References
  1. Ouyang F, Antz M, Ernst S, Hachiya H, Mavrakis H, Deger FT, Schaumann A, Chun J, Falk P, Hennig D, Liu X, Bänsch D, Kuck KH. Recovered pulmonary vein conduction as a dominant factor for recurrent atrial-tachyarrhythmia after complete circular isolation of the pulmonary veins: lessons from double Lasso technique.Circulation 2005;111:127-135.
  2. Harvey M, Kim YN, Sousa J, el-Atassi R, Morady F, Calkins H, Langberg JJ. Impedance monitoring during radiofrequency catheter ablation in humans. Pacing Clin Electrophysiol 1992;15:22–27.
  3. Reichlin T, Knecht S, Lane C, Kühne M, Nof E, Chopra N, Tadros TM, Reddy VY, Schaer B, John RM, Osswald S, Stevenson WG, Sticherling C, Michaud GF. Initial impedance decrease as an indicator of good catheter contact: insights from radiofrequency ablation with force sensing catheters. Heart Rhythm 2014;11:194–201.
  4. Inaba O, Nagata Y, Sekigawa M, Miwa N, Yamaguchi J, Miyamoto T, Goya M, Hirao K. Impact of impedance decrease during radiofrequency current application for atrial fibrillation ablation on myocardial lesion and gap formation. J Arrhythm 2018;34: 247–253.
  5. Ikeda A, Nakagawa H, Lambert H, Shah DC, Fonck E, Yulzari A, Sharma T, Pitha JV, Lazzara R, Jackman WM. Relationship between catheter contact force and radiofrequency lesion size and incidence of steam pop in the beating canine heart: electrogram amplitude, impedance, and electrode temperature are poor predictors of electrode-tissue contact force and lesion. Circ Arrhythm Electrophysiol 2014;7:1174–1180.
  6. Sulkin MS, Laughner JI, Hilbert S, Kapa S, Kosiuk J, Younan P, Romero I, Shuros A, Hamann JJ, Hindricks G, Bollmann A. A novel measure of local impedance predicts catheter-tissue contact and lesion formation.Circ Arrhythm Electrophysiol 2018;4:e005831.
  7. Martin CA, Martin R, Gajendragadkar PR, Maury P, Takigawa M, Cheniti G, Frontera A, Kitamura T, Duchateau J, Vlachos K, Bourier F, Lam A, Lord S, Murray S, Shephard E, Pambrun T, Denis A, Derval N, Hocini M, Haissaguerre M, Jais P, Sacher F. First clinical use of novel ablation catheter incorporating local impedance data. J Cardiovasc Electrophysiol 2018;29:1197–1206
  8. Gunawardene M, Münkler P, Eickholt C, Akbulak RÖ, Jularic M, Klatt N, Hartmann J, Dinshaw L, Jungen C, Moser JM, Merbold L, Willems S, Meyer C. A novel assessment of local impedance during catheter ablation: initial experience in humans comparing local and generator measurements. Europace 2019;21:i34-i42.
  9. Masuda M, Fujita M, Iida O, Okamoto S, Ishihara T, Nanto K, Kanda T, Tsujimura T, Matsuda Y, Okuno S, Ohashi T, Tsuji A, Mano T. The identification of conduction gaps after pulmonary vein isolation using a new electroanatomic mapping system. Heart Rhythm2017;14:1606-1614.
  10. Dinerman JL, Berger RD, Calkins H. Temperature monitoring during radiofrequency ablation. J Cardiovasc Electrophysiol1996;7:163-173.
  11. Eick OJ, Bierbaum D. Tissue temperature-controlled radiofrequency ablation. Pacing Clin Electrophysiol 2003; 26:725-730.
12) Nath S, DiMarco JP, Haines DE. Basic aspects of radiofrequency catheter ablation. J Cardiovasc Electrophysiol 1994;10:863-76.
13) Nath S, Lynch C, Whayne JG, Haines DE. Cellular electrophysiological effects of hyperthermia on isolated guinea pig papillary muscle. Implications for catheter ablation. Circulation 1993; 88: 1826
14) Amorós-Figueras G, Jorge E, García-Sánchez T, Bragós R, Rosell-Ferrer J, Cinca J. Recognition of Fibrotic Infarct Density by the Pattern of Local Systolic-Diastolic Myocardial Electrical Impedance.Front Physiol 2016; 7:389.
Phlips T, Taghji P, El Haddad M, Wolf M, Knecht S, Vandekerckhove Y, Tavernier R, Duytschaever M. Improving procedural and one-year outcome after contact force-guided pulmonary vein isolation: the role of interlesion distance, ablation index, and contact force variability in the ’CLOSE’-protocol. Europace 2018;20:f419-f427.
16) Kanamori N, Kato T, Sakagami S, Saeki T, Kato C, Kawai K, Chikata A, Takashima SI, Murai H, Usui S, Furusho H, Kaneko S, Takamura M. Optimal lesion size index to prevent conduction gap during pulmonary vein isolation. J Cardiovasc Electrophysiol 2018;29:1616-1623. 17) Ho SY, Cabrera JA, Tran VH, Farre J, Anderson RH, Sanchez-Quintana D. Architecture of the pulmonary veins: Relevance to radiofrequency ablation. Heart 2001; 86: 265-270.