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1 Laboratoire des Mathématiques et leurs interactions ”MELILAB”. Abdelhafid
Boussouf University Centre, Mila 43000, Algeria

r.ahmedyahia@centre-univ-mila.dz

2 Laboratory of Analysis and Control of Differential Equations ”ACED”. Univ. 8 May
1945 Guelma, Algeria

benchaabane.abbes@univ-guelma.dz

Abstract

In this paper we consider a class of second-order impulsive stochastic functional differen-
tial equations driven simultaneously by a Rosenblatt process and standard Brownian motion
in a Hilbert space. We prove an existence and uniqueness result under non-Lipschitz con-
dition which is weaker than Lipschitz one and we establish some conditions ensuring the
controllability for the mild solution by means of the Banach fixed point principle. At the
end we provide a practical example in order to illustrate the viability of our result.
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1 Introduction

The concept of Controllability gains more attention in the past decade because of its various
applications in the field of applied mathematics. Controllability generally means that with the
help of set of admissible controls, it is possible to steer a dynamical control system from an
arbitrary initial state to an arbitrary final state. For basic concepts about the controllability,
reader may refer ([1], [2]).

The second order differential equations play a vital role in constructing the various math-
ematical and physical model problems. A useful tool for the study of second-order abstract
differential equations is the theory of strongly continuous cosine families of operators. Existence
and uniqueness of the solution of second-order nonlinear systems and controllability of these
systems in Banach spaces have been investigated extensively by many authors, we refer the
reader to ([3], [4], [5]).
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Recently, there has been a growing interest on the stochastic functional differential equations
driven by fractional Brownian motion (here after, fBm). The reader is referred to the works of
([6], [7], [8]). Also in general, it is Gaussian and the calculus for it is much easier than other
processes. However, in concrete situations where the Gaussianity is not plausible for the model,
one can employ the Rosenblatt process. The theory of Rosenblatt process has been developed
accordingly owing to its nice properties, namely self-similarity, stationarity of the increments,
long-range dependence, etc. (see [9], [10], [11]). On the other hand, the Rosenblatt processes
can also be an input in models where self-similarity is observed in empirical data which appears
to be non-Gaussian, one can refer the papers ([12], [13]). In [14], Kumar et al. established the
approximate controllability of certain non-autonomous second-order nonlinear differential prob-
lems with finite delay by utilizing Schauder’s fixed-point theorem. Sathiyaraj et al. [15] studied
the controllability of second-order nonlinear stochastic delay systems driven by the Rosenblatt
distributions in finite dimensional spaces. In [16], Lakhel and McKibben investigated the con-
trollability of certain class of non-autonomous impulsive neutral evolution stochastic functional
differential equations, with time varying delays, driven by a Rosenblatt process. Sakthivel et
al. [17] studied the existence of solutions for functional second-order non autonomous stochastic
differential equations driven by Rosenblatt process by using Krasnoselskii–Schaefer-type fixed
point theorem.

In this paper, we are interested in the second-order neutral stochastic differential equations
driven by Brownian motion (or Wiener process) and an independent Rosenblatt process of the
type {

d
(
x

′
(t)− h(t, x(t))

)
= Ax(t)dt+ f (t, x(t)) dt+ g(t, x(t)dw(t) + σ(t)dZH(t),

x(0) = x0, x
′
(0) = x00, t ∈ [0, T ]

(1)

where x(.) takes values in the separable Hilbert space X, A : D(A) ⊂ X → X is the infinitesimal
generator of a strongly continuous cosine family C(t) on X, Let QK be a positive, self adjoint and
trace class operator on K and let L2(K,X) be the space of all QK -Hilbert-Schmidt operators
acting between K and X equipped with the Hilbert-Schmidt norm ‖.‖L2 . w is a QK-Wiener
process on Hilbert space K. Let Q be a positive, self adjoint and trace class operator on Y
and let L0

2(Y,X) be the space of all Q -Hilbert-Schmidt operators acting between Y and X
equipped with the Hilbert-Schmidt norm ‖.‖L02 . ZH is a Q-Rosenblatt process on a Hilbert
space Y , the process w and ZH are independent and h, f, g and σ are given functions to be
specified later. Let (Ω,FT , P ) be the complete probability space with the natural filtration
{Ft | t ∈ [0, T ]} generated by random variables {ZH(s), w(s), s ∈ [0, T ]}, let x0 and x00 are
F0-measurable X-valued random variables independent of w and ZH .

We define the following classes of functions: let L2(Ω,FT , X) is the Hilbert space of all
FT -measurable, square integrable variables with values in X, LF2 ([0, T ], X) is the Hilbert space
of all square integrable and Ft-adapted processes with values in X, C ([0, T ],L2(Ω,FT , X)) is a
Banach space of continuous maps satisfying the condition supt∈[0,T ] E ‖x(t)‖2 <∞ and ∆T

2 is the
closed subspace of C ([0, T ],L2(Ω,FT , X)) consisting of measurable and Ft-adapted processes
x(t), then ∆T

2 is a Banach space with the norm defined by

‖x‖∆T
2

=
(

supt∈[0,T ] E ‖x(t)‖2
) 1

2
.
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Motivated by the above works this paper is concerned to prove the existence and uniqueness of
mild solution for system (1) under non-Lipschitz conditions, which is more general that Lipschitz
and linear growth see ([18], [19]). Further, controllability problem is discussed for system (1),
it should be mentioned that the existence and uniqueness of second-order neutral stochastic
differential equations driven by Wiener process and an independent Rosenblatt process under
non-Lipschitz conditions has not been investigated yet. The rest of this paper is organized as
follows, in section 2, we will introduced some notations, basic concepts, and basic results about
Rosenblatt process, Wiener integral with respect to it over Hilbert spaces. In section 3 and 4,
we will prove our main result. In Section 5, we give an example to illustrate the efficiency of the
obtained result.

2 Preliminaries

2.1 Cosine Family

Now let use recall some facts about cosine families of operators (see [20])

Definition 1 The strongly continuous cosine family {C(t)}t∈R is one parameter family {C(t)}t∈R ⊂
L(X,X) satisfying

1. C(0) = I,

2. C(t)x is continuous in t on R for each fixed point x ∈ X,

3. C(t+ s) + C(t− s) = 2C(t)C(s), for all t, s ∈ R

Definition 2 The strongly continuous sine family {S(t)}t∈R ⊂ L(X,X) associated with {C(t)}t∈R
is defined by

S(t)x =

∫ t

0
C(s)xds, t ∈ R, x ∈ X

Definition 3 The infinitesimal generator A : X → X of {C(t)}t∈R is given by

Ax =
d2

dt2
C(t)|t=0, for all x ∈ D(A),

with
D(A) =

{
x ∈ X : C(.)x ∈ C2(R, X)

}
The infinitesimal generator A is a closed and densely defined operator on X.

Proposition 1 Suppose that A is the infinitesimal generator of cosine family {C(t)}t∈R with
corresponding sine family {S(t)}t∈R. Then, it holds:

1. There exist a constants MA ≥ 1 and λ ≥ 0 such that

‖C(t)‖ ≤MAe
λ|t| and hence ‖S(t)‖ ≤MAe

λ|t|

3



2. For any x ∈ X and all 0 ≤ s ≤ r <∞,∫ r

s
S(t)xdt ∈ D(A) and A

∫ r

s
S(t)xdt = [C(r)− C(s)]x

3. There exist a constants β ≥ 1 such that, for all 0 ≤ s ≤ r <∞

‖S(r)− S(s)‖ ≤ β
∣∣∣∣∫ r

s
e
λ|θ|
dθ

∣∣∣∣
Remark 1 The uniform boundedness principle, with Proposition (1), implies that both {Ct}t∈[0,T ]

and {S(t)}t∈[0,T ] are uniformly bounded, i.e., there exist positive constant M = MAe
λ|T | such

that
‖C(t)‖ ≤M and ‖S(t)‖ ≤M (2)

2.2 Rosenblatt process

Consider a time interval [0, T ] with arbitrary fixed horizon T and let {ZH(t), t ∈ [0, T ]} the
one-dimensional Rosenblatt process with parameter H ∈ (1

2 , 1). By Tudor [21], it is well known
that ZH has the following integral representation:

ZH(t) = d(H)

∫ t

0

∫ t

0

[∫ t

y1∨y2

∂KH
′

∂u
(u, y1)

∂KH
′

∂u
(u, y2)du

]
dB(y1)dB(y2), (3)

where {
B = {B(t) : t ∈ [0, T ]} is a Wiener process, H

′
= H+1

2 ,

d(H) = 1
H+1

√
H

2(2H−1) is a normalizing constant

and KH(t, s) is the kernel given by{
KH(t, s) = cHs

1/2−H ∫ t
s (u− s)H−3/2uH−1/2du, for t > s

KH(t, s) = 0, for t ≤ s

where cH =
√

H(2H−1)
B(2−2H,H−1/2) and B(., .) denotes the Beta function. The covariance of the

Rosenblatt process {ZH(t), t ∈ [0, T ]} satisfies

RH(s, t) := E(ZH(t)ZH(s)) =
1

2
(t2H + s2H − |t− s|2H), for every s, t ≥ 0

Let X and Y be two real, separable Hilbert spaces. Let Q ∈ L2(Y,X) be an operator defined by
Qen = λnen with finite trace trQ =

∑∞
n=1 λn <∞, where λn ≥ 0 (n = 1, 2...) are non-negative

real numbers and {en} (n = 1, 2...) is a complete orthonormal basis in Y . We define the infinite
dimensional Q-Rosenblatt process on Y as

ZH(t) = ZQ(t) =
∞∑
n=1

√
λnenzn(t). (4)
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where (zn)n≥0 is a family of real independent Rosenblatt process. Note that the series (4) is

convergent in L2(Ω) for every t ∈ [0, T ], since

E |ZQ(t)|2 =

∞∑
n=1

λnE (zn(t))2 = t2H
∞∑
n=1

λn <∞

Note also that ZQ has covariance function in the sense that

E 〈ZQ(t), x〉 〈ZQ(s), y〉 = R(s, t) 〈Q(x), y〉 , for all x, y ∈ Y and t, s ∈ [0, T ]

In order to define Wiener integrals with respect to the Q-Rosenblatt process. Let φ(s) : s ∈
[0, T ] be a function with values in L0

2(Y,X), such that

∞∑
n=1

∥∥∥K∗φQ1/2en

∥∥∥2

L02
<∞.

The Wiener integral with respect to ZQ is defined by∫ t

0
φ(s)dZQ(s) =

∞∑
n=1

∫ t

0

√
λnφ(s)endzn(s)

=
∞∑
n=1

∫ t

0

∫ t

0
K∗H (φen) (y1, y2)dB(y1)dB(y2) (5)

Now, we end this subsection by stating the following fundamental inequality which was proved
in [22].

Lemma 1 If φ : [0, T ] → L0
2(Y,X) satisfies

∫ T
0 ‖φ(s)‖2L02 ds < ∞, then the above sum in (5) is

well defined as a X-valued random variable and we have

E

∥∥∥∥∫ t

0
φ(s)dZH(s)

∥∥∥∥2

≤ 2Ht2H−1

∫ t

0
‖φ(s)‖2L02 ds

3 Existence and uniqueness of mild solution

In this section, we study the existence and uniqueness of mild solution for (1). To do this, we
first present the definition of mild solutions for the system (1).

Definition 4 A stochastic process x ∈ ∆T
2 is a mild solution of (1) if it satisfies the following

integral equation

x(t) = C(t)x0 + S(t)(x00 − h(0, x0)) +

∫ t

0
C(t− s)h(s, x(s))ds

+

∫ t

0
S(t− s)f(s, x(s)ds+

∫ t

0
S(t− s)g(s, x(s))dw(s)

+

∫ t

0
S(t− s)σ(s)dZH(s), P − a.s.
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We assume the following non-Lipschitz condition:

(H1) A is the infinitesimal generator of the strongly continuous cosine family {C(t)}t≥0 on X.

(H2) The function σ : [0, T ]→ L0
2(Y,X) is bounded, that is : there exists a positive constant L

such ‖σ(t)‖2L02 ≤ L, uniformly in t ∈ [0, T ].

(H3) The functions h, f : [0, T ] ×X → X, g : [0, T ] ×X → L2 are measurable and continuous
in x for each fixed t ∈ [0, T ] and there exists a function G : [0, T ] × [0,+∞) → [0,+∞),
(t, v)→ G(t, v) such that

E ‖h(t, x)‖2 + E ‖f(t, x)‖2 + E ‖g(t, x)‖2L2 ≤ G(t,E ‖x‖2) (6)

for all t ∈ [0, T ] and all x ∈ L2(Ω,FT , X).

(H4) G(t, v) is locally integrable in t for each fixed v ∈ [0,+∞) and is continuous non-decreasing
in v for each fixed t ∈ [0, T ] and for all λ > 0, v0 ≥ 0 the integral equation v(t) =
v0 + λ

∫ t
0 G(s, v(s))ds has a global solution on [0, T ] .

(H5) There exists a function K : [0, T ]× [0,+∞)→ [0,+∞) such that

E ‖h(t, x)− h(t, y)‖2 + E ‖f(t, x)− f(t, y)‖2 ≤ K(t,E ‖x− y‖2)

E ‖g(t, x)− g(t, y)‖2L2 ≤ K(t,E ‖x− y‖2)
(7)

for all t ∈ [0, T ] and all x, y ∈ L2(Ω,FT , X),

(H6) K(t, v) is locally integrable in t for each fixed v ∈ [0,+∞) and continuous non-decreasing
in v for each fixed t ∈ [0, T ]. Moreover, K(t, 0) = 0 and If a non-negative continuous
function z(t), t ∈ [0, T ] satisfies{

z(t) ≤ σ
∫ t

0 K(s, z(s))ds, t ∈ [0, T ]
z(0) = 0

(8)

for some σ > 0, then z(t) = 0 for all t ∈ [0, T ] .

Remark 2 1. If the function K is concave with respect to the second variable for each fixed
t ≥ 0 and

‖h(t, x)− h(t, y)‖2 + ‖f(t, x)− f(t, y)‖2 + ‖g(t, x)− g(t, y)‖2L0
2
≤ K(t, ‖x− y‖2),

for.all x, y ∈ X and t ≥ 0. By Jensen’s inequality, (7) is satisfied.

2. Let K(t, v) = η(t)ϑ(v), t ≥ 0, v ≥ 0 where η(t) ≥ 0 is locally integrable and ϑ :
[0,+∞) → [0,+∞) is a continuous, monotone non-decreasing and concave function with
ϑ(0) = 0, ϑ(v) > 0 for v > 0 and

∫
0+ 1/ϑ(u)du = ∞. Then the function K(t, v) satisfies

assumption (H6).
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Now let us give some concrete examples of the function ϑ, let ε > 0 be sufficiently small,
define

ϑ1(u) =

{
u log(u−1), 0 ≤ u ≤ ε
ε log(ε−1) + ϑ

′
1(ε−)(u− ε), u > ε

ϑ2(u) =

{
u log(u−1) log log(u−1), 0 ≤ u ≤ ε
ε log(ε−1) log log(ε−1) + ϑ

′
2(ε−)(u− ε), u > ε

(9)

Theorem 1 Assume that the conditions (H1)-(H6) hold, then there exists a unique solution of
(1) in ∆T

2 .

The proof of this theorem is based on the Picard type approximate method. Let us construct
a sequence of stochastic process {xn}n≥0 as follows:

x0(t) = C(t)x0 + S(t)(x00 − h(0, x0))

xn+1(t) = C(t)x0 + S(t)(x00 − h(0, x0)) +
∫ t

0 C(t− s)h(s, xn(s))ds

+
∫ t

0 S(t− s)f(s, xn(s))ds+
∫ t

0 S(t− s)g(s, xn(s))dw(s)

+
∫ t

0 S(t− s)σ(s)dZH(s)

Lemma 2 Under the conditions (H1)-(H5) the sequence {xn}n≥0 is uniformly bounded in ∆T
2 ,

i.e., E
[
sups∈[0,T ] ‖xn(s)‖2

]
≤ C, where C is a constant.

Proof We have

E ‖xn+1(t)‖2 ≤ 6E ‖C(t)x0‖2 + 6E ‖S(t)(x00 − h(0, x0))‖2

+6E

∥∥∥∥∫ t

0
C(t− s)h(s, xn(s))ds

∥∥∥∥2

+ 6E

∥∥∥∥∫ t

0
S(t− s)f(s, xn(s))ds

∥∥∥∥2

+6E

∥∥∥∥∫ t

0
S(t− s)g(s, xn(s))dw(s)

∥∥∥∥2

+ 6E

∥∥∥∥∫ t

0
S(t− s)σ(s)dZH(s)

∥∥∥∥2

By property (2), Holder inequality and Ito isometry theorem, we have

E ‖xn+1(t)‖2 ≤ 6M2E ‖x0‖2 + 12M2(E ‖x00‖2 + E ‖h(0, x0)‖2)

+6M2TE

∫ t

0

(
E ‖h(s, xn(s))‖2 + E ‖f(s, xn(s))‖2

)
ds

+6M2

∫ t

0
E ‖g(s, xn(s))‖2L2 ds+ 12M2HT 2H−1

∫ t

0
E ‖σ(s)‖2L02 ds

Then, from (H1)-(H5), we obtain

E ‖xn+1(t)‖2 ≤ 6M2E ‖x0‖2 + 12M2E ‖x00‖2 + 12M2G
(

0,E ‖x0‖2
)

+6M2T 2 (Ch + Cf )

∫ t

0
G
(
s,E ‖xn(s)‖2

)
ds+ 6M2TCg

∫ t

0
G
(
s,E ‖xn(s)‖2

)
ds

+12M2HT 2H−1TL

≤ C1 + C2

∫ t

0
G
(
s,E ‖xn(s)‖2

)
ds
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Hence, we get

E

[
sup
s∈[0,t]

‖xn+1(s)‖2
]
≤ C1 + C2

∫ t

0
G

(
s,E

[
sup
r∈[0,s]

‖xn(r)‖2
])

ds (10)

where {
C1 = 6M2

(
E ‖x0‖2 + 2E ‖x00‖2 + 2G

(
0,E ‖x0‖2

)
+ 2HT 2H−1TL

)
C2 = 6M2T (T (Ch + Cf ) + Cg)

Therefore, from (H4) and inequality (10), there is a v(t), t ∈ [0, T ] satisfying

v(t) = C1 + C2

∫ t

0
G(s, v(s))ds

We shall show, by induction, for n = 0, 1, 2, ...

E

[
sup
s∈[0,t]

‖xn(s)‖2
]
≤ v(t), ∀t ∈ [0, T ] (11)

By using the induction argument

E

[
sup
s∈[0,t]

‖x0(s)‖2
]

= E

[
sup
s∈[0,t]

‖C(s)x0 + S(s)(x00 − h(0, x0))‖2
]

≤ M2
(
E ‖x0‖2 + 2E ‖x00‖2 + 2G

(
0,E ‖x0‖2

))
≤ C1 ≤ v(t), ∀t ∈ [0, T ].

Let use assume that (11) is true for some n ∈ N, then by (10), the assumption of the mathe-
matical induction and the non-decreasing property of G in v, we have

v(t)−E

[
sup
s∈[0,t]

‖xn(s)‖2
]
≥ C2

∫ t

0

(
G (s, v(s))−G

(
s,E

[
sup
r∈[0,s]

‖xn(r)‖2
]))

ds ≥ 0, ∀t ∈ [0, T ]

By induction, we obtain for any n ∈ N,

E

[
sup
s∈[0,t]

‖xn(s)‖2
]
≤ v(t) ≤ v(T ) <∞
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Proof [Theorem 1] Step 1: Existence: By an argument similar to that in Lemma 2, we have

E ‖xn+m(t)− xn(t)‖2 ≤ 3E

∥∥∥∥∫ t

0
C(t− s) (h(s, xn+m−1(s))− h(s, xn−1(s))) ds

∥∥∥∥2

+3E

∥∥∥∥∫ t

0
S(t− s) (f(s, xn+m−1(s))− f(s, xn−1(s))) ds

∥∥∥∥2

+3E

∥∥∥∥∫ t

0
S(t− s) (f(s, xn+m−1(s))− f(s, xn−1(s))) dw(s)

∥∥∥∥2

≤ 2TMCh

∫ t

0
E ‖h(s, xn+m−1(s))− h(s, xn−1(s))‖2 ds

+2TMCf

∫ t

0
E ‖f(s, xn+m−1(s))− f(s, xn−1(s))‖2 ds

+2M

∫ t

0
E ‖g(s, xn+m−1(s))− g(s, xn−1(s))‖2 ds

Thus, we obtain

E

[
sup
s∈[0,t]

‖xn+m(s)− xn(s)‖2
]
≤ C3

∫ t

0
K

(
s,E

[
sup
r∈[0,s]

‖xn+m−1(s)− xn−1(s)‖2
])

ds, (12)

where C3 = 2M (T (Ch + Cf ) + Cg) .
It follows from Lemma (2) that supn,m ‖xn+m−1 − xn−1‖2 <∞. Therefore, we can apply Fatou’s
Lemma to (12),

lim sup
n,m→∞

E

[
sup
s∈[0,t]

‖xn+m(s)− xn(s)‖2
]
≤ C3

∫ t

0
K

(
s, lim sup

n,m→∞
E

[
sup
r∈[0,s]

‖xn+m−1 − xn−1‖2
])

ds,

(13)
Set

z(t) := lim sup
n,m→∞

E

[
sup
s∈[0,t]

‖xn+m(s)− xn(s)‖2
]

Then the above inequality (13) can be rewritten as

z(t) ≤ C3

∫ t

0
K (s, z(s)) ds,

It is obvious that the positive functions z(t) is monotone non-decreasing.on [0, T ] with z(0) = 0
.Hence, from hypothesis (H6) and Barbu (Lemme2.2 [23]) we obtain

z(t) = lim sup
n,m→∞

E

[
sup
s∈[0,t]

‖xn+m(s)− xn(s)‖2
]

= 0, for all t ∈ [0, T ]

Thus we get

lim
n,m→∞

E

[
sup
s∈[0,t]

‖xn+m(s)− xn(s)‖2
]

= 0, for all t ∈ [0, T ]
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which implies that the sequence Since {xn}n≥0 is a Cauchy sequence in Banach space ∆T
2 .

Step 2 : Uniqueness. Assume that x1 and x2 ∈ ∆T
2 are mild solutions of (1). Analogously as

in the proof of (12), we obtain for any t ∈ [0, T ]

E

[
sup
s∈[0,t]

‖x1(s)− x2(s)‖2
]
≤ C3

∫ t

0
K

(
s,E

[
sup
r∈[0,s]

‖x1(s)− x2(s)‖2
])

ds, (14)

Due to hypothesis (H6) and Barbu (Lemme2.2 [23]) we get that E
[
sups∈[0,T ] ‖x1(s)− x2(s)‖2

]
=

0, i.e., x1 = x2.

4 Controllability result

In this section we state and prove the controllability for second-order neutral stochastic equation
driven by Brownian motion and an independent Rosenblatt process of the form{

d
(
x

′
(t)− h(t, x(t))

)
= Ax(t)dt+Bu(t)dt+ f (t, x(t)) dt+ g(t, x(t)dw(t) + σ(t)dZH(t),

x(0) = x0, x
′
(0) = x00, t ∈ [0, T ]

(15)
where h, f, g, σ, A are the same as in the Eq.(1), B : U → X is a given mapping and the
control function u takes values in Uad = L2([0, T ], U), the Hilbert space of admissible control
functions for separable Hilbert space U .

Definition 5 A stochastic process x ∈ ∆T
2 is a mild solution of (15) if for each u ∈ Uad it

satisfies the following integral equation

x(t) = C(t)x0 + S(t)(x00 − h(0, x0)) +

∫ t

0
C(t− s)h(s, x(s))ds

+

∫ t

0
S(t− s) (Bu(s) + f(s, x(s)) ds+

∫ t

0
S(t− s)g(s, x(s))dw(s)

+

∫ t

0
S(t− s)σ(s)dZH(s), P − a.s.

Definition 6 The system (15) is said to be controllable on the interval [0, T ], if for every initial
function x(0) = x0, x

′
(0) = x00 and desired final state x1 ∈ X, there exists a stochastic control

u ∈ Uad such that the mild solution of the system (15) corresponding to this control satisfies
x(T ) = x1.

The following are the additional assumptions in this section.

(H7) The function h, f : [0, T ]×X → X and g : [0, T ]×X → L2(K,X) satisfy the linear growth
and Lipschitz conditions, that there exist positive constants Ch, Cf and Cg such that for
x, y ∈ X and t ∈ [0, T ]

‖h(t, x)‖2 ≤ Ch(1 + ‖x‖2)

‖f(t, x)‖2 ≤ Cf (1 + ‖x‖2)

‖g(t, x)‖2L2 ≤ Cg(1 + ‖x‖2)

,

‖h(t, x)− h(t, y)‖2 ≤ Ch ‖x− y‖2

‖f(t, x)− f(t, y)‖2 ≤ Cf ‖x− y‖2

‖g(t, x)− g(t, y)‖2L2 ≤ Cg ‖x− y‖
2

10



(H8) The linear operator Γ : L2([0, T ], U)→L2(Ω,FT , X), is defined by

Γu =

∫ T

0
S(T − s)Bu(s)ds

has a bounded invertible operator Γ−1 which takes values in L2([0, T ], U)/ ker Γ and there

exist positive constants MB, MΓ such that ‖B‖2 ≤MB and
∥∥Γ−1

∥∥2 ≤MΓ.

Now, we describe the controllability result as follows and give its proof.

Theorem 2 Under assumptions (H1)-(H2) and (H7)-(H8), the system (15) is controllable on
[0, T ].

Proof Using the hypothesis (H8), for an arbitrary xT ∈ L2(Ω,FT , X), we define the stochastic
control

ux(t) = Γ−1

{
xT − C(T )x0 − S(T )(x00 − h(0, x0))−

∫ T

0
C(T − s)h(s, x(s))ds

−
∫ T

0
S(T − s)f(s, x(s))ds−

∫ T

0
S(T − s)g(s, x(s))dw(s) (16)

−
∫ T

0
S(T − s)σ(s)dZH(s)

}
(t)

Define the operator Ψ : ∆T
2 → ∆T

2 by

(Ψx)(t) = C(t)x0 + S(t)(x00 − h(0, x0)) +

∫ t

0
C(t− s)h(s, x(s))ds∫ t

0
S(t− s) (Bux(s) + f(s, x(s))) ds+

∫ t

0
S(t− s)g(s, x(s))dw(s) (17)

+

∫ t

0
S(t− s)σ(s)dZH(s)

Now, we show that the operator Ψ has a fixed point in ∆T
2 which is a mild solution of the

system (15). Substituting (16) in (17) we find that (Ψx)(T ) = xT , indicating that the control
ux steers the system from x0 to xT in finite time T, which further implies that the system (15)
is controllable. We divide the proof into three steps.
Step 1: For any x ∈ ∆T

2 , (Ψx)(t) is continuous on the interval [0, T ] in L2-sense

11



Let 0 ≤ t1 ≤ t2 ≤ T. Then for any fixed x ∈ ∆T
2

E ‖(Ψx)(t2)− (Ψx)(t1)‖2 ≤ 5E ‖(C(t2)− C(t1))x0 + (S(t2)− S(t1)) (x00 − h(0, x0))‖2

+5E

∥∥∥∥∫ t2

0
[C(t2 − s)h(s, x(s)) + S(t2 − s)f(s, x(s))] ds

−
∫ t1

0
[C(t1 − s)h(s, x(s)) + S(t1 − s)f(s, x(s))] ds

∥∥∥∥2

+5E

∥∥∥∥∫ t2

0
S(t2 − s)f(s, x(s))dw(s)−

∫ t1

0
S(t1 − s)g(s, x(s))dw(s)

∥∥∥∥2

+5E

∥∥∥∥∫ t2

0
S(t2 − s)σ(s)dZH(s)−

∫ t1

0
S(t1 − s)σ(s)dZH(s)

∥∥∥∥2

+5E

∥∥∥∥∫ t2

0
S(t2 − s)Bux(s)ds−

∫ t1

0
S(t1 − s)Bux(s)ds

∥∥∥∥2

= 5
∑

1≤i=5

E ‖Di‖2

By the strong continuity of C(t) and S(t), we have

lim
t2−t1→0

(C(t2)− C(t1))x0 + (S(t2)− S(t1)) (x00 − h(0, x0)) = 0

From property (2), we have

‖(C(t2)− C(t1))x0 + (S(t2)− S(t1)) (x00 − h(0, x0))‖ ≤ 2M ‖x0‖+ 2M ‖x00 − h(0, x0)‖

Thus we conclude by the Lebesgue’s dominated convergence theorem that

lim
t2−t1→0

E ‖D1‖2 = 0

For the second term D2, we have

‖D2‖ ≤
∥∥∥∥∫ t1

0
[(C(t2 − s)− C(t1 − s))h(s, x(s)) + (S(t2 − s)− S(t1 − s)) f(s, x(s))] ds

∥∥∥∥
+

∥∥∥∥∫ t2

t1

[C(t2 − s)h(s, x(s)) + S(t2 − s)f(s, x(s))] ds

∥∥∥∥
≤ D21 +D22

By the Holder inequality

E ‖D21‖2 ≤ t1E
∫ t1

0
‖(C(t2 − s)− C(t1 − s))h(s, x(s)) + (S(t2 − s)− S(t1 − s)) f(s, x(s))‖2 ds

By the strong continuity of C(t) and S(t), we have

lim
t2−t1→0

(C(t2 − s)− C(t1 − s))h(s, x(s)) + (S(t2 − s)− S(t1 − s)) f(s, x(s)) = 0

12



By using property (2) and conditions (H7), we obtain

‖(C(t2 − s)− C(t1 − s))h(s, x(s)) + (S(t2 − s)− S(t1 − s)) f(s, x(s))‖
≤ 2M (‖h(s, x(s))‖+ ‖f(s, x(s))‖)

Then we conclude by the Lebesgue’s dominated convergence theorem that

lim
t2−t1→0

E ‖D21‖2 = 0

By property (2), condition (H7) and the Holder inequality, we get

E ‖D22‖2 ≤ 2M2(t2 − t1)

∫ t2

t1

E
(
‖h(s, x(s))‖2 + ‖f(s, x(s))‖2

)
ds

≤ 2M2(Ch + Cf )(t2 − t1)

∫ T

0

(
E ‖x(s)‖2 + 1

)
ds

Thus,
lim

t2−t1→0
E ‖D22‖2 = 0

Now, for the term D3, we have

‖D3‖ ≤
∥∥∥∥∫ t1

0
(S(t2 − s)− S(t1 − s)) g(s, x(s))dw(s)

∥∥∥∥+

∥∥∥∥∫ t2

t1

S(t2 − s)g(s, x(s))dw(s)

∥∥∥∥
≤ ‖D31‖+ ‖D32‖

By Ito isometry theorem, we have

‖D31‖ ≤
∥∥∥∥∫ t1

0
(S(t2 − s)− S(t1 − s)) g(s, x(s))dw(s)

∥∥∥∥2

≤
∫ t1

0
‖(S(t2 − s)− S(t1 − s)) g(s, x(s))‖2L2 ds

Since, by the strong continuity of S(t), we have

lim
t2−t1→0

‖(S(t2 − s)− S(t1 − s)) g(s, x(s))‖2L2 = 0

Moreover
‖(S(t2 − s)− S(t1 − s)) g(s, x(s))‖2L2 ≤ 4M2 ‖g(s, x(s))‖2L2

Then we conclude by the Lebesgue’s dominated convergence theorem that

lim
t2−t1→0

E ‖D31‖2 = 0

For the second term D32, similarly one get

E ‖D32‖2 ≤ 2M2

∫ t2

t1

‖g(s, x(s))‖2L2 ds

13



thus,
lim

t2−t1→0
E ‖D32‖2 = 0

For D4, it is obvious that

‖D4‖ ≤
∥∥∥∥∫ t1

0
(S(t2 − s)− S(t1 − s))σ(s)dZH(s)

∥∥∥∥+

∥∥∥∥∫ t2

t1

S(t2 − s)σ(s)dZH(s)

∥∥∥∥
≤ ‖D41‖+ ‖D42‖

By Lemma (1), we have

‖D41‖2 ≤
∥∥∥∥∫ t1

0
(S(t2 − s)− S(t1 − s))σ(s)dZH(s)

∥∥∥∥2

≤ 2Ht2H−1
1

∫ t1

0
‖(S(t2 − s)− S(t1 − s))σ(s)‖2L02 ds

We have by the strong continuity of S(t)

lim
t2−t1→0

‖(S(t2 − s)− S(t1 − s))σ(s)‖2L02 = 0

Moreover
‖(S(t2 − s)− S(t1 − s))σ(s)‖2L02 ≤ 4M2 ‖σ(s)‖2L02

According to the Lebesgue’s dominated convergence theorem, we can obtain

lim
t2−t1→0

E ‖D41‖2 = 0

In a similar way, we obtain

E ‖D42‖2 ≤ 4M2H
(
t2H−1
2 − t2H−1

1

)∫ t2

t1

‖σ(s)‖2L02 ds

Thus,
lim

t2−t1→0
E ‖D42‖2 = 0

Using the Holder inequality, property (2), (H2), (H7) and (H8), we obtain

E ‖ux(t)‖2 ≤ 5MΓ

{
E ‖xT ‖2 +M2E

∥∥x2
0

∥∥+ 2M2(E ‖x00‖2 + E ‖h(0, x0)‖2)

+M2 (T (Ch + Cf ) + Cg) (1 + ‖x‖2∆T
2

) + 2M2HT 2H−1Lσ

}
(18)

≤ Mu(1 + ‖x‖2∆T
2

)

Next, observe that

E ‖D5‖2 ≤ 2E

∥∥∥∥∫ t1

0
(S(t2 − s)− S(t1 − s))Bux(s)ds

∥∥∥∥2

+ 2E

∥∥∥∥∫ t2

t1

S(t2 − s)Bux(s)ds

∥∥∥∥2

≤ 2
(
E ‖D51‖2 + E ‖D52‖2

)
14



Use the similar procedure as before, we obtain

E ‖D51‖2 ≤ t1
∫ t1

0
E ‖(S(t2 − s)− S(t1 − s))Bux(s)‖2 ds

Combing this with the strong continuity of S(t) and inequality (18), we obtain

lim
t2−t1→0

E ‖D51‖2 = 0

For the second term D42 similarly one get

E ‖D52‖2 ≤M2 ‖B‖2 (t2 − t1)

∫ t2

t1

E ‖ux(s)‖2 ds

We obtain
lim

t2−t1→0
E ‖D52‖2 = 0

The above argument show that limt2−t1→0 E ‖(Ψx)(t2)− (Ψx)(t1)‖2 = 0 Thus we conclude
(Ψx)(t) is continuous from the right in [0, T ). A similar reasoning show that it is also con-
tinuous from the left in (0, T ].
Step 2 : The operator Ψ sends ∆T

2 into itself.
Let x ∈ ∆T

2 , then we have

E ‖(Ψx)(t)‖2 ≤ 7E ‖C(t)x0‖2 + 7E ‖S(t)(x00 − h(0, x0))‖2

+7E

∥∥∥∥∫ t

0
C(t− s)h(s, x(s))ds

∥∥∥∥2

+ 7E

∥∥∥∥∫ t

0
S(t− s)f(s, x(s))ds

∥∥∥∥2

+7E

∥∥∥∥∫ t

0
S(t− s)g(s, x(s))dw(s)

∥∥∥∥2

+ 7E

∥∥∥∥∫ t

0
S(t− s)σ(s)dZH(s)

∥∥∥∥2

+7E

∥∥∥∥∫ t

0
S(t− s)Bux(s)ds

∥∥∥∥2

By Holder inequality, Ito isometry theorem and property (2), we have

E ‖(Ψx)(t)‖2 ≤ 7M2E ‖x0‖2 + 14M2(E ‖x00‖2 + E ‖h(0, x0)‖2)

+7M2TE

∫ t

0

(
E ‖h(s, x(s))‖2 + E ‖f(s, x(s))‖2

)
ds

+7M2

∫ t

0
E ‖g(s, x(s))‖2L2 ds+ 14M2HT 2H−1

∫ t

0
E ‖σ(s)‖2L02 ds

+7M2 ‖B‖2 T
∫ t

0
E ‖ux(s)‖2 ds
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Hence, from (H2) and (H7), combined with property (2) and inequality (18), we have

E ‖(Ψx)(t)‖2 ≤ 7M2E ‖x0‖2 + 14M2(E ‖x00‖2 + E ‖h(0, x0)‖2)

+7M2T 2 (Ch + Cf )
(

1 + ‖x‖2∆T
2

)
+ 7M2TCg

(
1 + ‖x‖2∆T

2

)
+14M2HT 2H−1TL+ 7M2 ‖B‖2 T 2Mu

(
1 + ‖x‖2∆T

2

)
≤ 7M2

(
E ‖x0‖2 + 2(E ‖x00‖2 + E ‖h(0, x0)‖2) + 2HT 2H−1TL

)
+7M2

(
‖B‖2 T 2 (Ch + Cf +Mu) + TCg

)(
1 + ‖x‖2∆T

2

)
= c1 + c2 ‖x‖2∆T

2

where c1 ≥ 0 and c2 ≥ 0 are suitable constants. Therefore, we obtain that ‖(Ψx)‖2∆T
2
< ∞.

Since (Ψx)(t) is continuous on [0, T ] and so Ψ maps ∆T
2 into itself.

Step 3 : Ψ is a contraction mapping in ∆T
2 . Let x, y ∈ ∆T

2 , then for any fixed t ∈ [0, T ] we have

E ‖(Ψx)(t)− (Ψy)(t)‖2 ≤ 4E

∥∥∥∥∫ t

0
S(t− s)B (ux(s)− uy(s)) ds

∥∥∥∥2

+4E

∥∥∥∥∫ t

0
C(t− s) (h(s, x(s))− h(s, y(s))) ds

∥∥∥∥2

+4E

∥∥∥∥∫ t

0
S(t− s) (f(s, x(s))− f(s, y(s))) ds

∥∥∥∥2

+4E

∥∥∥∥∫ t

0
S(t− s) (g(s, x(s))− g(s, y(s))) dw(s)

∥∥∥∥2

By property (2), combined with Hölder’s inequality and Ito isometry theorem, we get that

E ‖(Ψx)(t)− (Ψy)(t)‖2 ≤ 4M2 ‖B‖2 T
∫ t

0
E ‖ux(s)− uy(s)‖2 ds

+4M2T

∫ t

0
E ‖h(s, x(s))− h(s, y(s))‖2 ds

+4M2T

∫ t

0
E ‖f(s, x(s))− f(s, y(s))‖2 ds

+4M2

∫ t

0
E ‖g(s, x(s))− g(s, y(s))‖2L2 ds

From (H7), (H8) and property (2), combined with Hölder’s inequality and Ito isometry theorem,
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we have

E ‖ux(s)− uy(s)‖2 ≤ 3E

∥∥∥∥Γ−1

∫ T

0
C(T − s) [h(s, x(s))− h(s, y(s))] ds

∥∥∥∥2

+3E

∥∥∥∥Γ−1

∫ t

0
S(T − s) [f(s, x(s))− f(s, y(s))] ds

∥∥∥∥2

+3E

∥∥∥∥Γ−1

∫ t

0
S(T − s) [g(s, x(s))− g(s, y(s))] dw(s)

∥∥∥∥2

≤ 3MΓM
2T (Ch + Cf )

∫ t

0
E ‖x(s)− y(s)‖2 ds

+3MΓM
2Cg

∫ t

0
E ‖x(s)− y(s)‖2 ds

≤ 3MΓM
2 (T (Ch + Cf ) + Cg)

∫ t

0
E ‖x(s)− y(s)‖2 ds

= Mµ

∫ t

0
E ‖x(s)− y(s)‖2 ds

where Mµ = 3MΓM
2 (T (Ch + Cf ) + Cg) .

Therefore,

E ‖(Ψx)(t)− (Ψy)(t)‖2 ≤ 4M2T (Ch + Cf )

∫ t

0
E ‖x(s)− y(s)‖2 ds

+4M2Cg

∫ t

0
E ‖x(s)− y(s)‖2 ds

+4M2 ‖B‖2 T 2Mµ

∫ t

0
E ‖x(s)− y(s)‖2 ds

Hence, we obtain a positive real constant γ(T ) such that

E ‖(Ψx)(t)− (Ψy)(t)‖2 ≤ γ(T )

∫ t

0
E ‖x(s)− y(s)‖2 ds

where
γ(T ) = 4M2T

(
‖B‖2 TMµ + T (Ch + Cf ) + Cg

)
.

Moreover

E
∥∥(Ψ2x)(t)− (Ψ2y)(t)

∥∥2 ≤ γ(T )

∫ t

0
E ‖(Ψx)(s)− (Ψy)(s)‖2 ds

≤ γ(T )t

∫ t

0
γ(T )E ‖x(s)− y(s)‖2 ds

= (γ(T ))2 t

∫ t

0
E ‖x(s)− y(s)‖2 ds
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For any natural number n, using mathematical induction, one can get

E ‖(Ψnx)(t)− (Ψny)(t)‖2 ≤ γ(T )

∫ t

0
E
∥∥(Ψn−1x)(s)− (Ψn−1y)(s)

∥∥2
ds

≤ (tγ(T ))n

n!
‖x− y‖2∆t

2

Then taking the supremum over [0, T ],

‖(Ψnx)(t)− (Ψny)(t)‖2∆T
2
≤ (Tγ(T ))n

n!
‖x− y‖2∆T

2

For sufficiently large n we have (Tγ(T ))n

n! < 1. It follows that Ψn is a strict contraction mapping
on ∆T

2 , so that The Banach fixed point theorem ensure that Ψ has a unique fixed point, which
is a mild solution for (15). Which implies that the system (15) is controllable on [0, T ].

Remark 3 The theory of impulsive differential equations has found enormous applications in
the realistic mathematical modeling of a wide range of practical situations, many systems in
physics and biology exhibit impulsive dynamical behavior because of sudden jumps at certain
instants in the evolution process. A lot of dynamic systems have variable structures subjects
to stochastic abrupt changes resulting from abrupt phenomena. For some recent works on the
existence and controllability results of impulsive stochastic differential equations, we refer the
reader to monographs ([24], [25], [26], [27], [28]).In this remark we consider the following system

d
(
x

′
(t)− h(t, x(t))

)
= Ax(t)dt+Bu(t)dt+ f (t, x(t)) dt+ g(t, x(t)dw(t) + σ(t)dZH(t),

x(0) = x0, x
′
(0) = x00, t ∈ [0, T ], t 6= tk

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(t−k )), k = 1, 2, ...,m,
(19)

where h, f, g, σ, A, B are the same as in the Eq.(15), The fixed moments of times tk satisfies
0 = t0 < t1 < ... < tm < tm+1 = T , x(t+k ) and x(t−k ) represent the right and left limits of x(t) at
t = tk, ∆x(tk) = x(t+k )− x(t−k ) represents the jump in the state x at time tk, where Ik : X → X
determines the size of the jump. The mild solution of (19) is given by

x(t) = C(t)x0 + S(t)(x00 − h(0, x0)) +

∫ t

0
C(t− s)h(s, x(s))ds

+

∫ t

0
S(t− s) (Bu(s) + f(s, x(s)) ds+

∫ t

0
S(t− s)g(s, x(s))dw(s)

+

∫ t

0
S(t− s)σ(s)dZH(s), P − a.s.

If Ik satisfies Lipschitz and linear growth conditions, by adopting the method used in Theorem
(2) we prove the controllability of system (19) on [0, T ].
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5 Example

Consider the control system driven by the process w and ZH to illustrate the obtained theory

∂
[
∂x(t,z)
∂t − h1 (t, x(t, z))

]
= ∂2

∂z2
x(t, z)∂t+ (v(t, z) + f1 (t, x(t, z))) ∂t

+g1 (t, x(t, z)) dw(t) + σ(t)dZH , t ∈]0, T [, z ∈ [0, π]
x(0, z) = x0(z), z ∈ [0, π],
∂x(0,z)
∂t = x00(z), z ∈ [0, π],

x(t, 0) = x(t, π) = 0, t ∈ [0, T ] .

(20)

Let X = K = Y = U = L2[0, π] and x0, x00 ∈ L2[0, π]. Let A ⊂ D(A) : X → X be the linear
operator given by Ay = y

′′
, where

D(A) = {y ∈ X / y, y
′

are absolutely continuous y
′′ ∈ X, y(0) = y(π) = 0}.

w(t) denotes a one dimensional standard Brownian motion and ZH is a Rosenblatt, the process
w and ZH are independent. Suppose h1, f1, g1 : R+ × R→ R are continuous, satisfy Lipschitz
condition and linear growth condition and uniformly bounded.

First of all, note that there exists a complete orthonormal set {en}n≥1 of eigenvectors of A
with

en(z) =
√

(2/π) sinnz, 0 ≤ z ≤ π, n = 1, 2, .....

and the following properties hold

i) If y ∈ D(A), then

Ay = −
∞∑
n=1

n2 〈y, en〉 en(y), y ∈ D(A),

ii) The operator C(t) defined by

C(t)y =
∞∑
n=1

cos(nt) 〈y, en〉 en, y ∈ X

is the cosine family in X generated by (A,D(A)), and the associated sine family is given
by

S(t)y =

∞∑
n=1

sin(nt)

n
〈y, en〉 en, y ∈ X.

It is clear that C(.)x and S(.)x are periodic functions, and ‖C(t)‖ ≤ 1, ‖S(t)‖ ≤ 1, t ∈ R.

Now define the functions: h, f : [0, T ]×X → X, and g : [0, T ]×X → L2(K,X) as follows

h(t, x)(z) = h1(t, x(z)),
f(t, x)(z) = f1(t, x(z)),
g(t, x)(z) = g1(t, x(z))

for t ∈ [0, T ], x ∈ X and 0 < z < π. The function σ : [0, T ]→ L0
2(Y,X) is bounded.

19



Let B : U → X is a bounded linear operator defined by

Bu(t)(z) = v(t, z), 0 ≤ z ≤ π, u ∈ L2([0, T ], U)

The operator Γ : L2([0, T ], U)→ X given by

Γu =

∫ T

0
S(T − s)v(s, z)ds.

Γ is a bounded linear operator but not necessarily one-to-one.Let

ker(Γ) =
{
x ∈ L2([0, T ], U), Γx = 0

}
be the null space of Γ and [ker(Γ)]⊥ be its orthogonal complement in L2([0, T ], U). Let Γ̃ :
[ker(Γ)]⊥ → Range(Γ) be the restriction of Γ to [ker(Γ)]⊥, Γ̃ is necessarily one-to-one operator.
The inverse mapping theorem says that Γ̃−1 is bounded since [ker(Γ)]⊥ and Range(Γ) are Banach
spaces. So That Γ−1 is bounded and takes values in L2([0, T ], U)⊥ ker(Γ), hypothesis (H4) is
satisfied. Hence, all conditions of Theorem(2) are satisfied, and consequently system.(20) is
controllable on [0, T ].
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solutions to second order nonlinear differential equations with non-instantaneous impulses.
Journal of King Saud University-Science, 30(2):204–213, 2018.

[4] Xiaofeng Su and Xianlong Fu. Approximate controllability of second-order stochastic dif-
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