * VIV, e h) - (g *|VI'V, —ez,h) .
ot To ot T

As a result, we can write

L3 = L3’1 + L3’2.

By applying the Cauchy-Schwarz and Young inequalities, Lemma 4 and the Trace theorem, we can see

|L3,1| = +

f (t— r)((|uh|yuh — I, UPILU) (1), 61 h(f)) dr
0

Iy

t
1 0
< f |g(t—r)|(||g||w||e1,h<r>||io+W |55
0 (o)

2
dr,
Q

t t
1|0 2 1|0
s[(ugum)2 f ||e1,h<r>||i0+L—tHEel,h(r)HQ]dH[(ngnm)2 f el dr+ 7 | ez
0 0

t
1|0
ILs2| < [(ngum)2 f 0 - 0 Ol + ¢ [ 5510
0

2

t
2
21 2 ¢
5 +ciih WVlliqdr+ < || e2n
0

El

4"6:

t
21 2 ¢
<cnh f 10O Eqdr+ 5 | oev
0

18

fg(t - r)((lvhlyvh — I, VI'TI,V) (r), €2 h(f))
0

5 t
2
Fo)di”+ Of |g(t_,)|(|lg||w||e2,h<r>||n, dr+ 4||g||

’ d 2t 0,V = V) ()| 1”‘9
|+ (el f 1ALV = V) Ol + 5 ||=-e2n
0

(58)

(59)

(60)

(61)

(62)

(63)

(64)

Ty

2

)

(65)

8

€2h

2
dr
Q

(66)



and

[Lg| < aZ(HU—U) +1”ae ’ 62 +1H6e
Al = |55 (e 7 |36 1 112:%"l,
G [ W T > I
<cuh?||=U +—”V— +c1sh”! —v H 67
cuh™| =5 o a 3|, T 152 32, (67)
Using Cauchy—Schwarz and Young inequalities and Lemma 4 will lead to
1|0
wizlsm-of sz, | bl
2l @ 2 21
<cih™ ||V=U —|V=e1n h V— , 68
€16 Y Z,Q+4H pral Q+Cl7 H 2| (68)
and
9 S I B [ d 1,0 |
L sU—HU2+H— U-1,U +—HV— ) +v-nv2+H— V-1,V +—HV—
|Lel < || Ul 6t( h )Q 5 Va6 5 | WVilg 6t( h )Q 7 |V 572 5
21 21 2 19| ?
<h ||U||lQ+h HV—elh +h ||V||lQ+h 6tV LQ+§HVEe2,h 5 (69)
Now using (24) and Lemmas 9 and 10 gives rise to
1d‘a 2 ‘ae +HVae 2 ' v9, 2+1d(”e 12+ e “2)
2ar\llac or " o g o M) " 2 ar 17 I
a |F 1o |*) 1d 2 2
+ (I +g)|||zeinl| +l|=exn +——( )
(1+g( ))(Hatel’/ - Ho"'tez’/ Fo) > ”33,/:“9”64,/1”9
1
e 2 lesall+ Nesalls) + lewsl?, + leasll, & (sl sl
2 2
< llevlly, + lleaally, + L0l + [Erao0] + |E12] + |L15]
+ 1Mol + |Loo| + |Lai | + [Lao| + ILal + ILs| + |Lg (70)
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Employing Lemmas 7-10 and Eqs. (65)-(70) we infer that

2 2
7 0
v

Q) " 8 (” 6t€1’h Q "

e +g<t))(”—e1h

o) " 2ar LI, 2.4|r,
* 2 dt
1

1e (||e3hug+||e4h||g)+uemun, sl + & (Jessl lessl)

0
V—
H 8t62’h

sl Je

€2
o "

2
. + c1oh? ||W||12,Q ”64,’1”?2

0
V—
6tel’h

< lleall, + lleasllr, + exst®

+ 641IWIEq lesalls, + c2oh® 1Z1g lesalley + 64 1Z1E [lesals

+ e 1ZIRg leanlls, + 64 1ZIR, [leanll, + ek IZ1E sl

)

] + cosh® + couh™ + cosh®. (71)

+64||Z||19||e4h||Q ((Ilg” y f||elh(r)||ﬂdr+ Hgﬁlh

+[(||g||m)2 f le2atMlqar + 5 ”a e2h
0

Now from Lemma 3, we have

1 2\ 3 a I
: (Hmelh o [ ) # 2 (leal?, + leasl?,) + +g<z>>(\|(9 )
1
+ = (lesally+ lewsly) + (||e3,h||;+||e4,h||;)+(||e3,h||;||e4,hu;)
d 2\ 3
[ +Ha )3 (e, + Jezso,)
d 2\ 1
+<1+g<t>>(‘ +3 r0)+5(||eg,h<0>||§§+||e4,h<0>||§§)
+(lesal ||e4,h<o>||;) + sl + exh® + exsh (72)

N
Suppose Vj, and W, are (N; + 1)- and (N, + 1)- dimensional spaces, respectively. Also, assume A = {go j}j:ll and

= {'P j}l;]; are basis for Vj, and W), respectively, therefore from (12) we have

(ul-0-9)), = (Voo 0)),  7=0.12. .M, (waleoo9)), = (VU0 5), G=0,1,2,...,Ns

(6
—u,

ot :(Ul"p.f)g j=0,1,2,...,N1, (Vhltz()aﬁoj)Q:(VO’SDj)Q j=0,1,2,...,N1,

»Qj
=0

~———
e}

,¢j) =(Vigj), i=012....,N,

(Zh|z:0’¢j)9 = (VVO’.ﬁj)Q j=012....N, (gtvh Q

t=0
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Using the above relations and applying (16)-(19), we find that

lle1s O, < 1Us — T Uol3 < caoh® Ul (73)
2
Haﬁmmgsuvvo—&yvmaScmﬁﬂwumg, (74)
' wm%wm, (75)
2
[le2n )|, < 11Vo = T Vollg, < ek IVollFg - (76)
2
llesn(O)||, < 11VVo = Ry VVollg < c3sh™ IVVollfq . 7
9 : 21 2
| 55200 < st vl (78)
t Q ?

Also it is easy to see that

0
el = e, < f 2w dr f |Soev o R (79)
0
t 2 t
d 9 2
lesally = leasOlfy < | [ gresnar| < [ e ar] (80)
0 Q 0

Now substituting (73) - (78) into (72) and using (79) and (80), we complete the proof.

4. Numerical example

In this section, in order to validate the explained discretization strategy, we introduce the following numerical
example. Here, the computational geometry (@ = [0, 1] X [0, 1]) including the boundaries is shown in Figure 2. In the
numerical example, we use spaces X,(K) = P(K) and M,(K) = P1(K) @ (x,y)P1(K) where @ indicates the direct
sum, (x,y) € Q and for the triangle K

P1(K) = {v : vis a polynoimal of degree at most 1 on K}.
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Figure 2: The domain of (81) and its respective boundaries I’y and I'y.

We rewrite the boundary value problem (1) as

Un(x,y,1) = (1 + IVUIIg + IVVIG) AUCx, y,1) = AU (x,y,1) = £(x,y,1) (xny)€Q, 1€[0,1],

Vi, y,1) = (1 + IVUIR, + IVVIR) AVGr, 3, 1) = AVi(x 1) = f(x 3, 1) (x,y)€Q 1€[0,1],
U=v=%0=0=0 onZ; =T x[0,1],

(1+ VUL, +IVVIR) 22 + %% + U + U, + g)|U U, = g(t)  |UPU on Xy =T x[0,1],
(1+IVUIR, +IVVIR) 22 + 22+ V + V, + gV, = g(t) * [VI'V on Xy =Ty x [0, 1], (81

U(x,y,0) = (sin () +3* (= D = ysin () x (sin (1) + 2 (x = D = xsin ()~ (x,)) € Q,
Uy(x.,0) = = (sin (y) + y* (y = 1) = ysin (y)) x (sin (x) + 2> (x = 1) — xsin (x))  (x.)) € Q,

V(x,y,0) = (sin () +)* (v = 1) = ysin () X (sin (x) + 2 (x = D = xsin (v)) ~ (x,)) € Q,

Vi(x,y,0) = — (sin ) +y*(y = 1) — ysin (y)) X (sin (x) + x> (x = 1) — xsin (x)) (x,y) € Q.

22



—o-[JUM-u, (M| ~e-|lU(M-u, (M|
—IVM-v, M 1025] —+-IVM-v Ml B
H;v((TT))»ZwPT()T:lH IWCD-w, (D] .
. §
-2 h * —x-]|Z(T)-z, (T
10 12z, (M| L
¥
%
3 °
8102 - g1o ” )
i & &0 . )
N % o
o~
,?/'/
104} i
¥ 10 %
10'5 " " . - . . . — . " " - il " . . - P
102 10! 10° 10t 10°
h h

Figure 3: The L?-error of different solutions of (81) for Az = 0.005 (left) and At = 0.003 (right)at T =1

The right hand side of the first two equations is given by

f(x.y.1) = exp(—1) ((sin (x) + 2% (x = 1) — xsin (x)) (2 cos (y) — 6y + sin (y) - ysin (y) + 2) +
exp(—1) (sin (y) +y? (y = 1) = ysin (¥)) (2 cos (x) — 6x + sin (x) — xsin (x) +2)) X
(0.0046 exp(~21) + 1) + exp(—1) ((sin (x) + x> (x = 1) = xsin (x)) X
(sin () +* (v = 1) = ysin () (sin (x) + x> (x = 1) = xsin (x)) X
(2008 (y) = 6y + sin () = ysin (3) + 2) = (sin (3) + 7 (v = 1) = ysin (7))

(2cos (x) — 6x + sin (x) — xsin (x) + 2)).

The boundary consists of Iy and I'; (see Figure 1) where in the example, zero Neumann and Dirichlet boundary
conditions are applied on I';. Moreover, we use g(t) = 0.1 exp(—1), p = 3.5, ¥ = 2.5. Finally, the exact solution of the

equations is

U(x,y, 1) = V(x,y, 1) = exp(=1) (sin () + > (v = 1) = ysin () X (sin (x) + 2? (x = 1) = xsin (x)).

In order to solve the mentioned numerical example, we use the mixed variational formulation given in (11). To that
end, we define two auxiliary variables (i.e., W = VU and Z = VV) to apply the Raviart-Thomas mixed finite element.
In time discretization scheme, we use implicit finite difference (Crank-Nicolson method) to estimate the second-order
derivative in the sense that in each time step (Af), we solved a system of equations. In fact, the method can use a
larger range step size than the other explicit (e.g., Euler method) scheme because of its unconditional stability. For
the nonlinear terms (on ), the Newton method is used to obtain the solution. Also, we consider that Uy, U,, V; and
V, satisfy the condition Eq. 2. The numerical results for two different time steps (At = 0.005 and Ar = 0.003) are
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Figure 4: The approximated error of v,(7') for i = 0.1 (left) and u;(T') for A = 0.01 (right) with Az = 0.005 at T’ = 1.

given in Figure 3. In both cases, the convergence rates agree very well with Theorem 2 since respectively / = 0.91
and [ = 0.89 are achieved.

As the last step, the discretization error (U(T) — u,(T) and V(T') — v;,) with respect to the exact solutions for two
specific mesh sizes are illustrated in Figure 4. Due to the nonlinearity, the estimated solutions show error on I'y. The

results show that lower mesh sizes decrease the error.

5. Conclusions

In this paper, we considered the coupled wave equation of Kirchhoff type with nonlinear boundary damping and
memory term. Due to the structure of the problem, the optimum degree of convergence cannot be found using the
classical finite element methods. In order to gain this aim, we presented the Raviart-Thomas mixed finite element
method for solving (1). In other words, a theorem about the convergence of semi-discretized Raviart-Thomas mixed
finite element method was proved and the optimal degree of convergence was obtained. The theorem has shown that

total order of convergence with O (hzz). Finally, a numerical example is given to validate the error estimation.
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