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Abstract

The main objective of this article is to investigate the dynamical transition

for a 3-component Lotka-Volterra model with diffusion. Based on the spectral

analysis, the principle of exchange of stability conditions for eigenvalues are

obtained. In addition, when δ0 < δ1, the first eigenvalues are complex, and

we show that the system undergoes a continuous or jump transition. In the

small oscillation frequency limit, the transition is always continuous and the

time periodic rolls are stable after the transition.

In the case where δ0 > δ1, the first eigenvalue is real. Generically, the first

eigenvalue is simple and all three types of transition are possible. In particular,

the transition is mixed if
∫
Ω
e3k0

dx ̸= 0, and is continuous or jump in the case

where
∫
Ω
e3k0

dx = 0. In this case we also show that the system bifurcates to two

saddle points on δ < δ1 as θ̃ > 0, and bifurcates to two stable singular points

on δ > δ1 as θ̃ < 0 where θ̃ depends on the system parameters.
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1. Introduction

In this paper, we consider the following 3-component Lotka-Volterra model

with diffusion 
ut = d1∆u+ u(a1 − b1u− c1v − k1w),

vt = d2∆v + v(a2 − c2u− b2v − k2w),

wt = d3∆w + w(−r + α1k1u+ α2k2v),

(1.1)

where u, v are the population densities of two competing prey and w is the

population density of its predator. The habitat Ω ⊂ Rn is a bounded domain

with smooth boundary ∂Ω. r, ai, bi, ci, αi, ki(i = 1, 2) and dj(j = 1, 2, 3) are

positive constants. a1 and a2 represent the intrinsic growth rate, bi and ci(i =

1, 2) represent the intra-specific and inter-specific competition rates of u and v,

k1 and k2 are the predation rate of w, α1 and α2 are the transformation rate of

predation, and r is the death rate of w. d1, d2 and d3 are represent the diffusion

rates of u, v and w respectively.

Here, we focus on the system (1.1) supplemented with the following initial

condition:

u(x, 0) = u0, v(x, 0) = v0, w(x, 0) = w0, (1.2)

and the Neumann boundary condition:

∂u

∂n

∣∣∣∣
∂Ω

=
∂v

∂n

∣∣∣∣
∂Ω

=
∂w

∂n

∣∣∣∣
∂Ω

= 0, (1.3)

where ∂
∂n is the outward normal derivative on ∂Ω. The Neumann boundary con-

dition in (1.3) was interpreted as the condition that the system is self-contained

with zero population flux across the boundary.

For two species Lotka-Volterra (LV) systems, there has been largely dis-

cussed in the past several decades. Kuto and Tsujikawa [1] considered a general

stationary Lotka-Volterra competition model with diffusion. They obtained the

existence of nonconstant solutions by the Leray-Schauder degree theory and

derived a limiting system as diffusion of one of the species tending to infinity.
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Eilbeck et al.[2] studied the two species Lotka-Volterra competition model and

obtained the existence and non-uniqueness of coexistence solutions for a wide

range of parameters. Other results related to the two species Lotka-Volterra

competition model, we refer to other studies [3, 4, 5, 6] and the references

therein.

However, very little result is known about the three species Lotka-Volterra

model. In general, three species systems are very complicated even in the ordi-

nary differential equations case. In recent years, the three species Lotka-Volterra

model with diffusion was studied by some investigators. Lou et al.[7] considered

the role of cross-diffusion in the 3×3 Lotka-Volterra competition model, and

obtained the existence of non-constant steady states created by cross-diffusion

in 3×3 systems. In [8], Pang and Wang studied a strongly coupled system of a

two-predator-one-prey ecosystem, they demonstrated the emergence of station-

ary patterns for this system, and showed that it is due to the cross diffusion

that arises naturally in the model. Moreover, Ali et al.[9] studied the prey-

predator-top-predator system, in addition, they point out that the system ex-

hibits Bogdanov-Takens bifurcation, saddle-node bifurcation, Hopf bifurcation

for suitable choice of the relevant parameters. There are other related works on

three species model, see [10, 11, 12, 13, 14, 15, 16, 17] and references therein.

Although considerable work has been done concerning three competition

model and two-predator-one-prey ecosystem, it is worth noting that it is inter-

esting to investigate two prey and one predator system. In some circumstances,

predation may have a tendency to increase species diversity in competitive com-

munities, which is called predation mediated coexistence. For instance, in [10],

the authors considered the coexistence problem of two competing species medi-

ated by the presence of predator, and speculate that the possibility. Further-

more, Kan-on and Mimura [11] proved the existence of stable spatially inho-

mogeneous positive stationary solutions of (1.1). In addition, Yukio Kan-on

[12] studied the positive stationary solutions by using the singular perturbation

method and the associated singular limit spectral analysis. Moreover, Wang [13]

considered the strongly coupled version of (1.1) and established the existence
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and non-existence of non-constant positive solutions.

Motivated by the above papers, what we are concerned in this paper is to

describe the dynamic stability and transition for the system (1.1). The techni-

cal method for the analysis is the dynamical transition theory, which has been

developed by Ma and Wang [18, 19, 20] and has been used to solve many in-

teresting mathematical and physical problems, see [21, 22, 23, 24, 25, 26]. As

is well known, for the system (1.1), due to non-selfadjoint linear operator, the

transition can be caused by real or complex eigenvalues crossing the imaginary

axis. When δ0 > δ1, the first eigenvalue is real and simple, and all three types

of transition are possible depending on a non-dimensional number exactly given

in terms of the system parameters. In particular, the transition is mixed if∫
Ω
e3k0

dx ̸= 0, and in the case where
∫
Ω
e3k0

dx = 0 we show that the transition

of the system is continuous as θ̃ < 0, and is jump as θ̃ > 0 where θ̃ is defined

in (4.42). when δ0 < δ1, the first eigenvalues are complex, and we show that

the system undergoes a continuous or jump transition. In the small oscillation

frequency limit, the transition is always continuous and the time periodic rolls

are stable after the transition.

The rest of this paper is organized as follows. In Section 2, we present

some preliminaries on dynamical transition theory. Section 3 recapitulates (1)

the nondimensional form and the nonnegative basic states of the steady-state

equations for the system (1.1), (2) an abstract form for (1.1), and (3) linear

theory and principle of exchange of stabilities(PES). The main theorems of this

artical are stated and proved in Section 4.

2. Preliminaries

In this section, we introduce the dynamical transition theory for nonlinear

dissipative systems developed by Ma and Wang [18, 19, 20], which provides the

basic method for the following research of this paper.

Let H and H1 be two Hilbert spaces, H1 ⊂ H be a compact and dense

inclusion. Consider the following abstract nonlinear equation defined on H,
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given by 
dχ
dt = Lλχ+G(χ, λ),

χ(0) = χ0,
(2.1)

where χ(t) is an unknown function, Lλ : H1 → H is a linear operator, and

G : H1 → H is a nonlinear operator, λ is the system parameter.

Assume that Lλ : H1 → H is a parameterized linear completely continuous

field depending continuously on λ. which satisfies
Lλ = −A+B is a sectorial operator,

A : H1 → H is a linear homeomorphism,

B : H1 → H is a compact operator.

(2.2)

Furthermore, we assume that the nonlinear term G : Hσ → H(0 ≤ σ < 1) is

a Cr bounded operators (r ≥ 1), where Hσ is the fractional order space, and

G(χ, λ) = o(∥χ∥Hσ ). (2.3)

Hereafter, we always assume the conditions (2.2) and (2.3) hold true, which

imply that the system (2.1) has a dissipative structure.

At first, we recall the mathematical definition of transition for the system

(2.1).

Definition 2.1. ([20]) We say that the system (2.1) has a transition from

(χ, λ) = (0, λ0) at λ0 if the following two conditions hold true:

(1) if λ < λ0, χ = 0 is locally asymptotically stable for (2.1), and

(2) if λ > λ0, there exists a neighborhood U ⊂ H of χ = 0 independent of λ,

such that for any χ0 ∈ U \ Γλ the solution χλ(t, χ0) of (2.1) satisfies that

lim sup
t→∞

∥χλ(t, χ0)∥H ≥ δ(λ) > 0,

lim
λ→λ0

δ(λ) ≥ 0,
(2.4)

where Γλ is the stable manifold of χ = 0, with codim Γλ ≥ 1 in H for

λ > λ0.
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Let the eigenvalues (counting multiplicity) of Lλ be given by {βj(λ) ∈ C|j =

1, 2, · · · }, and let

Reβi(λ)


> 0, if λ > λ0,

= 0, if λ = λ0,

< 0, if λ < λ0,

for any 1 ≤ i ≤ m, (2.5)

Reβj(λ0) < 0, for any j ≥ m+ 1. (2.6)

The following theorem is a basic principle of transitions from equilibrium

states, which provides sufficient conditions and a basic classification for transi-

tions of nonlinear dissipative systems. The proof of this Lemma is given in Ma

and Wang [19, 20].

Lemma 2.1. Let the conditions (2.5) and (2.6) hold true. Then the system

(2.1) must have a transition from (χ, λ) = (0, λ0), and there is a neighborhood

U ⊂ H of χ = 0 such that the transition is one of the following three types:

(1) Continuous transition: There exists an open and dense set Ũλ ⊂ U such

that for any χ0 ∈ Ũλ, the solution χλ(t, χ0) of (2.1)satisfies

lim
λ→λ0

lim sup
t→∞

||χλ(t, χ0)||H = 0.

(2) Jump transition: For any λ0 < λ < λ0 + ε with some ε > 0, there is an

open and dense set Uλ ⊂ U such that for any χ0 ∈ Uλ,

lim sup
t→∞

||χλ(t, χ0)||H ≥ δ > 0, for some δ > 0 is independent of λ.

(3) Mixed transition: For any λ0 < λ < λ0 + ε with some ε > 0, U can be

decomposed into two open sets Uλ
1 and Uλ

2 (Uλ
i not necessarily connected):

Ū = Ūλ
1 + Ūλ

2 , U
λ
1 ∩ Uλ

2 = ∅, such that

lim
λ→λ0

lim sup
t→∞

||χλ(t, χ0)||H = 0, ∀χ0 ∈ Uλ
1 ,

lim sup
t→∞

||χλ(t, χ0)||H ≥ δ > 0, ∀χ0 ∈ Uλ
2 .

where Uλ
1 and Uλ

2 are called metastable domain.
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3. Mathematical setting and linear problem

3.1. Mathematical setting

The forthcoming analysis is to formulate the evolution equations given in

(1.1) using an abstract functional setting that is standard in the framework of

dynamic transitions.

First, we introduce a set of the following to nondimensionalize the system

(1.1):

u =
a1
b1
u′, v =

a2
b2
v′, w =

a1
k1
w′,

x = lx′, t = t0t
′(t0 =

b1
α1k1a1

),

where the prime denotes nondimensionalized variables. Substituting these nondi-

mensional variables into (1.1) and neglecting the prime for all variables for con-

venience, we obtain
ut = ε1∆u+ ā1u(1− u− αv − w),

vt = ε2∆v + ā2v(1− γu− v − κw),

wt = ε3∆w + w(−σ + u+ qv),

(3.1)

here

ε1 =
d1t0
l2

, ā1 = a1t0, α =
a2c1
a1b2

,

ε2 =
d2t0
l2

, ā2 = a2t0, γ =
a1c2
a2b1

,

ε3 =
d3t0
l2

, σ = rt0, κ =
a1k2
a2k1

, q =
a2b1α2k2
a1b2α1k1

,

and the unknown functions are u, v, w ≥ 0, Ω ⊂ Rn is a bounded domain, the

parameters are positive constants:

εi(1 ≤ i ≤ 3), ā1, ā2, α, γ, κ, σ, q.

Furthermore, let

Rm
+ = {(x1, · · · , xm) ∈ Rm

+

∣∣xi ≥ 0, 1 ≤ i ≤ m},

λ = (ε1, ε2, ε3, ā1, ā2, α, γ, κ, σ, q) ∈ R10
+ .
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Then we define the following function spaces,

H = L2(Ω)3,

H1 =

{
χ ∈ H2(Ω)3

∣∣∣∣∂χ∂n = 0 on ∂Ω

}
,

where χ = (u, v, w).

Define the operators Lλ = Aλ +Bλ and Gλ : H1 → H by

Aλχ = (ε1∆u, ε2∆v, ε3∆w),

Bλχ = (ā1u, ā2v,−σw),

G(χ, λ) = (−ā1u2 − ā1αuv − ā1uw,

− ā2γuv − ā2v
2 − ā2κvw, uw + qvw).

Obviously, Lλ : H1 → H is a parameterized linear completely continuous field

depending continuously on λ, and Gλ : H1 → H represents the nonlinear terms

of the equations (3.1).

Thus, the equations (3.1) with (1.2) and (1.3), take the following operator

form: 
dχ

dt
= Lλχ+G(χ, λ),

χ(0) = φ,

(3.2)

where λ = (ε1, ε2, ε3, ā1, ā2, α, γ, κ, σ, q) ∈ R10
+ .

On the other hand, we study the steady-state solutions for the system (3.1).

It is easy to check that the system (3.1) admits seven biologically realistic con-

stant steady-state solutions:

φ0 = (0, 0, 0)T , φ1 = (0,
σ

q
,
q − σ

κq
)T , φ2 = (σ, 0, 1− σ)T ,

φ3 = (
1− α

1− αγ
,
1− γ

1− αγ
, 0)T , φ4 = (1, 0, 0)T , φ5 = (0, 1, 0)T ,

φ6 = (u0, v0, w0)
T ,

(3.3)
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where

u0 =
−σ(1− ακ)− q(κ− 1)

q(γ − κ)− (1− ακ)
,

v0 =
(κ− 1) + σ(γ − κ)

q(γ − κ)− (1− ακ)
,

w0 =
qγ − 1 + σ − q + α− σαγ

q(γ − κ)− (1− ακ)
.

Biologically, only positive solutions (u0 > 0, v0 > 0, w0 > 0) are of inter-

est in the competition of biological population. Hence, we make the natural

assumption: u0 > 0, v0 > 0, w0 > 0.

In this paper, we mainly focus on the bifurcation and transition problem of

(3.1) at the more general positive steady-state solution φ6 in (3.3).

For this purpose, we take the translation

u = u′′ + u0, v = v′′ + v0, w = w′′ + w0, (3.4)

Omitting the primes, the system (3.1) with (1.2)-(1.3) becomes

ut = ε1∆u− ā1u0u− ā1αu0v − ā1u0w

− ā1u
2 − ā1αuv − ā1uw,

vt = ε2∆v − ā2γv0u− ā2v0v − ā2κv0w

− ā2γuv − ā2v
2 − ā2κvw,

wt = ε3∆w + w0u+ qw0v + uw + qvw,

(3.5)

with the initial-boundary conditions

u(x, 0) = u0 − u0, v(x, 0) = v0 − v0, w(x, 0) = w0 − w0,

∂u

∂n

∣∣∣∣
∂Ω

=
∂v

∂n

∣∣∣∣
∂Ω

=
∂w

∂n

∣∣∣∣
∂Ω

= 0.
(3.6)

Then it suffices to study the bifurcation solution of (3.5) at the steady-state

solution χ = (0, 0, 0)T .
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3.2. Linear theory and principle of exchange of stabilities(PES)

The linearized eigenvalue equations of (3.5) are given by
ε1∆u− ā1u0u− ā1αu0v − ā1u0w = β(λ)u,

ε2∆v − ā2γv0u− ā2v0v − ā2κv0w = β(λ)v,

ε3∆w + w0u+ qw0v = β(λ)w.

(3.7)

Let ρk and ek be the kth eigenvalue and eigenvector of the Laplace operator

∆ with the Neumann boundary condition:
∆ek = −ρkek, (ρk ≥ 0),

∂ek
∂n

|∂Ω = 0.
(3.8)

Let Mk be the matrix given by

Mk =


−ε1ρk − ā1u0 −ā1αu0 −ā1u0

−ā2γv0 −ε2ρk − ā2v0 −ā2κv0
w0 qw0 −ε3ρk

 . (3.9)

Thus, all eigenvalues β(λ) = βki(λ) of (3.7) satisfy

Mkηki = βki(λ)ηki, 1 ≤ i ≤ 3, k = 1, 2, · · · , (3.10)

where ηki ∈ R3 is the eigenvector of Mk corresponding to βki(λ). Hence, the

eigenvector ψki of (3.7) corresponding to βki(λ) is

ψki(x) = ηkiek(x), k = 1, 2, · · · , 1 ≤ i ≤ 3, (3.11)

where ek(x) is as in (3.8).

In particular, ρ1 = 0 and e1 is a constant, and

M1 =


−ā1u0 −ā1αu0 −ā1u0
−ā2γv0 −ā2v0 −ā2κv0
w0 qw0 0

 . (3.12)

By simple calculation, it is not difficult to find that the eigenvalues β(λ) =

β1i(λ)(i = 1, 2, 3) satisfy the following equation:

β1i(λ)
3 +Aβ1i(λ)

2 +Bβ1i(λ) + C = 0, (3.13)
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where

A = ā2v0 + ā1u0,

B = ā1ā2u0v0 + ā1u0w0 − ā1ā2αγu0v0 + ā2κqv0w0,

C = ā1ā2(−κα− γq + 1 + κq)u0v0w0.

(3.14)

It is known that all solutions of (3.13) have negative real parts if and only if

A > 0, C > 0, AB − C > 0. (3.15)

If we suppose q(γ − κ) − (1 − κα) < 0 in (3.3), then, direct calculation

indicates that these two parameters A and C in (3.14) are positive

A > 0, C > 0. (3.16)

Note that

β11β12β13 = −C < 0,

which implies that all real eigenvalues of (3.12) do not change their signs, and

at least one of these real eigenvalues is negative.

In addition, let δ = αγ = c1c2
b1b2

, and we can derive from AB − C = 0, the

critical number

δ0 = 1 +
ā22κqv

2
0w0 + ā21u

2
0w0 + ā1ā2(κα+ γq)u0v0w0

ā1ā22u0v
2
0 + ā21ā2u

2
0v0

. (3.17)

It is then clear that

AB − C


< 0 if δ > δ0,

= 0 if δ = δ0,

> 0 if δ < δ0.

(3.18)

Next, we check the other eigenvalues βkj(λ) with j = 1, 2, 3, k ≥ 2. By

calculation, the eigenvalues βkj(λ)(j = 1, 2, 3, k ≥ 2) of (3.9) satisfy

βkj(λ)
3 +Akβkj(λ)

2 +Bkβkj(λ) + Ck = 0, (3.19)
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where

Ak = A+ (ε1 + ε2 + ε3)ρk,

Bk = B + (ε1ε3 + ε2ε3 + ε1ε2)ρ
2
k

+ (ā1u0ε3 + ā2v0ε3 + ā2v0ε1 + ā1u0ε2)ρk,

Ck = C + ε1ε2ε3ρ
3
k + (ε1ε3ā2v0 + ε2ε3ā1u0)ρ

2
k

+ ā1ā2(1− δ)u0v0ε3ρk + ā1u0w0ε2ρk + ā2κqv0w0ε1ρk.

We introduce another critical number

δ1 = min
ρk ̸=0

[
1 +

C + τ1ρ
3
k + τ2ρ

2
k + τ3ρk

ā1ā2u0v0ε3ρk

]
, (3.20)

where

τ1 = ε1ε2ε3,

τ2 = (ε1ε3ā2v0 + ε2ε3ā1u0),

τ3 = ā1u0w0ε2 + ā2κqv0w0ε1.

(3.21)

The following lemma characterizes the principle of exchange stability (PES) for

the eigenvalue equations (3.7).

Lemma 3.1. Assume that q(γ−κ)− (1−κα) < 0, let δ0 and δ1 be the numbers

given by (3.17) and (3.20), then the eigenvalues βki(i = 1, 2, 3, k ≥ 1) of Lλ

satisfy the following properties:

(1) If δ1 < δ0 and k0 be the integer that δ1 in (3.20) reaches its minimum at

ρk0
. Then βk01 is a real eigenvalue of (3.7), and

βk01(δ)


> 0 if δ > δ1,

= 0 if δ = δ1,

< 0 if δ < δ1,

for ρk = ρk0 ,

Reβij(δ1) < 0 ∀(i, j) ̸= (k0, 1) with ρk = ρk0
.

(2) If δ1 > δ0. Then β11(δ) = β̄12(δ) are a pair of complex eigenvalues of (3.7),
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and

Reβ11(δ) = Reβ12(δ)


> 0 if δ > δ0,

= 0 if δ = δ0,

< 0 if δ < δ0,

Reβij(δ0) < 0 ∀(i, j) ̸= (1, 1), (1, 2).

Proof. According to the assumption, C is positive. We see that

A = ā2v0 + ā1u0,

B = ā1ā2u0v0 + ā1u0w0 − ā1ā2αγu0v0 + ā2κqv0w0.

By the direct calculation, we can see that

Ak > 0, AkBk − Ck > 0, ∀k ≥ 2.

As δ1 < δ0, we infer from (3.16) and (3.18) that

Reβ1j(δ1) < 0, ∀1 ≤ j ≤ 3.

In addition, it is clear that there must exist a k0 satisfying (3.20), furthermore,

Ck0
(δ)


< 0 if δ > δ1,

= 0 if δ = δ1,

> 0 if δ < δ1,

Ck(δ1) > 0 for all k ̸= k0,

thus, assertion (1) is approved.

As δ1 > δ0, through the analysis of above, we know that Ck > 0 at δ = δ0

for all k ≥ 2. Since all real eigenvalues β1j(1 ≤ j ≤ 3) of (3.12) do not change

their signs, and at least one of these real eigenvalues is negative, so the condition

(3.18) implies that there exists a pair of complex eigenvalues β11 = β̄12 crossing

the imaginary axis at δ = δ0. Then assertion (2) follows. The Lemma is proved.
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4. Main Results and Proofs

The following theorems will show the types of transition that the system

(3.5) undergoes as the bifurcation parameter δ crosses the critical value δ0 or

δ1 basing on Lemma 3.1. Hereafter, we will give different transition theorems

basing on Lemma 3.1.

First, we consider the case that δ0 < δ1.

4.1. Transitions from complex eigenvalues

By Lemma 3.1, as δ0 < δ1, the first critical eigenvalues will be a pair of

complex numbers β11 and β12, the problem (3.5) undergoes a dynamic transition

to a periodic solution from δ0. To determine the types of transition, we introduce

a parameter b0 which is defined by (4.29) as follows:

b0 =
1

D2D0

[
− ρ2

ā21u
3
0

(
A(3F1 + F3)E2 + ρab̃(F1 + 3F3) + ρF2E2

)
+
ρw0

ā1u0
bb̃ā2(3E5F1 + E5F3 + E7F2) + ab̃(3F1E6 + F3E6 − F2E8

− ρ2A

ā21u
3
0

F2) + (3F3 + F1)(E3E7 + E2E8) + F2(E3E5 − E2E6)

]
+

2bb̃

D4ā1u0

[
ρ2w0

ā21u
2
0

a(ā2(a+ κw0b) + qa)(E3η2(η2 + κη3)− E1E2)

− (w0ā2ξ2(γ + ξ2 + κξ3) +
ρ2

ā1u0
aξ3)(E3ξ2(γ + ξ2 + κξ3) + E1E2)

]
+

1

D4ā1u0
ā2[ξ2(γ + ξ2 + κξ3) + η2(η2 + κη3)]

(− ρ3

ā21u
3
0

b̃+
ρ

ā1u0
ā2E7 + E4ã)(a

2 + 2w0abã+ w2
0b

2(ã2 + b̃2)),

(4.1)

where
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D0 =
ā1u0ā2v0w0(q − α)(κα− 1) +A2(Aα− qw0)− qw2

0(ā2v0κq + ā1u0)

ā1u0(Aα− qw0)2
,

D1 =

[
− ā2ξ2(γ + ξ2 + κξ3)−

ρ2qw0

ā21u
2
0

ab
ā1u0 + ā2v0ακ

Aα− qw0

]
,

D2 =
ρ

ā1u0

[
ρ2w0

ā1u0
b2
ā1u0 + ā2v0ακ

Aα− qw0
− ā1u0A+ ā2v0w0κq

u0(Aα− qw0)

− ā2(γa+ (a+ κb)(
ρ2

ā1u0q
b− 1

q
))

]
,

D3 = − ρ

ā1u0
a

[
q2w0

ā1u0
a
ā1u0 + ā2v0ακ

Aα− qw0
+ ā2(ξ2 + κξ3)

]
,

D4 =
ā1u0 + ā2v0ακ

Aα− qw0
qη2η3 − ā2η2(η2 + κη3),

D2 =
ρ2

ā21u
2
0

(w2
0b

2b̃2 + (a+ w0bã)
2), E1 =

qρ3w0

ā31u
3
0

ab,

E2 = aã+ w0b(ã
2 + b̃2), E3 =

ρ

ā1u0
(a+ w0bã)ā2,

E4 =
ρ2w0

ā31u
3
0

(ρ2b2 − q2a2),

E5 =
Av0κ

ā1u20
− (γ(ξ2 + ζ2) + 2ξ2ζ2 + κ(ξ2ζ3 + ξ3ζ2)),

E6 =
ρw0

ā31u
3
0

ā1u0α+ ā2v0q

Aα− qw0
(ρ2b+Aqa),

E7 =
ρv0κ

ā1u20
− (γη2 + 2η2ξ2 + κ(η2ξ3 + η3ξ2)),

E8 =
ρ2w0

ā31u
3
0

ā1u0α+ ā2v0q

Aα− qw0
(−qa+Ab),

F1 =
D1

A
+

2ρ2(D4 −D1)

A(A2 + 4ρ2)
− ρ(D2 +D3)

A2 + 4ρ2
,

F2 =
D2 +D3

A
− 4ρ2(D2 +D3)

A(A2 + 4ρ2)
+

2ρ(D1 −D4)

A2 + 4ρ2
,

F3 =
D4

A
+

2ρ2(D1 +D4)

A(A2 + 4ρ2)
+
ρ(D2 +D3)

A2 + 4ρ2
.

(4.2)

Here A is as in (3.14), and a, b, ã, b̃ are as in (4.6) and (4.8).

Then, we have the following dynamic transition theorem.

Theorem 4.1. Consider b0 which is given by (4.1). Let δ0 < δ1. Assume

q(γ − κ) − (1 − κα) < 0 and assume that the critical index are (k, j) = (1, 1)
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and (k, j) = (1, 2), then the problem (3.5) undergoes a transition to periodic

solutions at δ = δ0, and the following assertions holds true:

(1) If b0 < 0, then the transition of (3.5) is continuous, and the system bifurcates

to a periodic solution on δ > δ0, which is an attractor.

(2) If b0 > 0, then the transition of (3.5) is jump, and the system bifurcates on

δ < δ0 to a unique unstable periodic orbit.

Proof. We shall prove the theorem in the following two steps.

Step 1. Calculate the critical eigenvectors.

By Lemma 3.1, at δ0 there is a pair of imaginary eigenvalues β11 = β̄12 = −iρ

of (3.7). Let z = ξ + iη and z∗ = ξ∗ + iη∗ be the eigenvectors and conjugate

eigenvectors of (3.7) corresponding to −iρ, i.e. z and z∗ satisfy that

(M1 + iρ)z = 0,

(M∗
1 − iρ)z∗ = 0.

(4.3)

For z = (z1, z2, z3), from the first equation of (4.3) we obtain
[
(q − α)− i

ρq

ā1u0

]
z1 =

[
− q + i

ρα

w0

]
z3,

z1 + qz2 = −i ρ
w0
z3.

(4.4)

Thus, we derive from (4.4) the eigenvectors z = ξ + iη as follows:

ξ = (ξ1, ξ2, ξ3) = (1,
ρ2

ā1u0q
b− 1

q
, − qw0

ā1u0
a),

η = (η1, η2, η3) = (0,
ρ

ā1u0
a,

ρw0

ā1u0
b),

(4.5)

where

a =
ā1u0w0(q − α) + ρ2α

q2w2
0 + ρ2α2

,

b =
q2w0 − ā1u0α(q − α)

q2w2
0 + ρ2α2

.

(4.6)

In the same fashion, we derive from the second equation of (4.3) the conju-
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gate eigenvectors z∗ = ξ∗ + iη∗ as

ξ∗ = (ξ∗1 , ξ
∗
2 , ξ

∗
3) = (

ρb̃− ā2v0κ

ā1u0
, 1, ã),

η∗ = (η∗1 , η
∗
2 , η

∗
3) = (− ρã

ā1u0
, 0, b̃),

(4.7)

where

ã =
ā2v0(1− ακ)qw0 + ρ2α

q2w2
0 + ρ2α2

,

b̃ =
−ā2v0ρα(1− ακ) + ρqw0

q2w2
0 + ρ2α2

.

(4.8)

It is easy to show that

⟨ξ, ξ∗⟩ = ⟨η, η∗⟩ = ρw0

ā1u0
bb̃,

⟨ξ, η∗⟩ = −⟨η, ξ∗⟩ = −
(

ρ

ā1u0
a+

ρw0

ā1u0
bã

)
.

(4.9)

It is known that functions ψ∗
1 + iψ∗

2 given by

ψ∗
1 =

1

⟨ξ, ξ∗⟩
[⟨ξ, ξ∗⟩ξ∗ + ⟨ξ, η∗⟩η∗],

ψ∗
2 =

1

⟨η, η∗⟩
[⟨η, ξ∗⟩ξ∗ + ⟨η, η∗⟩η∗],

(4.10)

also satisfy the second equation of (4.3) with

⟨ξ, ψ∗
1⟩ = ⟨η, ψ∗

2⟩ ̸= 0,

⟨ξ, ψ∗
2⟩ = ⟨η, ψ∗

1⟩ = 0.
(4.11)

On the other hand, we know that

β13 · (iρ) · (−iρ) = ρ2β13 = −C. (4.12)

In addition, because ±iρ are solutions of (3.13), and AB − C = 0 at δ0, we

deduce that

ρ2 = B =
C

A
. (4.13)

Then, we obtain

β13 = −A = −(ā2v0 + ā1u0). (4.14)
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From the equation

(M1 − β13)ζ = 0, (4.15)

we derive the eigenvector

ζ = (ζ1, ζ2, ζ3)

=

(
1,

ā1u0w0 + ā2v0A

ā1u0(Aα− qw0)
, − w0

ā1u0

ā1u0α+ ā2v0q

Aα− qw0

)
.

(4.16)

In the same fashion, from

(M∗
1 − β13)ζ

∗ = 0, (4.17)

we derive the conjugate eigenvector of β13 as follows:

ζ∗ = (ζ∗1 , ζ
∗
2 , ζ

∗
3 )

=

(
ā2v0w0κq + ā1u0A

ā1u0(Aα− qw0)
, 1,

ā1u0 + ā2v0ακ

Aα− qw0

)
.

(4.18)

Step 2. Derivation of evolution equation.

Let χ ∈ H be a solution of (3.5) expressed as

χ = xξ + yη +Φ(x, y), x, y ∈ R1,

where Φ(x, y) is the center manifold function of (3.5) at δ0.

Based on the center manifold reduction, the reduced equations of (3.5) on

the center manifold are given by

dx

dt
= −ρy + 1

⟨ξ, ψ∗
1⟩

⟨G(xξ + yη +Φ), ψ∗
1⟩,

dy

dt
= ρx+

1

⟨η, ψ∗
2⟩

⟨G(xξ + yη +Φ), ψ∗
2⟩,

(4.19)

where G(χ) = G(χ, χ) is the bilinear operator defined by

G(χ, χ1) = (−ā1u1u2 − ā1αu1v2 − ā1u1w2,

− ā2γu1v2 − ā2v1v2 − ā2κv1w2, u1w2 + qv1w2),
(4.20)

for χ = (u1, v1, w1), χ1 = (u2, v2, w2) ∈ H1.
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Now we are in position to solve the center manifold function Φ(x, y). By the

approximation formula (B.4.1) in [20], the center manifold function Φ satisfy

Φ = Φ1 +Φ2 +Φ3 + o(2), (4.21)

where

ℓΦ1 = −x2P2G11 − xy(P2G12 + P2G21)− y2P2G22,

(ℓ2 + 4ρ2)ℓΦ2 = 2ρ2(x2 − y2)P2G11 + 4ρ2xy(P2G12 + P2G21)

+ 2ρ2(y2 − x2)P2G22,

(ℓ2 + 4ρ2)Φ3 = ρ(y2 − x2)(P2G12 + P2G21)

+ 2ρxy(P2G11 − P2G22),

(4.22)

here P2 : H → E2 is the canonical projection, E2 is the orthogonal complement

of E1 = span{ξ, η}, and ℓ is the linearized operator of (3.5).

Direct calculation shows that

⟨ζ, ζ∗⟩ = D0,

⟨G11, ζ
∗⟩ = D1, ⟨G12, ζ

∗⟩ = D2,

⟨G21, ζ
∗⟩ = D3, ⟨G22, ζ

∗⟩ = D4

and D0, D1, D2, D3, D4 are as in (4.2).

By (4.5), (4.18) and (4.20), it is clear that

P2G11 = ⟨G11, ζ
∗⟩ζ = D1ζ,

P2G12 = ⟨G12, ζ
∗⟩ζ = D2ζ,

P2G21 = ⟨G21, ζ
∗⟩ζ = D3ζ,

P2G22 = ⟨G22, ζ
∗⟩ζ = D4ζ.

(4.23)

Hence, Φ1,Φ2,Φ3 ∈ span{ζ}, which implies

ℓΦj =M1Φj = −AΦj . (4.24)
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We infer from (4.21)-(4.24) the center manifold function as follows:

Φ =
ζ

D0

[(
D1

A
+

2ρ2(D4 −D1)

A(A2 + 4ρ2)
− ρ(D2 +D3)

A2 + 4ρ2

)
x2

+

(
D2 +D3

A
− 4ρ2(D2 +D3)

A(A2 + 4ρ2)
+

2ρ(D1 −D4)

A2 + 4ρ2

)
xy

+

(
D4

A
+

2ρ2(D1 +D4)

A(A2 + 4ρ2)
+
ρ(D2 +D3)

A2 + 4ρ2

)
y2
]
+ o(2)

=
1

D0
(F1x

2 + F2xy + F3y
2)ζ + o(2),

(4.25)

where F1, F2, F3 are as in (4.2).

Inserting (4.25) into (4.19), by direct circulation, we have

dx

dt
= −ρy + 1

D2

{[
⟨ξ, ξ∗⟩⟨G11, ξ

∗⟩+ ⟨ξ, η∗⟩⟨G11, η
∗⟩
]
x2

+
[
⟨ξ, ξ∗⟩⟨G22, ξ

∗⟩+ ⟨ξ, η∗⟩⟨G22, η
∗⟩
]
y2

+
[
⟨ξ, ξ∗⟩⟨G12 +G21, ξ

∗⟩+ ⟨ξ, η∗⟩⟨G12 +G21, η
∗⟩
]
xy

+ ⟨ξ, ξ∗⟩⟨G(ξ, ζ) +G(ζ, ξ), ξ∗⟩ 1

D0
(F1x

3 + F2x
2y + F3xy

2)

+ ⟨ξ, η∗⟩⟨G(ξ, ζ) +G(ζ, ξ), η∗⟩ 1

D0
(F1x

3 + F2x
2y + F3xy

2)

+ ⟨ξ, ξ∗⟩⟨G(η, ζ) +G(ζ, η), ξ∗⟩ 1

D0
(F1x

2y + F2xy
2 + F3y

3)

+ ⟨ξ, η∗⟩⟨G(η, ζ) +G(ζ, η), η∗⟩ 1

D0
(F1x

2y + F2xy
2 + F3y

3)

}
+ o(3),

(4.26)
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dy

dt
= ρx+

1

D2

{[
− ⟨ξ, η∗⟩⟨G11, ξ

∗⟩+ ⟨ξ, ξ∗⟩⟨G11, η
∗⟩
]
x2

+
[
− ⟨ξ, η∗⟩⟨G22, ξ

∗⟩+ ⟨ξ, ξ∗⟩⟨G22, η
∗⟩
]
y2

+
[
− ⟨ξ, η∗⟩⟨G12 +G21, ξ

∗⟩+ ⟨ξ, ξ∗⟩⟨G12 +G21, η
∗⟩
]
xy

− ⟨ξ, η∗⟩⟨G(ξ, ζ) +G(ζ, ξ), ξ∗⟩ 1

D0
(F1x

3 + F2x
2y + F3xy

2)

+ ⟨ξ, ξ∗⟩⟨G(ξ, ζ) +G(ζ, ξ), η∗⟩ 1

D0
(F1x

3 + F2x
2y + F3xy

2)

− ⟨ξ, η∗⟩⟨G(η, ζ) +G(ζ, η), ξ∗⟩ 1

D0
(F1x

2y + F2xy
2 + F3y

3)

+ ⟨ξ, ξ∗⟩⟨G(η, ζ) +G(ζ, η), η∗⟩ 1

D0
(F1x

2y + F2xy
2 + F3y

3)

}
+ o(3),

(4.27)

where D2 = ⟨ξ, ξ∗⟩2 + ⟨ξ, η∗⟩2.

In view of (4.9), equation (4.26) and (4.27) becomes

dx

dt
= −ρy + a20x

2 + a11xy + a02y
2

+ a30x
3 + a21x

2y + a12xy
2 + a03y

3 + o(3),

dy

dt
= ρx+ b20x

2 + b11xy + b02y
2

+ b30x
3 + b21x

2y + b12xy
2 + b03y

3 + o(3),

(4.28)
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where

a20 =
1

D2

ρ

ā1u0
bb̃
[
− w0ā2ξ2(γ + ξ2 + κξ3)−

ρ2

ā1u0
aξ3

]
,

a02 = − 1

D2

ρ3w0

ā31u
3
0

abb̃
[
ā2(a+ κw0b) + qa

]
,

a11 = − 1

D2

[
− E5E2 +

ρ2w0

ā21u
2
0

bb̃ā2E4 − E6ab̃
]
,

a30 =
F1

D2D0

[
− ρ2A

ā21u
3
0

E2 +
ρw0

ā1u0
bb̃ā2E7 + E8ab̃

]
,

a03 =
F3

D2D0

[
− ρ3

ā21u
3
0

E2 +
ρw0

ā1u0
bb̃ā2E9 − E10ab̃

]
,

b20 =
1

D2

[
− E3ξ2(γ + ξ2 + κξ3)− E1E2

]
,

b02 =
1

D2

[
− E3η2(η2 + κη3) + E1E2

]
,

b11 =
1

D2

[
− E5ab̃+

ρ

ā1u0
E3E4 + E2E6

]
,

b30 =
F1

D2D0

[
− ρ2A

ā21u
3
0

ab̃+ E3E7 − E2E8

]
,

b03 =
F3

D2D0

[
− ρ3

ā21u
3
0

ab̃+ E3E9 + E2E10

]
,

a21 =
F2

F1
a30 +

F1

F3
a03, a12 =

F3

F1
a30 +

F2

F3
a03,

b21 =
F2

F1
b30 +

F1

F3
b03, b12 =

F3

F1
b30 +

F2

F3
b03.

The transition of (3.5)-(3.6) is determined by the sign of the following num-

ber; see [20],

b0 = 3(a30 + b03) + (a12 + b21) +
2

ρ
(a02b02 − a20b20)

+
1

ρ
(a11a20 + a11a02 − b11b20 − b11b02),

(4.29)

which is the same as that given by (4.1). From (4.1) and (4.2), it is easy to

show that b0 < 0 in the limit of small ρ. Thus the proof is complete.

Second, we consider the case that δ0 > δ1.

4.2. Transitions from real eigenvalues

Thanks to Lemma 3.1, for δ0 > δ1, the transition of the system (3.5) occurs at

δ1, which is from real eigenvalues. The following theorems will show the types
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of transition that the system (3.5) undergoes as the bifurcation parameter δ

crosses the critical value δ1

δ1 = min
ρk ̸=0

[
1 +

C + τ1ρ
3
k + τ2ρ

2
k + τ3ρk

ā1ā2u0v0ε3ρk

]
.

Let δ1 achieve it minimum at ρk0
, ρk0

be the eigenvalues of (3.8), ek0
be the

eigenvector of (3.8) corresponding to ρk0 . Assume that βk01 is simple near δ1.

Hereafter, we will give different transition theorems basing on the two cases

about ek0
.

First, we consider the case where∫
Ω

e3k0
dx ̸= 0. (4.30)

For simplicity, let

θ =
Pk

∫
Ω
e3k0

dx

Qk

∫
Ω
e2k0

dx
, (4.31)

where

Pk = ā21u0w0a
2c2

[
ā1u0w0ac+ αā2v0w0bd+ w2

0ab
]

+ ā22v0w0b
2cd

[
γā1u0w0ac+ ā2v0w0bd+ κw2

0ab
]

+ w2
0ab

2e
[
ā1u0w0ac+ qā2v0w0bd

]
,

Qk =
[
− ā1u0w0a

2c2 − ā2v0w0b
2cd+ w2

0ab
2e
]
,

(4.32)

and a, b, c, d, e in (4.32) are given by

a = (−ε2ρk0
− ā2v0) + ā2v0βq,

b = (−ε1ρk0
− ā1u0)q + ā1u0α,

c = ε3ρk0α+ qw0,

d = ε3ρk0
β + κw0,

e = (−ε2ρk0 − ā2v0) + ā2v0κα.

(4.33)

Then, under the condition (4.30), we have the second dynamic transition

theorem.

Theorem 4.2. Assume that q(γ − κ) − (1 − κα) < 0. Let δ0 > δ1. If θ ̸= 0,

then we have the following assertions:
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(1) The transition of (3.5) at δ = δ1 is mixed. More precisely, there exists a

neighborhood U ⊂ H1 of χ = 0 such that U is separated into two disjoint

open sets U1 and U2 by the stable manifold Γ of χ = 0 satisfying

(a) U = U1 + U2 + Γ,

(b) the transition in U1 is jump, and in U2 is continuous.

(2) The system (3.5) bifurcates in U2 to a unique singular point χ̄ on δ > δ1,

which is an attractor such that for any initial value φ ∈ U2,

lim
t−→∞

∥χ(t, φ)− χ̄∥H1 = 0.

(3) The system (3.5) bifurcates on δ < δ1 to a unique saddle point χ̄.

(4) The bifurcated singular point χ̄ can be expressed as

χ̄ = −βk01

θ
ξek0 + o(|βk01|), (4.34)

where θ is as in (4.31) and ξ = (ξ1, ξ2, ξ3) are given by

ξ1 = ā1u0w0

[
(−ε2ρk0

− ā2v0) + ā2v0γq
][
ε3ρk0

α+ qw0

]
,

ξ2 = ā2v0w0

[
(−ε1ρk0 − ā1u0)q + ā1u0α

][
ε3ρk0γ + κw0

]
,

ξ3 = w2
0

[
(−ε2ρk0

− ā2v0) + ā2v0γq
][
(−ε1ρk0

− ā1u0)q + ā1u0α
]
.

Proof. We shall prove the theorem in the following two steps.

Step 1. Calculate the critical eigenvectors and decompose space.

Let ξ and ξ∗ ∈ R3 be the eigenvectors of Mk0
and M∗

k0
corresponding to

βk01(δ1) = 0, i.e.

Mk0
ξ = 0, M∗

k0
ξ∗ = 0,

where Mk0 is the matrix (3.9) with k = k0. It is easy to see that ξ is as in

(4.34), and

ξ∗ = (ξ∗1 , ξ
∗
2 , ξ

∗
3),

ξ∗1 = −
[
(−ε2ρk0

− ā2v0) + ā2v0γq
][
ε3ρk0

α+ qw0

]
,

ξ∗2 = −
[
(−ε1ρk0

− ā1u0)q + ā1u0α
][
ε3ρk0

α+ qw0

]
,

ξ∗3 =
[
(−ε2ρk0 − ā2v0) + ā2v0κα

][
(−ε1ρk0 − ā1u0)q + ā1u0α

]
.

(4.35)
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On the other hand, based on the spectral theory of linear completely con-

tinuous field, the spaces H and H1 can be decomposed into the following form:

H = E1 ⊕ E2, H1 = E1 ⊕ Ē2,

where E1 = span{ξek0}, E2 = E⊥
1 . Then near δ1, the solution of the equations

(3.5) can be expressed as

χ = xξek0 + z, z =

3∑
j=2

xk0jψk0j +

3∑
k ̸=k0,j=1

xkjψkj , (4.36)

where xξek0 ∈ E1, z ∈ E2. ψkj(j = 1, 2, 3, k ̸= k0) is the eigenvector corre-

sponding to the eigenvalue βkj .

Thus, in the space E1, the equations (3.5) can be reduced to

⟨ξek0
, ξ∗ek0

⟩dx
dt

= ⟨Lδ(χ), ξ
∗ek0

⟩+ ⟨G(χ), ξ∗ek0
⟩

= βk01⟨ξek0 , ξ
∗ek0⟩x+ ⟨G(χ), ξ∗ek0⟩.

(4.37)

Note that ⟨·, ·⟩ denotes the inner product in H.

Step 2. Derivation of evolution equation.

According to the condition (4.30), we do not need to consider the influence

of the center manifold function. That is to say, we let χ = xξek0 in (4.37).

Hence, we derive the following reduced bifurcation equation
dx

dt
= βk01x+

⟨G(xξek0), ξ
∗ek0⟩

⟨ξek0
, ξ∗ek0

⟩
. (4.38)

For the operator G, we can derive that
⟨G(xξek0

), ξ∗ek0
⟩

⟨ξek0 , ξ
∗ek0⟩

= θx2 + o(2).

where θ is as in (4.31).

Thus, the equation (4.38) can be rewritten as

dx

dt
= βk01x+ θx2 + o(2). (4.39)

It is known that the transition of the equations (3.5) and its local topological

structure are determined completely by (4.39). If θ ̸= 0, it is clear that (4.39)

has exactly a bifurcated solution as follows:

x̄ = −βk01

θ
+ o(|βk01|). (4.40)
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Therefore,

χ̄ = −βk01

θ
ξek0 + o(|βk01|)

is the bifurcated singular point of (3.5).

Obviously, χ̄ is a locally asymptotically stable singular point on δ > δ1, which

implies the problem (3.5)-(3.6) has a continuous transition in U2. Meanwhile,

the original equilibrium state loses its stability and the problem (3.5)-(3.6) has

a jump transition in U1. And χ̄ is an unstable saddle point on δ < δ1(see Figure

1). Thus, the Theorem is proved.

Figure 1. If
∫
Ω e3k0

dx ̸= 0, then the local topological structure of the transitions of (3.5) is :

(1) when δ < δ1, the system bifurcates from stable equilibrium point χ = 0 to an unstable

saddle point χ̄; (2) when δ > δ1, the system bifurcates from χ = 0 to a attractor χ̄.

In the following, we consider the case that∫
Ω

e3k0
dx = 0. (4.41)

Let

θ̃ =
P̃k

Qk

∫
Ω
e2k0

dx
, (4.42)
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here

P̃k =

{[
2ā21u0w0a

2c2 + ā1ā2αv0w0abcd+ ā1w
2
0a

2bc+ ā22γv0w0b
2cd

+ w2
0ab

2e
] ∫

Ω

ϕ1e
2
k0
dx+

[
ā21αu0w0a

2c2 + ā1ā2γu0w0abc
2

+ 2ā22v0w0b
2cd+ ā2κw

2
0ab

2c+ qw2
0ab

2e
] ∫

Ω

ϕ2e
2
k0
dx

+
[
ā21u0w0a

2c2 + ā22κv0w0b
2cd+ ā1u0w0abce

+ qā2v0w0b
2de

] ∫
Ω

ϕ3e
2
k0
dx

}
,

(4.43)

Qk is as in (4.32), ϕ = (ϕ1, ϕ2, ϕ3) satisfies

Lϕ = −G(ξ)e2k0
, (4.44)

and the operators L and G are defined by

Lϕ =


ε1∆u− ā1u0u− ā1αu0v − ā1u0w,

ε2∆v − ā2γv0u− ā2v0v − ā2κv0w,

ε3∆w + w0u+ qw0v,

G(ξ) =


− ā21u0w0ac

(
ā1u0w0ac+ ā2αv0w0bd+ w2

0ab
)
,

− ā22v0w0bd
(
ā1γu0w0ac+ ā2v0w0bd+ κw2

0ab
)
,

w2
0ab

(
ā1u0w0ac+ ā2qv0w0bd

)
.

Then we have the following theorem,

Theorem 4.3. Assume that q(γ− κ)− (1− κα) < 0. Let θ̃ ̸= 0 be the number

given by (4.42), and δ0 > δ1. Then the transition of (3.5) at δ1 is continuous as

θ̃ < 0, and is jump as θ̃ > 0. Moreover, we have the following assertions:

(1) When θ̃ > 0, the system (3.5) bifurcates from (χ, δ) = (0, δ1) to two steady-

state solutions χ+ and χ− on δ < δ1, which are saddles, and no bifurcation

solutions on δ > δ1.
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(2) When θ̃ < 0, the system (3.5) bifurcates from (χ, δ) = (0, δ1) to two steady-

state solutions χ+ and χ− on δ > δ1, which are attractors, and no bifur-

cation solutions on δ < δ1.

(3) The bifurcated solutions χ± can be expressed as

χ± = ±
[
− βk01

θ̃

] 1
2

ξek0
+ o(|βk01|

1
2 ),

where ξ is as in (4.34), βk01 as in Lemma 3.1.

Proof. We shall prove the theorem in the following two steps.

Step 1.We deduce the evolution equation.

Space decomposition is the same as the step 1 in the proof of Theorem 4.2,

so we omit it.

Analogously, in the space E1, the equations (3.5) can be reduced to

⟨ξek0 , ξ
∗ek0⟩

dx

dt
= ⟨Lδ(χ), ξ

∗ek0⟩+ ⟨G(χ), ξ∗ek0⟩

= βk01⟨ξek0 , ξ
∗ek0⟩x+ ⟨G(χ), ξ∗ek0⟩.

(4.45)

Let

χ = xξek0
+Φ(x), x ∈ R1, (4.46)

and Φ(x) is the center manifold function. To evaluate the last term in (4.45), we

need to know the center manifold function Φ : E1 → E2. Let Φ = x2ϕ = o(2),

then by the approximation formula of center manifolds (see (A.10) in[27]), ϕ

satisfies

Lϕ = −G(ξek0
) = −G(ξ)e2k0

. (4.47)
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Direct circulation to get

⟨G(xξek0
+Φ), ξ∗ek0

⟩

=

∫
Ω

[
− ā1(xξ1ek0

+Φ1)
2ξ∗1ek0

− ā1α(xξ1ek0
+Φ1)(xξ2ek0

+Φ2)ξ
∗
1ek0

− ā1(xξ1ek0
+Φ1)(xξ3ek0

+Φ3)ξ
∗
1ek0

− ā2γ(xξ1ek0
+Φ1)(xξ2ek0

+Φ2)ξ
∗
2ek0

− ā2(xξ2ek0 +Φ2)
2ξ∗2ek0 − ā2κ(xξ2ek0 +Φ2)(xξ3ek0 +Φ3)ξ

∗
2ek0

+ (xξ1ek0 +Φ1)(xξ3ek0 +Φ3)ξ
∗
3ek0 + q(xξ2ek0 +Φ2)(xξ3ek0 +Φ3)ξ

∗
2ek0

]
dx

= x3
{[

− 2ā1ξ1ξ
∗
1 − ā1αξ2ξ

∗
1 − ā1ξ3ξ

∗
1 − ā2γξ2ξ

∗
2 + ξ3ξ

∗
3

] ∫
Ω

ϕ1e
2
k0
dx

+
[
− ā1αξ1ξ

∗
1 − ā2γξ1ξ

∗
2 − 2ā2ξ2ξ

∗
2 − ā2κξ3ξ

∗
2 + qξ3ξ

∗
3

] ∫
Ω

ϕ2e
2
k0
dx

+
[
− ā1ξ1ξ

∗
1 − ā2κξ2ξ

∗
2 + ξ1ξ

∗
3 + qξ2ξ

∗
3

] ∫
Ω

ϕ3e
2
k0
dx

}
+ o(3).

Hence, we have

⟨G(xξek0
+Φ), ξ∗ek0

⟩
⟨ξek0

, ξ∗ek0
⟩

= θ̃x3 + o(3), (4.48)

where θ̃ is defined by (4.42).

Combining (4.45) and (4.48), we deduce that the following reduced bifurca-

tion equation:

dx

dt
= βk01x+ θ̃x3 + o(3). (4.49)

Step 2. Bifurcation analysis.

Obviously, when θ̃ > 0, the equation (4.49) bifurcates two saddle points on

δ < δ1, and when θ̃ < 0, the equation (4.49) bifurcates two stable singular points

on δ > δ1. The bifurcated solutions can be expressed as

x± = ±
[
− βk01

θ̃

] 1
2

+ o(|βk01|
1
2 ).

It is known that the transition and local topological structure of equations

(3.5) are determined completely by (4.49). Therefore,

χ+ = +

[
− βk01

θ̃

] 1
2

ξek0
+ o(|βk01|

1
2 )
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and

χ− = −
[
− βk01

θ̃

] 1
2

ξek0
+ o(|βk01|

1
2 )

are the bifurcated singular points of (3.5). The stability of χ+ and χ− are the

same as that of x±, see Figure 2. The Theorem is proved.

Figure 2. If
∫
Ω e3k0

dx = 0, then the local topological structure of (3.5) is: (1) when θ̃ > 0,

δ < δ1, the system bifurcates from an stable equilibrium point χ = 0 to two saddle points χ+

and χ−; (2)when θ̃ < 0, δ > δ1, the system bifurcates from an equilibrium point χ = 0 to two

stable singular points χ+ and χ−.
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