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Abstract 22 

Populations with higher genetic diversity and larger effective sizes have greater evolutionary capacity (i.e., higher 23 

adaptive potential) to respond to ecological stressors. We are interested in how the adaptive potential captured in 24 

protein-coding genes persists in small populations and how it fluctuates relative to overall genomic diversity. We 25 

analyzed individual whole genome sequences from different populations of Montezuma Quail (Cyrtonyx 26 

montezumae), a small ground-dwelling bird that is sustainably harvested in some portions of its range but is of 27 

conservation concern elsewhere. Our historical demographic results indicate that overall, Montezuma Quail 28 

populations in the U.S. exhibit low levels of genomic diversity due in large part to long-term declines in effective 29 

population sizes over nearly a million years. The smaller and more isolated Texas population is significantly more 30 

inbred than the large Arizona and the intermediate-sized New Mexico populations. The Texas gene pool has a 31 

significantly lower proportion of deleterious alleles than the Arizona gene pool, but also significantly more high-32 

frequency deleterious alleles that, coupled with elevated inbreeding, elevate the realized genetic load in Texas. Our 33 

results highlight that although small, isolated populations can maintain adaptive potential (i.e., genic diversity can 34 

still be high), they are at higher risk of inbreeding depression as detrimental mutations rise in frequency due to drift 35 

and weakened purifying selection. Our study illustrates how population genomics can be used to proactively assess 36 

both neutral and adaptive aspects of contemporary genetic diversity in a conservation framework while 37 

simultaneously considering deeper demographic histories.    38 
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Introduction 39 

Many species and populations world-wide are declining at an alarming rate (Barnosky et al., 2011; 40 

Ceballos et al., 2015; Dirzo et al., 2014), mainly driven by human-mediated habitat loss and climate change (Loarie 41 

et al., 2009). Active prevention of population declines and extirpations is a priority for conservation (Cardinale et 42 

al., 2012; Thompson, Koshkina, Burgman, Butchart, & Stone, 2017) because reduction in population size is often 43 

followed by reduction in genetic diversity (Allendorf, Luikart, & Aitken, 2013; Soulé, 1985). The loss of genetic 44 

diversity has negative consequences on the survivability and future persistence of a species as it impedes their ability 45 

to adapt to environmental change (Bijlsma & Loeschcke, 2005; Bürger & Lynch, 1995; Reed & Frankham, 2003). 46 

Smaller and/or isolated populations exhibit a more rapid loss of within-population genetic variation as compared to 47 

their larger counterparts (Willi, Van Buskirk, & Hoffmann, 2006). The combined effects of drift, inbreeding, weak 48 

selection, and lack of gene flow in small, isolated populations may lead to “genetic erosion” (Bijlsma & Loeschcke, 49 

2012). Genetic erosion is expected to indirectly reduce the mean fitness of a population and thus increase extinction 50 

risks (Bijlsma & Loeschcke, 2012; Leroy et al., 2018). The impact of genetic erosion on the adaptive potential of a 51 

species is increasingly recognized as an integral aspect of comprehensive conservation efforts (Holderegger et al., 52 

2019; Ralls et al., 2018). 53 

Compared to large populations, small populations have less genetic diversity and are more prone to risks of 54 

inbreeding depression as they are burdened with higher proportions of detrimental mutations (“genetic load”) in 55 

their protein-coding genes (Lynch, Conery, & Burger, 1995). Genetic erosion in small populations can lead to an 56 

increase in the frequencies of partially recessive deleterious alleles (Charlesworth, Morgan, & Charlesworth, 1993; 57 

Lynch, 2007) which can lead to inbreeding depression in inbred populations (Keller, 2002). In theory, larger 58 

populations are more efficient at purging the genetic load of deleterious alleles via stronger purifying selection 59 

(Hedrick & Garcia-Dorado, 2016), but the empirical evidence for such purging is mostly experimental (Bersabé & 60 

García-Dorado, 2013; Bijlsma, Bundgaard, & Van, 1999; Crnokrak & Barrett, 2002) and rarely explored in natural 61 

populations (Rettelbach, Nater, & Ellegren, 2019). 62 

Much of the vertebrate genome has no known benefit to its host and is thought to evolve in a nearly-neutral 63 

fashion (Ohta, 1992). Much of the genome (e.g., intergenic regions) can be shaped by genome-wide processes such 64 

as inbreeding, migration, and demographic stochasticity (Pool & Nielsen, 2007). In contrast, genetic variants that 65 
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exist in genic regions may be important for adaptation and thus subject to targeted, locus-specific natural selection. 66 

The type and strength of selection on such adaptive variants largely determines the phenotypic response (Ellegren & 67 

Sheldon, 2008). Contemporary genomic patterns of diversity are shaped by both recent and historic factors such as 68 

lack of gene flow due to anthropogenic habitat fragmentation (Lino, Fonseca, Rojas, Fischer, & Ramos Pereira, 69 

2019) and demographic responses to glaciations (Nadachowska-Brzyska, Li, Smeds, Zhang, & Ellegren, 2015), 70 

respectively. Hence, explicitly comparing whole genomes with defined genic regions should help with identifying 71 

the major contributors to overall genomic architecture and also evaluate the adaptive potential of populations. In this 72 

study, we use whole genome sequences to quantify genic and whole genome variation from different sized 73 

populations of Montezuma Quail (Cyrtonyx montezumae), then estimate the degree of genetic erosion and its impact 74 

on adaptive potential.  75 

The Montezuma Quail is a small gamebird that is hunted in portions of Mexico, New Mexico, and Arizona 76 

but of conservation concern in Texas (Fig. 1). It is one of the least-studied avian species in North America 77 

(Gonzalez, Harveson, & Luna, 2015) due to its cryptic nature as well as difficulties associated with live trapping and 78 

monitoring (Hernandez, Harveson, & Brewer, 2006). Montezuma Quail are currently experiencing species-wide 79 

declines within the U.S. (Harveson et al., 2007), and Texas populations are listed as Vulnerable by Texas Parks and 80 

Wildlife Department (TPWD) with no open hunting season due to growing concerns about extirpations (Harveson, 81 

2009). Unlike other North American quails, Montezuma Quail are diet (Albers & Gehlbach, 1990) and habitat 82 

specialists (Brown, 1979) that heavily rely on grass cover for predator evasion (Bristow & Ockenfels, 2004). Their 83 

demography is strongly impacted by seasonal rainfall (Chavarria, Montoya, Silvy, & Lopez, 2012) and adequate 84 

grass cover (Brown, 1979) making habitat degradation and fragmentation major threats to Montezuma quail survival 85 

(Luna, Oaster, Cork, & O'Shaughnessy, 2017). Populations in Arizona are more genetically diverse than those from 86 

Texas or New Mexico (Mathur, Tomeček, Heniff, Luna, & DeWoody, 2019) and are expected to be the least 87 

impacted by genetic erosion due to larger sizes and more contiguous habitat (Fig. 1). In contrast, the Texas 88 

population is expected to have the highest signature of genetic erosion due to a restricted geographic range and 89 

associated demographic isolation.  90 

Herein, we report the data from whole genomes sequencing (WGS) of 90 Montezuma Quail from Arizona, 91 

New Mexico, and Texas. We used these WGS data to quantify the levels of overall genomic diversity, genic (i.e., 92 
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adaptive) variation, differentiation, individual inbreeding, and the genetic load in each population. We do so in a 93 

conservation context by comparing populations of different sizes. Our results indicate that Montezuma Quail 94 

effective population sizes have decreased over much of the last million years, and their similar trajectories over time 95 

indicate that now-disjunct populations in the U.S. were long connected demographically. Furthermore, we find that 96 

the small Texas population is isolated, inbred, genetically depauperate, and more prone to inbreeding depression. 97 

 98 

Materials and Methods 99 

Samples, DNA extraction, and sequencing  100 

 Montezuma Quail samples were opportunistically collected from three representative geographic 101 

populations in the United States: Arizona (AZ), New Mexico (NM), and Texas (TX) as described earlier (Mathur et 102 

al. 2019; Fig. 1). Based on the size of their geographic range in each state, on assessments by each state game 103 

agency, on eBird sightings, and on previous genetic analyses, we explicitly assume that AZ samples come from a 104 

large population, NM from a medium-sized population, and TX from a small population relative to each other 105 

(Mathur et al. 2019). Arizona samples were acquired from hunter harvested wings initially collected by Randel et al. 106 

(2019). New Mexico samples were acquired as voucher specimens by R. Luna, whereas Texas samples were 107 

collected as road-kill carcasses by L. Harveson. Sample handling and DNA extraction protocols are described in 108 

Mathur et al. (2019). 109 

 We sequenced whole genomes of 90 Montezuma quail samples (AZ=60, TX=17, NM=13) by creating 110 

individually barcoded dual-index libraries using Illumina® NexteraTM reagents following the manufacturer’s 111 

protocol. The libraries were sequenced in 8 lanes of paired-end 150bp reads (2x150bp) on one S4 flow cell using 112 

Illumina® NovaSeqTM 6000 sequencing system in Purdue University’s Genomics Core Facility. We removed any 113 

sample if they failed to generate more than 8 million reads (i.e. less than 1x mean read depth).  114 

 115 

Sequencing filtering, alignment, and read preprocessing  116 

 We used FastQC v0.11.7 (Andrews, 2010) to quality check our raw reads and removed adapter sequences 117 

from trailing and leading edges of each read using Trimmomatic v.036 (Bolger, Lohse, & Usadel, 2014). We also 118 
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used Trimmomatic to remove low quality sequences (Phred < 20) and any read smaller than 30bp after clipping and 119 

quality filtering, prior to any further downstream analysis.  120 

 The filtered reads were mapped to a Montezuma quail draft genome assembly (Mathur et al. 2019) with 121 

BWA v.0.7.17 (Li & Durbin, 2009) using the mem algorithm. Samples with less than 50% mapped reads were 122 

removed from further analysis. Our final dataset contained 74 individuals (AZ=52, TX=15, NM=7). We used the 123 

Genome Analysis ToolKit (GATK) “Best Practice Workflow” (Auwera et al., 2018) to pre-process our mapped 124 

reads. We first sorted the reads by their co-ordinates and marked duplicates using PicardTools 125 

(http://picard.sourceforge.net). We then used GATK v3.6.0 (McKenna et al., 2010) to realign our reads around 126 

indels to minimize misaligning with mismatches. We identified the regions to be realigned using 127 

RealignerTargetCreator and aligned bam files using IndelRealigner. The base quality score was recalibrated for all 128 

the reads using known variant sites discovered from high coverage genome reads (Mathur et al., 2019) using 129 

BaseRecalibrator. We finally used these filtered-realigned-recalibrated reads to get coverage statistics using 130 

samtools depth (Li et al., 2009), and for further downstream analyses.  131 

In cases where we needed to polarize genomic variants as ancestral or derived (see below), we used the 132 

high-quality and contiguous chicken genome (Gallus gallus GRCg6a) as reference. Both Galliformes, Montezuma 133 

Quail belong to the New World quail Family Odontophoridae that diverged from junglefowl (Gallus spp.; Family: 134 

Phasianidae) approximately 30-40 million years ago (Cox, Kimball, Braun, & Klicka, 2007; Hosner, Braun, & 135 

Kimball, 2015). Read mapping and preprocessing steps were same as above.  136 

 137 

Mitogenome assembly and diversity  138 

 We mapped genomic reads to the previously published Montezuma Quail mitogenome (Mathur et al., 139 

2019) and extracted the uniquely mapped reads (mito-reads) using BBMap v37.93 (Bushnell, 2014). Since nuclear 140 

copies of mitochondrial DNA (NUMTs) exist in nearly all eukaryotic genomes (Bensasson, Zhang, Hartl, & Hewitt, 141 

2001; Lopez, Yuhki, Masuda, Modi, & O'Brien, 1994), we tried to first identify the NUMTs in the nuclear genome 142 

assembly of the Montezuma Quail. We used a BLAST-based approach to query the Montezuma Quail reference 143 

mitogenome against a custom blast database of Montezuma Quail nuclear genome scaffolds. We extracted the 144 

NUMT sequences from genome assembly as fasta files using faSomeRecords (Kent et al., 2002). Any mito-read that 145 
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also uniquely matched to the NUMT fasta sequences were removed using BBMap. This helped ensure that final 146 

mito-specific reads we retained belonged to the mitogenome and not NUMTs. We used samtools mpileup to align 147 

mito-specific reads to the reference mitogenome and used bcftools (Li et al., 2009) to call variants. We filtered the 148 

variants with a minimum base depth of 10 using vcflib (Garrison, 2012) and used bcftools consensus to create 149 

consensus mitogenomes for every individual. To avoid mismapping and errors introduced at the artificial ends 150 

created in the linearized mitogenome, we trimmed 40bp from either end of the mitochondrial sequence prior to 151 

analysis.  152 

 All mitogenomes were aligned as multiple sequence alignment using Clustalw v.2.1 (Thompson, Higgins, 153 

& Gibson, 1994) using default parameters. We calculated mitochondrial nucleotide diversity indices and haplotype 154 

statistics using Arlequin v3.5 (Excoffier & Lischer, 2010). We accounted for unequal sample sizes for each 155 

population by randomly subsampling mitochondrial genomes from each population (N=7) and recalculated 156 

nucleotide diversity indices using 100 independent permutations.  157 

  158 

Genotype likelihood estimation, subsampling, and genotype calling 159 

 For the nuclear reads, we used ANGSD v0.929 (Korneliussen, Albrechtsen, & Nielsen, 2014) to estimate 160 

genotype likelihoods (GL) call single nucleotide polymorphisms (SNPs) using the samtools model. We filtered bam 161 

files to only include unique reads with a minimum mapping quality of 50. We excluded bases with a base quality 162 

score < 20 and only retained only proper pairs. Major and minor allele was inferred from the GL and triallelic sites 163 

were removed. Per-site allele frequencies (AF) were estimated using a combination of estimators i.e. first estimating 164 

allele frequency from GL assuming both major and minor alleles are known and then re-estimating AF by summing 165 

over the three possible minor alleles weighted by their probabilities.  We used a p-value cut off of 10-6 to call a site 166 

polymorphic and a minimum minor allele frequency (MAF) of 0.05. We also used a maximum depth threshold of 167 

500 to avoid calling SNPs from repetitive regions (Clucas, Lou, Therkildsen, & Kovach, 2019). Deviations from 168 

Hardy-Weinberg equilibrium were tested and sites with p-value < 0.01 were filtered out to remove potential 169 

paralogous sequences with an excess of heterozygotes due to erroneous mapping (Meisner & Albrechtsen, 2019).  170 

When estimating GL across all samples (N=74), we used a threshold of minimum 60 individuals to ensure 171 

including segregating sites from more than one population, in other words, to prevent retaining sites from only the 172 
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Arizona population (N=52) (“population dataset”). To avoid biases introduced due to uneven sample sizes, we re-173 

estimated GL and discovered SNPs from an equal subset of Arizona and Texas samples (N=21; AZ=7, TX=7, 174 

NM=7). For our subsamples, we chose samples with the highest depth and breadth of coverage to maximize the 175 

genomic spread of our variants (“genomic dataset”). For the subset, we used a minimum individual threshold of 15 176 

and maximum depth threshold of 100.  177 

In the end, we analyzed our genotype likelihood data two ways: (a) retaining maximum individual 178 

information at the cost of markers per individual (“population dataset”) (McLennan, Wright, Belov, Hogg, & 179 

Grueber, 2019) and (b) retaining maximum genomic information of each population at the cost of individuals 180 

analyzed per population (“genomic dataset”) (Benjelloun et al., 2019). The population dataset was used for the 181 

estimation of inbreeding and genetic structure, both of which can be inferred from a smaller set of widespread 182 

markers from more individuals, whereas the genomic dataset with higher SNP density was used to estimate genome-183 

wide diversity and for detecting signatures of selection. 184 

 185 

Relatedness, inbreeding co-efficient, and population structure estimation 186 

 Assumptions of many population genetic estimators are violated if family members and closely related 187 

individuals are analyzed simultaneously. Related individuals among a sample set should thus be identified and 188 

removed prior to population structure analysis (Meisner & Albrechtsen, 2018, 2019). We estimated relatedness 189 

among our samples using IBSrelate (Waples, Albrechtsen, & Moltke, 2019).  IBSrelate uses GL estimates to 190 

categorize a pair of individuals as either parent-offspring, full-siblings, half-siblings, first-cousins, or unrelated 191 

based on whether the pair share the same genotype or exhibit dissimilar genotypes at a particular site (Manichaikul 192 

et al., 2010). We compared all individual pairs (total of 2701 comparisons) and removed any pairwise comparison 193 

from relatedness estimates if the number of sites compared were less than 100,000.   194 

 We estimated individual inbreeding coefficient (F) using PCAngsd v.0.982 (Meisner & Albrechtsen, 2018) 195 

from inferred GL. This allows F-values at a site to vary between -1 and 1 where a negative value indicates an excess 196 

of heterozygotes and a positive value indicates an excess of homozygotes at a site. Since inbred individuals would 197 

have an excess of homozygous sites, they should have an overall F > 0. We used extremely low tolerance values 198 
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(1e-9) and 5000 maximum iterations for estimation to assure a stricter stopping criterion and avoid convergence at a 199 

local minimum (Fig. S10).  200 

To identify genetic structure in our Montezuma Quail samples, we used two approaches.  First, we used 201 

PCAngsd to calculate a covariance matrix and performed individual level PCA using princomp function in R (Team, 202 

2013). Second, we used NGSAdmix (Skotte, Korneliussen, & Albrechtsen, 2013) to estimate individual admixture 203 

proportions. For PCAngsd, we used a minimum tolerance value for population AF estimation of 1e-9, a tolerance 204 

threshold for updating individual AF of 1e-9 for 1000 iterations. For NGSAdmix, we ran 10 independent runs for 205 

each K from 1-10 with minimum MAF 0.05, 1e-9 tolerance for convergence, 1e-9 tolerance for log likelihood 206 

difference in 50 iterations, and maximum 50,000 iterations. The most likely number of subpopulations were 207 

determined based on first and second order rate of change of the likelihood distribution from the 10 runs (Evanno, 208 

Regnaut, & Goudet, 2005). 209 

 210 

Nucleotide diversity, heterozygosity, and contemporary effective population size estimation 211 

 For nucleotide diversity estimates, we only used the genomic dataset to avoid biases in estimating site 212 

frequency spectrum (SFS) due to uneven sample sizes and heavy data pruning, which was the case for our 213 

population dataset. We used ANGSD to generate a folded SFS by using the Montezuma Quail reference genome and 214 

a minimum base quality of 20 and minimum mapping quality of 50 (Fig. S11). Next, we obtained a maximum 215 

likelihood estimate of the SFS using realSFS by bootstrapping it 100 times and using the mean SFS for each 216 

population to estimate per-site Watterson’s theta (qW). We obtained mean heterozygosity (Ho) and its variance from 217 

the bootstrapped SFS. 218 

 To obtain an estimate of contemporary effective population sizes (Ne) from mean genomic qW, we first 219 

estimated the whole-genomic mutation rate (µ) for Montezuma Quail (qW = 4Neµ). Since no linkage map exists for 220 

Montezuma Quail, we estimated µ following Zhan et al. (2013).  The Montezuma Quail reference assembly was 221 

mapped to the Chicken genome (Gallus gallus GRCg6a) using LASTZ (Harris, 2007). The mean divergence time (t) 222 

between chicken and Montezuma Quail was derived from www.timetree.org and polymorphic loci were identified 223 

only if neither target nor query nucleotide was N/n and the locus was not in an alignment gap. The final µ per nt per 224 
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year was calculated with the following formula: µ = (counts of mutated loci / sequence length) / 2t (Zhan et al., 225 

2013).  226 

 227 

Genetic differentiation and signatures of local adaptation 228 

 Small populations in isolation drift apart randomly at some loci (Whitlock, Ingvarsson, & Hatfield, 2000) 229 

and can become locally adapted to their microenvironment at adaptive loci (Schierup et al., 2018). Both processes of 230 

drift and adaptation lead to nucleotide divergence (DXY) and variation in allele frequencies (FST) among populations 231 

(Matthey-Doret & Whitlock, 2019; Puzey, Willis, & Kelly, 2017; Rousset, 1997). We investigated genomic patterns 232 

of genetic differentiation by estimating pairwise FST using a sliding window approach (window size=100kb, 233 

step=50kb) for each population pair (AZ-TX, TX-NM, AZ-NM). We used ANGSD to calculate the 2D SFS for each 234 

population pair using the chicken genome (GRCg6a) as reference to polarize alleles as derived or ancestral. We 235 

quantified the levels of nucleotide divergence (DXY) using the calcDxy.R 236 

(https://github.com/mfumagalli/ngsPopGen/blob/master/scripts/calcDxy.R). In this case, we estimated GL for each 237 

population individually, but only retained sites that were shown to be segregating in all populations. This ensured 238 

that sites with a fixed allele in one population is still included in our per population DXY calculations.  239 

 To identify candidate regions under putative selection due to local adaptation, we Z-transformed FST around 240 

the mean for each sliding window and examined the outliers that had Z(FST) values outside 5 standard deviations 241 

from the mean (Willoughby, Harder, Tennessen, Scribner, & Christie, 2018). After removing false positives that 242 

showed higher deviations due to lack of data, the remaining outlier windows were inspected for nearby genes. We 243 

blasted the 100-kb outlier window to the chicken genome using default parameters and only retained windows that 244 

contained annotated genes with known function.  245 

 246 

Adaptive diversity, and adaptive differentiation estimation 247 

 The Montezuma Quail genome consists of ~17,500 genes (Mathur et al., 2019) and we examined levels of 248 

variation in just the genic regions as a comparison to the genome-wide estimates of variation. We filtered out reads 249 

that mapped to the Montezuma Quail gene sequences using BBMap. The genotype likelihoods and diversity indices 250 

were estimated for the genic regions using genic reads following the same methods and parameters as above. 251 
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 To investigate levels of differentiation within the genes, we used population branch statistics (PBS) in 252 

ANGSD. PBS are based on comparing the pairwise FST values between the three sampled populations and identify 253 

the directionality of sequence differentiation (Yi et al. 2010) along each branch of their corresponding three-254 

population tree. PBS represents the amount of allele frequency change at a locus in a population’s history since its 255 

divergence from the other two populations and have the power to detect recent selection (G. Amorim et al., 2017; 256 

Jiang & Assis, 2019). We computed mean PBS for each annotated gene (N=17,573) in the Montezuma Quail 257 

genome to determine if Texas quail have genes that are exceptionally diverged relative to the other two populations, 258 

possibly due to positive selection (Yi et al., 2010). 259 

 260 

Population trends and historic demographic sizes  261 

 A population that underwent a bottleneck should lose rare variants and leave intermediate frequency 262 

variants in the genome, resulting in an overall positive value of Fu’s F statistic (Fu, 1997). On the other hand, new 263 

mutations would be added in an expanding population resulting in excess of rare variants and a negative mean value 264 

of Fu’s F. Fu’s F is more sensitive to demographic changes than Tajima’s D (Ramos-Onsins & Rozas, 2002) but 265 

requires ancestral sequences for unbiased estimations. Thus, we estimated mean Fu’s F statistic for every population 266 

over a sliding window in ANGSD using the chicken genome as an ancestral reference with 100kb window size and 267 

50kb step.  268 

 We reconstructed ancestral demographic histories using SMC++ v.1.15.2 (Terhorst, Kamm, & Song, 2016) 269 

which uses unphased whole genome data to infer population size histories using sequential Markov coalescent 270 

(SMCs) simulations. The reads that mapped to the first 10 chicken chromosomes (NC_006088.5- NC_006097.5) 271 

comprising ~ 750 Mbp were used to create composite likelihoods for each population individually by varying the 272 

identity of the distinguished individual while keep other individuals within the population as undistinguished. We 273 

used cross-validation to estimate population size changes using the Powell algorithm with a tolerance of 1 x 10-5 and 274 

a mutation rate of 3.14 x 10-09 (estimated as above). We ran our model using 5000 iterations and used different 275 

parameter values for thinning and regularization penalty to avoid degeneracy in the likelihood and overfitting 276 

(Terhorst et al., 2016) with final model generated using thinning parameter of 1300 and regularization penalty of 6. 277 

A generation time of 1.5 was used to convert generations into years. 278 
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  279 

Estimation of genetic load  280 

To assess the impact of a mutation in genic regions and its zygosity, we called genotypes at SNPs within 281 

the genes from GL estimates. Genotypes were only called at sites with minimum individual depth of 5X to minimize 282 

technical biases (Benjelloun et al., 2019). Allele frequencies from the genotype calls at each of the genic variants 283 

were calculated using vcftools v.0.1.16 (Danecek et al., 2011). We predicted the effect of a variant on amino acid 284 

change and its deleterious impact using SnpEff 4.2 (Cingolani et al., 2014), analyzing only those variants where the 285 

algorithm considered the annotation high-quality. A variant is classified as either high, moderate, low, or modifier 286 

based on its inferred effect on protein translation. We quantified the genetic load of a population as the proportion of 287 

deleterious variants within the genic regions and compared the among-population differences in such proportions 288 

using chi-squared tests with Yates’ continuity correction (Newcombe, 1998; Yates, 1934). High impact variants 289 

have the most disruptive (i.e., deleterious) effect on protein like truncation or loss of function, whereas low impact 290 

mutations are mostly synonymous with little to no impact on proteins (Cingolani et al., 2014). Thus, high impact 291 

variants have the potential to impart the greatest genetic load (Ellegren & Sheldon, 2008) as compared to low or 292 

synonymous variants (Crnokrak & Barrett, 2002), but the realized genetic load depends upon dominance and 293 

zygosity.  As an extreme example, one can imagine a genome where 50% of the protein-coding genes are 294 

compromised by high-impact variants (i.e., high potential load), but the realized genetic load is nil if they are all 295 

recessive and outbreeding prevails.  In contrast, a few high-impact deleterious recessive mutations (low potential 296 

load) contribute greatly to the realized genetic load if they are homozygous due to inbreeding.   297 

 298 

Results 299 

In this study, we collected WGS data from 90 Montezuma Quail (AZ=60, TX=17, NM=13; Fig. 1). We 300 

generated more than 1.65 billion reads (mean = 18.5 million reads per individual) corresponding to approximately 301 

250 billion bases (mean = 2.8 billion bases per individual; >2x individual coverage). Since these samples were 302 

opportunistically collected (i.e. either hunter-harvested wing tissues or roadkill carcasses), we found significant 303 

variability in the quality and quantity of DNA sequenced. This stochasticity was evident from sequences generated 304 

per individual (Table S1) and their depth and breadth of coverage (Table S1, Fig. S1). We removed samples that 305 
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failed to generate the threshold of 8 million bases (N=10) or where less than 50% of the total reads mapped to the 306 

Montezuma Quail assembly (N=6). However, we achieved a high level of read mapping for the remainder of the 307 

samples (84.4% ± 18.1%; Table S1). Ultimately, we analyzed genomic information from 74 individuals (AZ=52, 308 

TX=15, NM=7) that covered 65.1 ± 22.1% (mean ± SD) of the Montezuma Quail genome at 2.1 ± 1.3X depth 309 

(Table 1).  310 

 Our complete mitogenome analysis detected 39 unique haplotypes in the Arizona population with 239 311 

parsimony-informative sites shared among them. There were 11 unique Texas haplotypes sharing 171 parsimony-312 

informative sites, and we found only 3 unique haplotypes for the New Mexico population with 167 such sites. We 313 

found per-site nucleotide diversity (P) and Kimura 2-P pairwise distances to be smaller in the Texas and New 314 

Mexico mitogenomes (p=0.03 and p=0.04 respectively) as compared to Arizona. Haplotype diversity (Hd) did not 315 

significantly differ between Texas and Arizona mitogenomes (p = 0.70) but was significantly smaller in New 316 

Mexico as compared to Arizona (p=0.02; Fig. S2).   317 

 For the nuclear genome analysis, we partitioned our data into two datasets: population and genomic. The 318 

population dataset consisted of genotype likelihoods from 456,373 SNPs retained from all individuals (N=74). The 319 

genomic dataset contained genotype likelihood information from 6,696,145 SNPs sampled across an equal subset of 320 

each representative population (N=21). Using the population dataset, we first estimated the relatedness among our 321 

samples to determine if we had close relatives in the study. Pairwise relatedness was measured for 2,341 individual 322 

pairs. Almost all the pairs analyzed were either unrelated (99.5%) or 3rd-degree relatives (0.21%). We found no full-323 

sibling or parent-offspring relationships (1st-degree) in our samples; however, 5 pairs from Arizona, 1 pair from 324 

Texas, and 1 pair from New Mexico had 2nd degree or half-sibling relationship (Fig. 2A). Overall, our kinship 325 

analysis indicates that, consistent with our opportunistic field sampling and broad survey range, close relatives were 326 

only rarely sampled and thus, should not impact our population structure results. Inbreeding co-efficient estimates 327 

(Table 1) showed significantly higher levels of mean inbreeding in Texas birds as compared to Arizona birds (Fig. 328 

2B; Table S2) whereas inbreeding in Texas was only slightly elevated relative to New Mexico birds. Both PCA and 329 

admixture analyses produced similar results indicating that the Arizona, Texas, New Mexico populations are 330 

genetically distinct (Fig. 2C, D). However, based on the ∆K method (Evanno et al., 2005), the most likely number of 331 

ancestral populations is K=4 (Fig. S3), splitting Arizona populations into two subpopulations (Fig. 2C). The 332 
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population-level trends for relatedness, inbreeding and genetic differentiation were concordant between the two 333 

datasets (Fig. S4) and thus it seems clear that sampling issues have not biased our interpretations. 334 

 We used genomic dataset to quantify the levels of genome-wide nucleotide diversity as estimated by per-335 

site Watterson’s theta (qW). Mean genome-wide qW was significantly lower for the Texas population (qW = 4.05 x 336 

10-4; SE = 1.67 x 10-7) as compared to both Arizona (qW = 5.37 x 10-4; SE = 1.93 x 10-7) and New Mexico (qW = 4.57 337 

x 10-4; SE = 1.80 x 10-7) (Table 1; Table S3). The genome-wide distribution of per scaffold diversity had higher a 338 

mean in the Arizona population than in Texas or New Mexico (Fig. S5). Contemporary estimates of Ne were 339 

quantified using whole-genomic µ of 3.14 x 10-9 bp-1year-1 (CI: 2.59 x 10-9 - 3.34 x 10-9) (Table 1). Thus, Texas quail 340 

show a ~30% reduction in their overall genomic diversity with a mean, long-term evolutionary Ne reduction of 341 

~25% relative to Arizona. The genomic heterozygosity was also significantly reduced for Texas samples (Table 1) 342 

as compared to either Arizona or New Mexico (Fig. 3A; Table S4). This indicates that smaller Montezuma Quail 343 

populations in Texas and New Mexico are more severely impacted by genetic erosion with contemporary diversity 344 

equivalent to those reported in endangered and vulnerable avian species, whereas the larger Arizona population has 345 

heterozygosity estimates similar to other birds of least concern (Fig. 3B). 346 

 Global estimates of FST between each population pair showed low to moderate levels of genetic 347 

differentiation at the whole genome level (Table 2). However, we found significant variation in FST values across the 348 

genome for each population pair (Fig. 4; Fig. S6). One interesting observation was large Z(FST) scores for loci on 349 

chromosome 16 (NC_006103.5) for all population comparisons (Fig. 4; Fig. S6). This is probably due to low 350 

synteny between quail and chicken at chromosome 16 (Morris et al., 2020), perhaps due to an inversion (Clucas et 351 

al., 2019) but this needs further validation using longer sequence scaffolds (Lamichhaney & Andersson, 2019). 352 

There is a similar discontinuity at one end of chicken chromosome 26 (Fig. S6). We examined the windows that 353 

were highly differentiated in both AZ-TX and TX-NM comparisons to look for genes and assess their functionality. 354 

Genes or a gene clusters associated with the outlier peaks are shown in Fig. 4 and their known functions are listed in 355 

Table S5. Per-site FST and DXY values for SNPs located in those genes are in shown in Fig S7. In total, we found 12 356 

genes that exhibited very high levels of differentiation (> 5 SD) and because these genes are associated with fitness-357 

related traits (Table S5), they are likely candidates for genes underlying local adaptation in Texas quail.  358 
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 One of the major emphasis of our study was to assess the adaptive potential of Montezuma Quail, 359 

particularly in the small, isolated Texas population. Variation in protein coding genes has the capacity to gauge 360 

adaptive potential (Barbosa et al., 2018). The trends we observed for genic diversity were similar to the whole 361 

genome (Table 1) with a 1.4X reduction of genic diversity in Texas quail. The Texas population had significantly 362 

lower (qW = 3.49 x 10-4; SE = 1.06 x 10-6) genic nucleotide diversity as compared to Arizona (qW = 4.89 x 10-4; SE = 363 

1.25 x 10-6) and New Mexico (qW = 3.68 x 10-4; SE = 1.09 x 10-6; Table S6). Mean heterozygosity in the genic 364 

regions of Texas and New Mexico quail were both significantly reduced relative to Arizona quail whereas Texas and 365 

New Mexico samples showed similar levels of genic heterozygosity (Fig. 3A; Table S7). One interesting 366 

observation was that all three populations of Montezuma quail maintain more genic heterozygosity than genome-367 

wide heterozygosity (Fig. 3A, Table 1). 368 

 We inferred levels of adaptive differentiation using both pairwise FST and population branch statistics 369 

(PBS). Consistent with our estimates of heterozygosity (Fig. 3), our FST estimates from the genic regions show 370 

significantly higher levels of differentiation among the three populations as compared to the whole genomic 371 

background (Table 2). Texas quail have a higher mean genic PBS than the other populations (Fig. S8; Table S8), 372 

which may be indicative of local adaptation.  373 

Demographic analysis indicated that the Arizona population is expanding with Fu’s F = -0.23 ± 0.01 (mean 374 

± SE) whereas both the Texas and New Mexico populations are declining with Fu’s F = 0.11 ± 0.02 and 0.22 ± 0.02 375 

respectively (Fig. 5A). We tracked Ne estimates over the last ~1 million years using the pairwise sequentially 376 

Markov coalescent method (Fig. 5B). The three populations display concordant trajectories for most of their 377 

evolutionary history over that timeframe. We observed a decline in Ne from in the period of 106 - 105 years before 378 

present (YBP) followed by a more stable period. A subsequent re-expansion occurred around 10,000 years ago, then 379 

populations began to rebound until growth rates became negative around 3000-5000 YBP (Fig. 5B). 380 

 To quantify the potential genetic load of adaptive variants, we compared the mutations within protein-381 

coding genes (Fig. 6A) and their predicted change on translation (Fig. 6B). Most of the genic variation was due to 382 

non-coding intronic variants or variants immediately outside the transcription unit (Fig. 6A), neither of which 383 

influence amino acid sequences but both of which may impact expression levels. The Arizona population had a 384 

significantly higher proportions of high, moderate, and low impact deleterious mutations when compared to either 385 
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the Texas or New Mexico populations (Fig. 6B; Table S9). These results show that the larger Arizona population 386 

carries the greatest potential genetic load of deleterious mutations (Fig. 6B). However, the smaller and more inbred 387 

Texas population exhibited those detrimental mutations at higher frequencies (Fig. 6C) and due to the elevated 388 

inbreeding in Texas (Fig. 2B; Fig. S9) has the highest realized genetic load if we assume many of these deleterious 389 

alleles adhere to a model of simple dominance. Overall, these data indicate that larger populations harbor 390 

detrimental mutations at lower frequencies due to purging via stronger purifying selection and/or weaker purifying 391 

selection in smaller populations (Hedrick & Garcia-Dorado, 2016; Keller, 2002). We acknowledge that frequency 392 

estimates based on called genotypes may be biased due to low coverage and sample size (Benjelloun et al., 2019), 393 

but the trends we observe here are exactly what is predicted by simulations (Coop et al., 2015) and seen in human 394 

population studies (Do et al., 2015; Simons, Turchin, Pritchard, & Sella, 2014).  395 

 396 

Discussion 397 

 In this study, we analyzed whole genome sequences from three natural populations of Montezuma Quail 398 

that vary in size and habitat continuity (Fig. 1) to understand how drivers of genetic erosion (e.g., small sizes and 399 

isolation) can affect genomic diversity and reservoirs of future adaptive potential. Small populations are predicted to 400 

have lower levels of diversity (Soulé, 1985) and recessive deleterious alleles should have a more pronounced impact 401 

on fitness than in large populations due to inbreeding (Charlesworth & Charlesworth, 1999). Populations that have 402 

experienced declines and are restricted to smaller habitats tend to have lower levels of overall genomic 403 

heterozygosity (Barsh, Rogers, & Slatkin, 2017; Brüniche-Olsen, Kellner, & DeWoody, 2019; Palkopoulou et al., 404 

2015), but how these factors affect the adaptive potential is far less explored. By comparing levels of genome-wide 405 

diversity, adaptive (genic) diversity, and quantifying genetic load in different populations, our aim was to get a 406 

better understanding of how the adaptive potential of a species is affected by genetic erosion. The implications from 407 

our results should be relevant to conservation of Montezuma Quail and other small natural populations that are 408 

facing extinction threats worldwide (Ceballos et al., 2015). 409 

 410 

Genetic erosion reduces genomic diversity 411 
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Our genomic diversity estimates are consistent with predictions for small declining populations that are 412 

expected to be most impacted by genetic erosion (Bijlsma & Loeschcke, 2012; Leroy et al., 2018). Species with 413 

small populations sizes have lower diversity (Frankham, 1996) and less adaptive potential (Hedrick, Robinson, 414 

Peterson, Vucetich, & Johnson, 2019). Our population genomic data support these expectations. Furthermore, 415 

Montezuma Quail exhibit lower levels of whole genomic heterozygosity than many other avian species (Fig. 3). The 416 

reduction of genomic diversity in Montezuma Quail is reflective of long-term declines in Ne over the last million 417 

years (Fig. 5B). More specifically, Montezuma Quail from Texas are the most genetically depauperate of the 418 

populations we surveyed with genomic diversity similar to vulnerable and endangered birds (Fig. 3B).  Our Texas 419 

samples had genome-wide heterozygosity similar to raptors and other large birds (Table 1, Fig. 3B) even though 420 

small birds typically have more genetic diversity (Eo, Doyle, & DeWoody, 2011). Overall, we think the data reveal 421 

that genomic erosion has likely reduced the evolutionary potential of Montezuma Quail in Texas and that this 422 

reduction is unlikely to abate in the absence of gene flow through assisted translocation or other means. 423 

  424 

Isolation leads to more inbreeding  425 

 A lack of migration among populations limits gene flow and accelerates inbreeding (Frankham, 1996; 426 

Gong, Gu, & Zhang, 2010; Hedrick, Kardos, Peterson, & Vucetich, 2016; Keller, 2002; Madsen, Stille, & Shine, 427 

1996; Pulanić et al., 2008). Our samples from Montezuma quail populations in the U.S. form independent genetic 428 

clusters (Fig. 2C,D), which is unsurprising given the geographic distances among sampling sites and the limited 429 

dispersal capacity of this ground-dwelling bird (Stromberg, 1990). These results are in general accordance with our 430 

previous findings based on a small SNP panel (Mathur et al. 2019), but the divide in Arizona (Fig. 2C; Fig. S3) was 431 

undetected with that same SNP panel. Our kinship analysis suggests that very few of our samples were derived from 432 

related individuals (Fig. 2A), and our inbreeding estimates show that the Texas population is highly inbred as 433 

compared to Arizona and New Mexico (Fig. 2B). Our samples were acquired opportunistically and that likely 434 

reduced the probability of collecting related individuals. However, inbreeding itself can reduce estimates of kinship 435 

as inbred individuals may have elevated number of alternate homozygous genotypes and a reduced number of 436 

shared heterozygous genotypes (Waples et al., 2019). We observed an elevated incidence of alternative 437 

homozygotes for within-Texas comparisons (Fig. S9) and we think the collective evidence shows that the small, 438 
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isolated population of Montezuma quail in West Texas is relatively inbred. This is key, as elevated inbreeding 439 

means more of the potential genetic load will be realized (see below). 440 

 441 

Impact of genetic drift on local adaptation 442 

 One of the major drivers of genetic erosion in small populations is genetic drift. In the absence of 443 

migration, genetic drift can fix common alleles or lose rare alleles from the gene pool. Isolated populations with 444 

historically low sizes can become phenotypically distinct over time (Holycross & Douglas, 2007; Schierup et al., 445 

2018) due to differences in nucleotide composition (DXY) (Wakeley, 1996) or allele frequencies (FST) (Beaumont, 446 

2005). The intensity of genetic differentiation due to drift is generally expected to be the same for all neutral loci in 447 

the nuclear genome due to lack of selection pressures, but it is complicated by linked selection (McVean, Cai, 448 

Macpherson, Sella, & Petrov, 2009; Rettelbach et al., 2019). Recent population genomic studies have shown that 449 

different populations exhibit a heterogeneous differentiation landscape (“differentiation islands”) across the genome 450 

(Burri et al., 2015; Ellegren et al., 2012). We observe similar results in Montezuma Quail populations (Fig. 4; Fig. 451 

S6) where many regions show highly significant values of FST even though global estimates seem biologically 452 

insignificant (Table 2). Some of these high- FST windows no doubt represent statistical artefacts, but many of these 453 

highly differentiated regions contain functional genes (Fig. 4) that could impact various fitness traits (Table S5) and 454 

could be signatures of local adaptation (Willoughby et al., 2018). This idea is bolstered by our global estimates of 455 

genic differentiation and the PBS results which suggest that coding genes are more rapidly diverging than the 456 

genome overall (Fig. S8, Table 2). These signatures of adaptation analyses suggest that local adaptation could 457 

constrain genetic rescue due to the possible reduction in fitness of interpopulation hybrids (Bell et al., 2019; 458 

Whiteley, Fitzpatrick, Funk, & Tallmon, 2015). On the other hand, such analyses have the potential to identify 459 

source populations that have adaptive genetic signatures most similar to the recipient population (e.g., Fig. S8) and 460 

thus the greatest likelihood of success from a long-term, evolutionary perspective. 461 

 462 

The adaptive potential of small populations 463 

 Understanding the adaptive response of a species to future environmental changes is a high priority for 464 

conservation (Holderegger et al., 2019) as this response impacts the long-term probability of persistence (Hedrick et 465 
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al., 2019), but such an assessment is not straightforward. Genetic erosion is expected to affect adaptive potential by 466 

either reducing the overall standing variation in adaptive regions or by the accumulation of deleterious mutations 467 

(Lynch et al., 1995; Ohta, 1992). We evaluated these two detractors of adaptive capacity by considering variation 468 

contained exclusively in genic regions and assessing their possible phenotypic impact. Montezuma Quail have over 469 

17,000 genes and our results show that the nucleotide diversity in genic regions is lower relative to the whole 470 

genomic background (Table 1). This is not entirely unexpected as most genes are highly conserved and most 471 

mutations arising at these genes will be deleterious and subject to negative purifying selection (Rettelbach et al., 472 

2019). Despite reduced nucleotide diversity in genic regions, we observed higher levels of genic heterozygosity in 473 

Montezuma Quail genes as compared to the entire genome (Fig. 3A). These results illustrate that populations can 474 

maintain genic diversity, perhaps due to overdominance (e.g. Schou, Loeschcke, Bechsgaard, Schlötterer, and 475 

Kristensen (2017), episodic diversifying selection on key fitness genes (Antonides, Mathur, & DeWoody, 2019; 476 

Antonides, Mathur, Sundaram, Ricklefs, & DeWoody, 2019), and/or viability selection (Doyle et al., 2019). The 477 

exact process or processes maintaining heterozygosity in genic regions is not clear, but the resulting pattern is 478 

consistent with the myriad studies that have shown heterozygosity-fitness correlations in a wide variety of 479 

eukaryotes (Mitton, 1997). 480 

 The proportion of deleterious mutations present in the genic regions should reflect the potential genetic 481 

load (Charlesworth et al., 1993; Ellegren & Sheldon, 2008; Hedrick & Garcia-Dorado, 2016).  Our results show 482 

Arizona quail carry more high impact deleterious variants as compared to Texas quail and this difference tends to 483 

diminish with variant impact (Fig. 6B). Most of the genic variants are non-coding (Fig. 6A) and thus do not impact 484 

amino acid sequences but could impact expression levels (Harder, Willoughby, Ardren, & Christie, 2020). Recent 485 

population genomics studies have shown via simulations (Coop et al., 2015) and empirical data (ÁVila, Amador, & 486 

GarcÍA-Dorado, 2010; Do et al., 2015; Rettelbach et al., 2019) that most deleterious genic variants are eventually 487 

culled by purifying selection but that small effect recessive mutations can persist in large populations (Grossen, 488 

Guillaume, Keller, & Croll, 2020).  489 

 490 

Conservation considerations 491 
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 Our results indicate that Montezuma quail populations in the U.S. exhibit low genomic diversity 492 

comparable to a number of threatened and endangered species ((Brüniche-Olsen et al., 2019; de Villemereuil et al., 493 

2019; Zhan et al., 2013); Fig. 3B). Our genomic diversity estimates are consistent with predictions for small 494 

declining populations, and we argue that our estimates of genic diversity better reflect the evolutionary potential of 495 

the species. This study adds to the growing body of literature urging conservation organizations like IUCN to add 496 

genetic diversity estimates as a consideration in the listing process (Allendorf, Hohenlohe, & Luikart, 2010; 497 

Brüniche-Olsen, Kellner, Anderson, & DeWoody, 2018; Ralls et al., 2018; Willoughby et al., 2015)).  498 

 Theory suggests that deleterious mutations should be more abundant in small populations and empirical 499 

data support this prediction for species like wooly mammoths (Barsh et al., 2017) and Iberian lynx (Abascal et al., 500 

2016), with critically low population sizes and ineffective purifying selection. However, most of the species that are 501 

declining due to recent anthropogenic activities have maintained relatively large Ne with previous cycles of 502 

bottlenecks and re-expansions, as in Montezuma Quail (Fig. 5B) and other birds (Nadachowska-Brzyska et al., 503 

2015). This study and another quantifying levels of genetic load across 42 mammalian species (van der Valk, de 504 

Manuel, Marques-Bonet, & Guschanski, 2019) suggest that smaller populations have significantly lower proportions 505 

of deleterious mutations whereas larger, more genetically diverse populations carry a higher burden of deleterious 506 

mutations that contribute to genetic load. Our data indicate that large populations harbor a larger proportion of high 507 

and low impact deleterious mutations in their genomes, but these variants are (on average) maintained at lower 508 

frequencies and merely represent potential genetic load. In contrast, the realized genetic load impacts individual 509 

fitness when these detrimental variants are homogenized due to inbreeding and/or drift. This pattern exists in part 510 

because purifying selection against partially recessive deleterious recessive alleles is relaxed in large populations 511 

where higher heterozygosity hides these alleles from selection. Thus, our genomic data illustrate and quantify the 512 

incidence of potential genetic load in large populations (Arizona) relative to the realized genetic load in small, 513 

inbred populations like Texas. 514 

 515 

 516 

Conclusions 517 
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 We analyzed whole genome sequences from different populations of Montezuma Quail in the U.S and 518 

compared the relative impact of genetic erosion between populations of various sizes. Our results indicate that 519 

Montezuma Quail populations in the U.S. have mean genome-wide heterozygosity comparable to other avian taxa of 520 

conservation concern. We found that random drift due to isolation and higher inbreeding are the major driving force 521 

behind these observed patterns of reduced genomic diversity. Most interestingly, our results reveal how small 522 

populations are able to maintain adaptive potential by exhibiting higher genic heterozygosity despite a reduction in 523 

overall genomic diversity. We find that larger populations carry a larger proportion of deleterious mutations 524 

(potential genetic load) than small populations where recessive deleterious alleles are exposed to selection due to 525 

inbreeding (realized genetic load). We think these data will be useful to those interested in the conservation of 526 

Montezuma Quail, and that they illustrate the power of population genomics in evaluating adaptive potential in light 527 

of fragmented landscapes and rapid environmental change. 528 
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Table 1: Summary statistics for sequence coverage, inbreeding coefficients (F), per-site Watterson’s theta (qw), heterozygosity (H) and effective population 860 
sizes (NE) for Montezuma quail populations analyzed in this study. The diversity indices were calculated for either the whole genome or just the genic 861 
regions. NE was calculated using an estimated genomic mutation rate of 3.14x10-9 with 95% CI calculated using standard error in qw estimates. Sequence 862 
depth is measured in fold-coverage and breadth is measured as percentage of Montezuma quail assembly mapped by the reads. 863 
 864 

 
 

N 
Sequence 
depth (X) 

(mean ± SD) 

Sequence 
breadth (%) 
(mean ± SD) 

F 
(mean ± SD) 

Whole genome Genic regions 
NE  

(95% CI) qW 

 
H 

 
qW 

 
H 

 

Arizona 52 2.14 ± 0.78 69.45 ± 14.51 0.05 ± 0.08 5.37x10-4 0.0020 4.89 x 10-4 0.0044 42,795  
(42,764 - 42,825) 

Texas 15 1.45 ± 1.82 42.69 ± 30.17 0.33 ± 0.28 4.05x10-4 0.0008 3.68 x 10-4 0.0027 32,208  
(32,182 - 32,234) 

New 
Mexico 7 3.48 ± 1.78 84.16 ± 11.51 0.07 ± 0.08 5.57x10-4 0.0011 3.49 x 10-4 0.0023 

36,417  
(36,390 - 36,446) 

 865 
 866 
 867 
 868 
Table 2: Estimates of global FST between the different population pairs measured for either the whole genome or just the genic regions. 95% CI was 869 
calculated using standard error in FST estimates by 100 bootstraps of 2D-SFS for each population pair. 870 
 871 

Population Pair Mean Global FST (95% CI) 
Whole genome Genic regions 

Arizona - Texas 0.1287 (0.1286 - 0.12878) 0.2452 (0.2449 – 0.2455) 
Texas - New Mexico 0.0962 (0.0961 - 0.0962) 0.1984 (0.1979 – 0.1986) 

Arizona - New Mexico 0.0972 (0.0972 - 0.0973) 0.1926 (0.1925 – 0.1928) 
872 
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Figure 1: Montezuma Quail species range and sampling sites (from Mathur et al. 2019). Samples (N=60) were 873 
collected from the larger and most contiguous Arizona sites, from an intermediate-sized population in New Mexico 874 
(N=13 samples), and from a relatively isolated and small population in Texas (N=15 samples). 875 
 876 
Figure 2: Inbreeding and population structure of Montezuma Quail. Samples analyzed in this study were mostly 877 
unrelated based on (A) kinship analysis. (B) Mean individual inbreeding co-efficient (F) was significantly higher in 878 
the Texas population with no significant difference between Arizona and New Mexico populations. Results from 879 
both (C) admixture and (D) PCA analysis clearly demarcate samples from the three collecting sites into independent 880 
genetic clusters. However, likelihood estimates indicate that most likely number of ancestral populations was K=4 881 
(indicated with asterisk), where Arizona was divided into two subpopulations. 882 
 883 
Figure 3:  Estimated levels of heterozygosity in Montezuma quail. (A) Genic heterozygosity is higher than genome-884 
wide heterozygosity in all three populations sampled. (B) Comparison of genome-wide heterozygosity with other 885 
birds indicates that smaller Montezuma Quail populations in Texas and New Mexico have genomic diversity 886 
comparable to vulnerable species (Brüniche-Olsen et al., 2019; de Villemereuil et al., 2019; Li et al., 2014). 887 
Heterozygosity was measured as the proportion of heterozygous genotypes in the whole genome. 888 
 889 
Figure 4: Z-transformed FST estimates for comparisons made between Arizona and Texas Montezuma quail every 890 
100 kb window (50 kb steps). The reads were mapped to the chicken genome and the windows were arranged 891 
according to chicken autosomal (1-33) or sex (Z, W) chromosomes.  Scaffolds that were not part of the major 892 
chicken chromosomes were binned together as unplaced. We found many windows within each chromosome that 893 
had high (>5 SD) levels of differentiation and many of those windows contained genes with known function (red 894 
arrows). This shows that there is a very heterogeneous landscape of genetic differentiation within Montezuma quail 895 
genome and drift is most likely the evolutionary driver behind the observed patterns. 896 
 897 
Figure 5: (A) Population trends and (B) demographic histories of Montezuma quail. Population trends indicate that 898 
only Arizona populations seems to be expanding (Fu’s F < 0) whereas, both Texas and New Mexico populations are 899 
declining (Fu’s F > 0). Error bars indicate 95% CI around the estimate. Montezuma quail experienced a strong 900 
historic bottleneck during the last glacial maxima (LGM) followed by re-expansion.  901 
 902 
Figure 6: Larger populations have higher genetic load but smaller populations have higher inbreeding risks. (A) 903 
Schematic of eukaryotic gene structure and proportion of variants in different genic regions where the colors in each 904 
panel correspond to one another. Much of the genic variation exists outside the transcription unit. (B) Genetic load 905 
was estimated for each population as the proportion of deleterious mutations within annotated protein-coding genes. 906 
The Arizona samples had the highest proportions of high impact, moderate impact, and low impact variants 907 
consistent with their elevated level of genomic diversity (Fig. 3a). Note the difference in scales on y-axis. (C) Larger 908 
populations are more efficient at genetic purging via purifying selection. In all sized populations, the mean allele 909 
frequencies are smaller for deleterious mutations as compared to non-coding variants, but the small inbred Texas 910 
population has a higher frequency of negative impact variants than larger outbred Arizona or New Mexico 911 
populations. Error bars indicate 95% CI around the estimate. This pattern is likely because recessive deleterious 912 
alleles exist as heterozygotes in large populations and in homozygotes in small populations so that smaller 913 
populations have a higher risk of inbreeding depression despite having a smaller genetic load in terms of the 914 
proportion of compromised genes in the genome. 915 
 916 


