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 8 
Abstract 9 

In the present investigation temperature dependence fatigue strength behaviour of Inconel 10 

825 super alloys is investigated. Based on the experimental results different S-N models 11 

have been derived and suitable model for the prediction of fatigue strength have been 12 

proposed. An inverse power and exponential relation between fatigue strength and 13 

absolute temperature is demonstrated. The proposed models are used to predict the 14 

fatigue life using well known Palmgren-Miner rule. Based on high to low and low to high 15 

load steps test data sets under identical test conditions, Miner rule based statistical 16 

damage constant is stochastically modeled for fatigue life prediction at different level of 17 

probability and validated. The modeling process combines a probabilistic fatigue damage 18 

accumulation and a stress-life-temperature relation technique.  19 

Keywords: high cycle fatigue; S-N curve; variable amplitude loading; cumulative 20 

damage; probability  21 

Nomenclature 22 

ξ Probability level 23 

𝛂, 𝛃 Weibull probability distribution parameters 24 

r Correlation coefficient 25 

M   Bending moment  26 

D   Specimen diameter  27 
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𝜎0  Bending stress  28 

𝐾𝑓 Fatigue reduction factor   29 

𝑞 Notch sensitivity   30 

𝐾𝑡 Stress concentration factor 31 

  𝜎𝑎 Stress amplitude 32 

𝑁𝑓 Fatigue life 33 

n Fraction of fatigue life or number of cycles applied at stress level 𝜎 34 

1.0 Introduction 35 

The prediction of fatigue life under different loading condition is still an empirical art 36 

rather than a science. S-N curve approach first discovered by Wöhler in 1860 is still 37 

considered to be the most convenient approach by most of the designers in fatigue life 38 

prediction. Thereafter, different empirical models are frequently used by many 39 

researchers and designers for the fatigue life prediction. Among all such models Basquin 40 

model [1] is mostly preferred for modeling S-N data. Latter on various effects such as 41 

mean stress effect, notch, dimension, roughness, temperature, etc. on the  S-N curves of  42 

Wöhler nature have been studied and included. These can be seen in the review work of 43 

Suresh [2]. Bending fatigue tests have been a field of immense interest from past several 44 

years for constructing S-N curves and a lot of researchers are working in this area. A 45 

large majority of work on bending fatigue concerning low cycle to very high cycle fatigue 46 

tests at room to high temperature are seen in the literature due its adequately 47 

representative of service loading in various rotating components [3-9]. Though the fatigue 48 

loading during service life of any machine component is very uncertain and have a 49 

combination of constant and random nature of peaks and valleys, the constant and two 50 

step loading may be considered as a representative of several types of loading found 51 

during service life or can be simplified to step loading applying various techniques such 52 

as cycle counting techniques, rain flow counting method etc. discussed by researchers in 53 

the past. However, in the present work such techniques are not applied but loading 54 

histories are designed to represent the generality of practical applications. 55 

Due to very high complexity in fatigue phenomena under constant or variable 56 

amplitude loading the empirical model are not suitable for reliability assessment. So the 57 



probabilistic predictive model is of great importance. The stochastic fatigue life 58 

prediction models under variable amplitude loading are presented by many authors 59 

mainly based on linear or nonlinear fatigue damage accumulation and stochastic or 60 

probabilistic S–N curve representation [10-15]  61 

Many standards approved Inconel 825 as a material for pressure vessel operating 62 

up to temperatures of 525°C (AS1210, AS4041), 538°C (ASME Boiler & Pressure Vessel 63 

Code, Sections I, III, VIII, IX, Cases 1936, N-188) due to its improved corrosion 64 

resistance. In the present investigation temperature dependence of fatigue curves of 65 

Inconel 825 are investigated and the statistical damage model for Inconel 825 is derived 66 

combining the stress-life-temperature relation and probabilistic fatigue damage 67 

accumulation rule. The proposed model is validated with the experiential results of 68 

Inconel 825 and its suitability for reliability based prediction of fatigue life under 69 

different given probability level is illustrated. 70 

2.0 Material and Methods 71 

 In the present investigation Inconel 825 nickel-chromium-based super alloy is 72 

used to study the influence of temperature on the S-N beahaviour. Due to improved high 73 

temperature corrosion properties Inconel 825 can be used in the parts which are subjected 74 

to high temperature. It is therefore, the study of influence of temperature on fatigue 75 

properties is useful and can be applied in design of components working under such 76 

environmental conditions.  The chemical composition of Inconel 825 round bar (UNS N0 77 

8825) used in the present investigation and determined by energy dispersive spectrometer 78 

(EDS) process are presented in Table 1. 79 

Table 1. Chemical composition of Inconel 825  80 

Element C Si Cu Mn Mo Cr Ni Al S Ti Fe 

wt.%  0.05 0.5 2.25 1.0 3.10 21.5 42 0.2 0.03 1.2 22 

The mechanical properties of Inconel 825 determined according to ASTM E8 [16] are 81 

presented in Table 2. The tensile tests are conducted on a servo controlled universal 82 

testing machine (ADMET, USA) under displacement control at 0.5 mm/min crosshead 83 

speed. 84 



Table 2 Mechanical properties of Inconel 825  85 

Properties  Mean value 

0.2% offset yield strength, MPa 338.0  

Ultimate tensile strength, MPa 662.0 

Elongation % 45.0 

Hardness ( Rockwell) 155.0 

Modulus of elasticity (E), GPa 196.0 

Density , g/cm
3 

8.4 
 

Poisson's ratio 0.29 

 Fatigue tests are conducted on round bars. The smooth specimens were made 86 

from round bar of diameter 10 mm having a length of 210 mm. The round bars were cut 87 

into pieces having a length of 210 mm with the help of Electric Discharge Machining 88 

(EDM) wire cut machine and a circumferential notch was made in middle.  The cutting 89 

tool used for making notch in the specimen was having a tip radius 0.76 mm and the tool 90 

angle of 69°. The tool depth was kept to be 2 mm. The line diagram and the actual 91 

photograph of the notched specimen are shown in Fig. 1(a-c). All fatigue tests are 92 

conducted under four point bending and fully reversed stress cycles at room temperature 93 

to elevated temperatures. All fatigue tests are divided into four groups. In group 1, tests 94 

are conducted under constant amplitude loading to establish the S-N curves at different 95 

temperatures. Four temperature levels are selected for this purpose. In the second group, 96 

two and three steps loading tests are performed. The results from group 2 are used for 97 

Miner rule modeling and determination of statistical properties of the damage constant 98 

and probabilistic cumulative damage modeling. The statistical properties are also used in 99 

the Monte Carlo simulation. Group 3 tests conducted under constant amplitude loading at 100 

different temperatures are used for validation of the stress-life-temperature models. The 101 

results of group 4 under two steps variable amplitude loading are used for validation of 102 

the probabilistic cumulative damage model.  Experimental design of groups 1-4 are 103 

shown in tables 3-6 respectively. All specimens are fatigued until full rupture or failure 104 

and the numbers of cycles required for failure are noted for further analysis.  105 

 106 



 107 

 108 

Fig. 1 (a) Line diagram of notch specimen 109 

 110 

Fig. 1 (b) Photograph of notch specimen 111 

 112 

Fig. 1 (c) Notched portion of the specimen 113 

 114 

Table 3 Design of experiment for constant amplitude stress-life-temperature modeling 115 

 Stresses, MPa  600.6 500.0  360.0 240.5 90.7 60.5 116 

 Temperatures, K  303 473 573 773   117 

Note : Tests are conducted at 6 stress amplitudes and four temperatures 118 

 119 

 120 

 121 

 122 

 123 

210 mm 

10 mm 6 mm 

r = 0.762 

mmmmmm 



Table 4 (a) Design of experiment using Taguchi method  for 3 step loading 124 

Test 

No 

Stress 𝜎1 

(MPa) 

Stress 𝜎2 

(MPa) 

Stress 𝜎3 

(MPa) 𝑇1 (K) 𝑇2 (K) 𝑇3 (K) 

1 167 167 167 303 303 303 

2 167 167 167 303 573 573 

3 167 167 167 303 773 773 

4 167 250 250 573 303 303 

5 167 250 250 573 573 573 

6 167 250 250 573 773 773 

7 167 417 417 773 773 773 

8 167 417 417 773 303 303 

9 167 417 417 773 573 573 

10 250 167 250 773 303 573 

11 250 167 250 773 573 773 

12 250 167 250 773 773 303 

13 250 250 417 303 303 573 

14 250 250 417 303 573 773 

15 250 250 417 303 773 303 

16 250 417 167 573 303 573 

17 250 417 167 573 573 773 

18 250 417 167 573 773 303 

19 417 167 417 573 303 773 

20 417 167 417 573 573 303 

21 417 167 417 573 773 573 

22 417 250 167 773 303 773 

23 417 250 167 773 573 303 



24 417 250 167 773 773 573 

25 417 417 250 303 303 773 

26 417 417 250 303 573 303 

27 417 417 250 303 773 573 

Table 4 (b) Design of experiment for 2 steps loading 125 

Load sequence Stress, MPa Temperature, K No of replications 

High-Low 417.0 250.0 573 27 

Low-High 250.0 417.0 573 24 

 126 

Table 5 Design of experiment for validation of stress-temperature-life model 127 

 128 

 Levels/tests    1 2 3 4 5  129 

 Stress levels, MPa (05)  600.6 360.0 240.5 90.7 60.5  130 

 Temperature levels, K (03)  473 573 773    131 

Table 6. Design of experiment based on Taguchi method and test results for validation of 132 

probabilistic cumulative model 133 

Test 

No 

Temperature 

(Kelvin) 

Stress 𝜎1 

(MPa) 

𝑛1 

(cycles) 

𝑁1 

(cycles) 

Stress 𝜎2 

(MPa) 

𝑛2 

(cycles) 

𝑁2  

(cycles) 

1 303 167 50000 414529 417 34059 38269 

2 303 250 45000 86127 417 21718 38269 

3 303 417 25000 38269 167 85695 414529 

4 573 167 15000 88486 417 5897 6698 

5 573 250 27000 48968 417 3914 6698 



6 573 417 4500 6698 167 20164 88486 

7 773 167 14000 76125 417 3650 4017 

8 773 250 15000 25435 417 2430 4017 

9 773 417 3000 4017 167 17568 76125 

 134 

The stress calculation under four point bending tests is made according to the following 135 

relation.  136 

The nominal bending stress is calculated as: 137 

𝜎0 =
32𝑀

𝜋𝑑3
      (1) 138 

where, 139 

M = bending moment (N-mm)  140 

d = notched specimen diameter (mm) 141 

𝜎0= nominal bending stress (MPa) 142 

As the specimen is notched one the stress concentration factor should be applied 143 

to estimate the maximum stress or simply the localized stress as Eq. 2.  144 

𝜎𝑎 = 𝐾𝑡𝜎0       (2) 145 

The stress concentration factor is defined as: 146 

     𝐾𝑡 =
𝜎𝑚𝑎𝑥

𝜎𝑛𝑜𝑚𝑖𝑛𝑎𝑙
     (3) 147 

In Eq 3 σmax is the local maximum stress (Eq 2) in the vicinity of the notch and the 148 

nominal is the nominal stress as defined by Eq 1. The theoretical stress concentration 149 

factor for notches in case of bending derived by Bader and Njim [17] is used here. These 150 

are presented in Eq. 4. The stress used in all cases here is the maximum stress level.  151 

    𝐾𝑡 = 𝐶1 + 𝐶2 (
2ℎ

𝐷
) + 𝐶3(

2ℎ

𝐷
)2 + 𝐶4(

2ℎ

𝐷
)3    (4) 152 

for  2.0 ≤
ℎ

𝑟
< 50.0, 153 



𝐶1 = 0.965 + 1.926√
ℎ

𝑟
 

𝐶2 = −2.77 − 4.414√
ℎ

𝑟
− 0.017 (

ℎ

𝑟
) 

𝐶3 = 4.785 + 4.681√
ℎ

𝑟
+ 0.096 (

ℎ

𝑟
) 

𝐶4 = −1.995 − 2.241√
ℎ

𝑟
− 0.074 (

ℎ

𝑟
) 

           (5) 154 

where h is the notch depth, and r is the root notch radius and D is the specimen diameter. 155 

Taking ℎ = 2 𝑚𝑚 𝑎𝑛𝑑 𝑟 = 0.762 𝑚𝑚 values of C1 to C4 are computed and substituting 156 

the values of 𝐶1,  𝐶2, 𝐶3 𝑎𝑛𝑑 𝐶4 in Equation (5), we get, 𝐾𝑡 = 1.662. Comparisons of 157 

fatigue test results for notched and un-notched specimens revealed that a reduced 𝐾𝑡was 158 

warranted for calculating the fatigue life for many materials [18-19]. As the specimen is 159 

notched one the fatigue stress reduction factor Kf  is computed using the Eq. 6.  160 

𝐾𝑓 = 1 + 𝑞(𝐾𝑡 − 1)      (6) 161 

where q is the notch sensitivity. Under static loading within elastic limit stress 162 

concentration factor Kt  is most suitable to compute the maximum stress at the notch tip 163 

or in front of notch, but in case of fatigue loading the fatigue reduction factor Kf   is more 164 

suitable both under elastic and plastic state of stress. Thus, the maximum stress amplitude 165 

used to draw S-N curve is obtained from Eq. 7.  166 

𝜎𝑎 = 𝐾𝑓𝜎𝑚𝑎𝑥       (7) 167 

The fatigue reduction factor is determined from the notch sensitivity factor and stress 168 

concentration factor.  The notch sensitivity is taken as 𝑞 = 0.72 [18], and hence the 169 

fatigue stress concentration factor is found from Eq. 6 as 𝐾𝑓 = 1.44 . 170 



3.0 Fatigue life prediction models 171 

 The stress-cycles to failure are described by the Basquin equation (model 1) 172 

defined as: 173 

       𝜎𝑎 = 𝑎(𝑁𝑓)𝑏     (8) 174 

where, 𝑎 is the fatigue strength coefficient and b is the fatigue strength exponent. In the 175 

present work effect of temperature on the number of cycles to failure is shown by 176 

modifying the Basquin equation by assuming the temperature having a (i) power law 177 

effect (ii) exponential effect.    178 

Considering temperature effect on the stress-life beahaviour, the modified Basquin 179 

equation is presented as:  180 

  𝜎𝑎 = 𝑎(𝑁𝑓)
𝑏

(𝑇)𝑐                                        (9)  181 

Taking log on both the sides we get, 182 

    𝑙𝑜𝑔(𝜎𝑎) = log(𝑎) + 𝑏𝑙𝑜𝑔(𝑁𝑓) + 𝑐𝑙𝑜𝑔(𝑇)   183 

    𝑙𝑜𝑔(𝜎𝑎) = 𝑎∗ + 𝑏𝑙𝑜𝑔(𝑁𝑓) + 𝑐𝑙𝑜𝑔(𝑇)    (10) 184 

where, c is a material constant and named as temperature sensitivity parameter, T is the 185 

temperature taken in Kelvin and 𝑎∗  is substituted for 𝑙𝑜𝑔(𝑎). Equation (9) or (10) is 186 

named as model 2 in future discussion which is a linear logarithmic model used to 187 

incorporate the effect of temperature in the material.  188 

 Equation (11-12) named as model 3 which follows exponential law to 189 

incorporate the effect of temperature. 190 

     𝜎𝑎 = 𝑎(𝑁𝑓)𝑏exp (𝑐𝑇)                                     (11) 191 

Taking log on both the sides we get, 192 

    𝑙𝑜𝑔(𝜎𝑎) = 𝑎∗ + 𝑏𝑙𝑜𝑔(𝑁𝑓) + 𝑐𝑇   (12) 193 

 194 



3.1 Two Step Cumulative Fatigue Damage Modeling  195 

 Cumulative fatigue damage analysis plays a vital role in predicting fatigue life of 196 

components. More than 95 years ago, Palmgren suggested the concept of damage 197 

accumulation in 1924. The mathematical expression of the damage accumulation due to 198 

variable amplitude loading was given by Miner in 1945. After that different models have 199 

been proposed by researchers to determine the cumulative fatigue damage. A survey of 200 

cumulative damage models can be seen in the work of  Fatemi and Vangt [19] 201 

Mathematically the Palmgren-Miner rule is expressed as [20] 202 

                                                                                     203 

                                                                            ∑  
n

N
= 1                                                               (13) 204 

 205 
For two step block loading, the Palmgren-Miner rule (Eq. 13) is written as: 206 

    
𝑛1

𝑁1
+

𝑛2

𝑁2
= 1                 (14) 207 

where, 𝑛1, 𝑛2 =  applied cycles at load level𝜎1 𝑎𝑛𝑑 𝜎2  respectively and 𝑁1 𝑎𝑛𝑑 𝑁2  are 208 

fatigue life at a load level 𝜎1 𝑎𝑛𝑑 𝜎2 respectively. In general for multistep loadings the 209 

Miner rule is written as  210 

𝑛1

𝑁1
+

𝑛2

𝑁2
+

𝑛3

𝑁3
+ ⋯ … … … … . = 1                                                                         (15) 211 

where, 𝑛𝑖 ,  applied cycles at load level𝜎𝑖 and 𝑁𝑖 is the fatigue life at a load level 𝜎𝑖 . In 212 

Miner rule critical damage taken as one is unsafe for many applications. This is because 213 

unity is considered on the assumption that fatigue damage corresponding to each stress 214 

cycle of a variable amplitude loading sequence is the same as that due to the same stress 215 

cycle under constant amplitude loading. However, the studies on the step loading or 216 

variable amplitude loading indicate that loading sequences are more damaging in nature 217 

than constant amplitude loading. The available results [21-30] provide qualitative 218 

information of influence of different parameters of the variable amplitude loading on the 219 

fatigue strength. The approach used by the researchers in the past studies is qualitative in 220 

nature and does not reveal any randomness in the S-N curve variables as well as in the 221 

critical damage sum. It has been reported that the right side constant (unity) in Miner rule 222 

varies from 0.78 to 2.7 [18] and thus Palmgren-Miner rule in many situations differs from 223 

Eq. 13. From the available experimental data, it can be observed that the summation of 224 



damage fractions is either greater than unity or less than unity. From the experimental 225 

results it is seen that the material damage parameter called Palmgren-Miner damage 226 

constant 𝑐 > 1 for Low-High (L-H) load level test and 𝑐 < 1 for High-Low (H-L) load 227 

level test. So rewriting the Miner damage rule as:  228 

     
𝑛1

𝑁1
+

𝑛2

𝑁2
= 𝑐                 (16) 229 

where, ‘c’ is the material parameter called Palmgren-Miner damage constant. Mostly, 230 

researchers use constant c as a deterministic manner as its value is influenced by several 231 

factors such as loading, surface conditions, welded or non-welded conditions, kind of 232 

material etc.. Due to associated uncertainties in the influencing parameters the 233 

deterministic constant c may be treated as a random variable. Generally base line S-N 234 

curves are adopted for the Miner damage calculation by the researchers. These base line 235 

S-N curves are mean curves with 50% probability. If such practice is adopted than the 236 

assumption of c as random variable may not be sound. Hence, one way to consider c as 237 

stochastic nature, the Minor damage calculations has to be made from different 238 

probabilistic S-N curves. The assumption of stochastic of c may be sound enough if the 239 

tests are conducted under similar test conditions and the damage constant should be 240 

computed. There is another argument of considering damage constant c as scholastic or 241 

statistical in nature. The assumption of damage constant c as a statistical parameter rather 242 

than a deterministic parameter is true as the fatigue life N has probability characteristics, 243 

and thus n should have a probabilistic characteristics and the sum of the ratio of n to N is 244 

correspondingly statistical rather than deterministic. In recent years, probabilistic 245 

modeling of the damage rule has been proposed to describe the statistics of fatigue life 246 

and damage under constant and variable amplitude loadings. The statistical interpretation 247 

of Miner’s rule from a probabilistic aspect by Birnbaum et al. [31], p–S–N curves and 248 

Miner’s rule [32] or p–S–N curves and Markov chain models [33] to analyze the fatigue 249 

reliability for two-step fatigue tests, with both lognormal and Weibull distribution 250 

assumption of fatigue life are some of the studies found in the literature which concerned 251 

on the probabilistic aspect of Miner rule. From the above discussions and results of 252 

several researchers the damage parameter c is of statistical nature and it should be better 253 

treated statistically. In the present investigation, three probability distribution namely 254 

normal distribution, Weibull distribution and type I extreme value distribution are used to 255 

model c. It is found from the Goodness of fit results that the damage parameter c fits well 256 



with all three distributions studied here. Two or three parameters Weibull distribution is 257 

one of the most widely used lifetime distributions in reliability engineering due to its 258 

versatility to take on the characteristics of other types of statistical distributions, in the 259 

present investigation the damage model parameter c is assumed to be Weibull distributed. 260 

Assuming the damage constant c as two parameters Weibull distributed, for the given 261 

probability of failure  , the damage parameter c can be estimated from:.  262 

    𝑐𝜉 = 𝛼(𝑙𝑛
1

1−𝜉
)

1

𝛽                             (17) 263 

where, 𝛂 and 𝛃 are Weibull parameters known as scale and shape parameters 264 

respectively. 265 

Thus, the probabilistic model of the Palmgren-Miner rule for two step loading is written 266 

as: 267 

𝑛1

𝑁1
+

𝑛2

𝑁2
= 𝛼(𝑙𝑛

1

1−𝜉
)

1

𝛽                                                                                                  (18) 268 

The fatigue life prediction can be obtained from Eq. 19. 269 

𝑛2

𝑁2
= 𝛼(𝑙𝑛

1

1−𝜉
)

1

𝛽 −
𝑛1

𝑁1
                                                                                   (19) 270 

The validity of the proposed model is discussed in results and discussion section.  271 

4.0 Results and Discussion 272 

4.1 S-N curve for notched specimen 273 

 The notched specimens of Inconel 825 were tested on four point rotating bending 274 

fatigue testing machine at a frequency of 30 Hz and stress ratio  𝑅 = −1 under constant 275 

amplitude loading. The tests were conducted at room and elevated temperatures. 276 

Minimum of three samples were tested at each condition. The results are summarized as 277 

S-N curve in Fig. 2. The S-N curve has been drawn between stress amplitude 𝜎𝑎  and 278 

fatigue life, i.e. cycles to failure 𝑁𝑓 in log-log scale. The S-N curves plotted in Fig. 2 279 

exhibit steep curves in the high cycle regime (>10
4
 cycles) and slightly lesser steep in the 280 

low cycle regime (< 10
4
 cycles).  In the present test three stresses 600.6 MPa, 500 MPa  281 

and 360 MPa are higher than yield strength (under room temperature) of the material. 282 



Thus, these stress levels produce elastic-plastic stress states at the notch, which appears to 283 

be reason for the bended curve in the low cycle fatigue regime with different slopes than 284 

at the high cycle zone. This indicates that single log-log straight line over the full range of 285 

stress levels is not accurate.  286 

 287 

 288 

 Fig. 2 S-N curves of Inconel 825 at different temperatures 289 

Based on the experimental data, regression parameters of Eq. 8, 9 and 11 are 290 

obtained and results are presented in table 7 and 8 for low cycle as well as high cycle 291 

zone. i.e for elastic and plastic zones.  292 

Table 7 Parameters of Basquin model (Equation 8) 293 

Temp. 

(K) 

Frequency 

(RPM) 

Stress 

Ratio 

(R) 

a b 𝑟 Condition 

 

303  2700  -1 5.0 × 108 -1.145 0.811 Applicable 

10

100

1000

1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07

S
tr

es
s 

(M
P

a
) 

Cycles to failure 

473 K

573 K

773 K

303 K



473  2700 -1 2.0 × 106 -0.779 0.995 
for 

𝜎 < 𝜎𝑦 

573  2700  -1 2.0 × 106 -0.802 0.996 

773  2700  -1 4.0 × 106 -0.869 0.922 

303  2700  -1 314275.0 -0.593 0.963 Applicable 

for 

𝜎 ≥ 𝜎𝑦 

473  2700 -1 6736.7 -0.264 0.987 

573  2700  -1 5758.8 -0.256 0.984 

773  2700  -1 4648.7 -0.251 0.966 

  294 

Table 8 Parameters of different proposed models 295 

 296 

Model 𝑎 𝑏 𝑐 𝑟 Limiting 

condition 

Model 2 2.728 × 108 -0.680 -0.975 0.909 𝜎 < 𝜎𝑦 

2.496 × 105 -0.272 -0.570 0.950 𝜎 ≥ 𝜎𝑦 

Model 3 9.995 × 106 -0.805 -0.00239 0.930 𝜎 < 𝜎𝑦 

1.243 × 104 -0.271 -0.00105 0.943 𝜎 ≥ 𝜎𝑦 

  297 

 The derived predicted models given in Equation (8-11) are validated through the 298 

sets of fatigue data obtained under the test conditions mentioned in Table 5 and shown in 299 

Fig. 3-5. The validated test data are different than the dataset used in modeling.  300 



 301 

302 
Fig. 3. Validation of stress-life-temperature models for Inconel 825 at 473 K 303 

 304 

Fig. 3 shows the experimental and predicted results for five stress levels ranging from 60 305 

MPa to 600 MPa at 473 K. Three fatigue life predicted models are used for comparison. 306 

The Basquin model (model 1) fits well for stress levels 𝜎𝑎 ≥ 𝜎𝑦 . The ratio of 307 

experimental to predicted life is found to be between 1.1 to 1.25 for  𝜎𝑎 ≥ 𝜎𝑦 and the 308 

variation is about 30 to 60% for 𝜎𝑎 < 𝜎𝑦 . It is found that the predicted results for applied 309 

stress 𝜎 ≥360 MPa remained within 2% which increased to about 60% when the stress 310 

level is 60 MPa. Hence, at the low stress amplitude Basquin model is not suitable at 473 311 

K. The ratio between the experimental and predicted fatigue life from model 2 and model 312 

3 are found to be varied from 0.75 to 1.6 and 0.5 to 1.5 respectively. Model 3 predicts 313 

within less than 7% error for all range of stress amplitude. From the results summarized 314 

in Fig. 3, it can be observed that the predicted model 3 fits best with the experimental data 315 

for elastic and plastic ranges of stress amplitudes. It should be noted that the error is 316 

calculated on the basis of log values of experimental and predicted number of cycles to 317 

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+03 1.00E+04 1.00E+05 1.00E+06 1.00E+07 1.00E+08

Model 2

Model 3

Model 1

Experimental life, cycles 

P
re

d
ic

te
d

 li
fe

, c
yc

le
s 



failure. Fig. 4 shows the validation results at 573 K. Similar qualities of predicted results 318 

are seen at 573 K by all three models. However, the ratio of experimental to predict 319 

results are found to be varied between 1.2 to 2.5 for higher stress amplitudes and the 320 

percentage difference remained within 10% for all ranges of stress. This shows that 321 

quality of prediction improved for higher temperature. It is also seen that exponential 322 

model of temperature effect (model 3) predicts the results within 7% for entire ranges of 323 

stress. This percentage reduced to about 4% when the stress level is kept 𝜎 ≤240 MPa. 324 

The prediction quality improves more for higher temperature level of 773 K as shown in 325 

Fig. 5. The ratio of experimental to predicted life is found to be between 0.9 to 3.4 , 0.3 to 326 

2.0 and 0.63 to 1.5 for model 1, model 2 and model 3 respectively. It can be seen that the 327 

overall prediction for all ranges of temperature and stress levels by model 3 is better as 328 

compared to other two models. When the predicted results are critically analyzed, it is 329 

seen that model 2 predicts the fatigue live over the entire ranges of stresses studied here 330 

with percentage difference of 0..8 to 12.7, 1.5 to 11.4 and 0.02 to 9.3 for temperatures of 331 

473 K, 573 K and 773 K respectively. The corresponding % errors obtained with model 2 332 

are 1.3% to 4.6%, 2% to 7% and 0.2% to 8%. The results reveals that model 3 is better 333 

than model 2. For stress level 𝜎 ≥360 MPa, model 2 predicts within 2.5 to 4.3% error, 334 

1.75% to 5.5% error and 0.02 % to 6.9% error for 473 K, 573 K and 773 K respectively 335 

whereas the corresponding percentage error are 0.08 to 12.7, 1.65 to 11.4  and  6 to 9.3 336 

for 𝜎 <360 MPa. The percentage error between the experimental and predicted fatigue 337 

life by model 3 for stress level 𝜎 <360 MPa are 1.4 to 4.6, 2.0 to 3.6 and 0.2 to 8.0 for 338 

473 K , 573 K and 773 K respectively while the model 2 predicts with a percentage error 339 

of 0.08 to 12.7, 1.6 to 11.4 and 6.0 to 9.3 for 473 K , 573 K and 773 K respectively. The 340 

results reveal that higher quality of prediction is obtained by model 3 at higher 341 

temperature as compared to model 2 for entire ranges of stresses studied. If the predicted 342 

results are compared for 473 K, model 2 predicts better results than model 3 for entire 343 

ranges of stress amplitudes. The prediction quality continues for temperature level 573 K 344 

and stress level 𝜎 ≥360 MPa but as the testing temperature exceeds 573 K model 3 seems 345 

to be superior with less predicted error than other two models. The temperature effect in 346 

model 2 and 3 are modeled as power law and exponential law respectively. Better 347 

predicted results for temperature 𝑇 ≥ 573 K by model 3 indicate that the fatigue life 348 

follows exponential relation between stress amplitude and temperature.  349 

 350 



 351 

Fig. 4 Validation of stress-life-temperature models for Inconel 825 at 573 K352 

 353 

 354 

Fig. 5 Validation of  stress-life-temperature models for Inconel 825 at 773 K 355 
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 From the above observations in Figs 3-5 it can be concluded that no single model 356 

is suitable for entire range of the stress level. A bend curve or two separate straight line 357 

fitting seems to be more appropriate than a single straight line fitting. The elastic-plastic 358 

range at notch which appears to be the reason for the bended curve from the elastic zone 359 

seen in Fig 3-5 or the development of elastic-plastic zone at higher stress or at higher 360 

temperature at notch may be the reason of the higher scatter in the data in elastic-plastic 361 

zone. Hence, single log-log predicted model or other form of predicted model over entire 362 

range of stress levels fails to predict with a reasonable accuracy.  Fig. 3-5 also reveals that 363 

predicted line with 50% probability (as all are based on mean values) is not suitable in 364 

reliability assessment. Hence, lower and upper bound predictive models are required to 365 

address these issues.  366 

4.2 Two step or variable amplitude loading 367 

 In order to find the probability distribution and the statistical parameters of c, 368 

two sets of two step tests are conducted for two type of load sequences low to high (L-H) 369 

in the first set of experiment with 24 replications and high to low (H-L) in second set of 370 

experiment with 27 replications. Special care is taken for identical sample preparation for 371 

all tests. The loading parameters used in low to high and high to low are 250 MPa, 417 372 

MPa and 417 MPa, 250 MPa at 573 K respectively. Number of load cycles obtained in 373 

two step tests is used to calculate damage parameter c. According to Miner cumulative 374 

damage model (Eq. 16) the summation of the fraction yields the magnitude of c. Based on 375 

the experimental data, it is seen that the miner constant c varies from 0.8 to 1.05 in case 376 

of H-L loading and 0.92 to 1.25 in case of L-H load sequence. Treating the constant as 377 

random variable, normal probability distribution, Weibull and extreme value probability 378 

distribution function are determined. The different distribution parameters are presented 379 

in Table 9. The results of c are plotted as cumulative distribution function (CDF) in Fig. 380 

6. CDF from normal distribution, Weibull and extreme value distribution, r
2
 values are 381 

included in the table 9. 382 



  383 

 384 

Fig. 6 (a) Probability distribution of Palmgren-Miner rule damage parameter c for High to 385 

low load sequence 386 
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 387 

Fig. 6 (b) Probability distribution of Palmgren-Miner rule damage parameter c for Low   388 

to High load sequence 389 

 Table 9 (a) Statistical parameters of Palmgren-Miner rule damage parameter c and 390 

𝑟2value 391 

Load 

sequence 

Normal Parameters Weibull Parameters Extreme Value Parameters 

 μ σ 𝑟2 𝛼 𝛽 𝑟2 𝛿 𝜃 𝑟2 

H-L 0.930 0.077 0.966 0.965 14.513 0.966 0.967 0.064 0.965 

L-H 1.131 0.108 0.961 1.177 14.425 0.961 1.180 0.077 0.960 

 392 

 393 
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Table 9(b) Kolmogorov-Smirnov (K-S test) statistics at 5% significance  395 

Load sequence Normal distribution Weibull distribution EV distribution 

H-L 0.515 0.525 0.528 

L-H 0.519 0.518 0.520 

 396 

Fig. 6 represents the CDF plot of Palmgren-Miner rule constant, c using normal, Weibull 397 

and extreme value probability distribution. On comparing the experimental CDF plot for 398 

of Palmgren-Miner rule constant against the probability distribution curves the regression 399 

coefficient were found to be 0.966, 0.965 and 0.965 for normal, Weibull and extreme 400 

value probability distribution respectively for H-L load sequence using Equation (20) 401 

given by Doremus [34] as: 402 

𝑟2 = 1 −
∑ (𝑥𝑗−�̂�)2𝑛

𝑗=1

∑ (𝑥𝑗−𝜇)2𝑛
𝑗=1

                    (20) 403 

where, n is the total number of data points,𝑥𝑗 is the 𝑗𝑡ℎ data point of the random variable 404 

that is ranked from smallest to largest, �̂� is the calculated value from fitted distribution 405 

function at rank 𝐹(𝑥𝑗)  and μ is the mean value. 𝑟2 explains how well the regression 406 

represents the data. From the 𝑟2  value, normal probability distribution or Weibull 407 

distribution is the most suitable followed by the type I extreme value probability 408 

distribution. The goodness of fit test by K-S statistics shown in table 9(b) also reveals the 409 

similar conclusion. However, from the mechanics of the fatigue failure, Weibull 410 

distribution is more suitable for failure analysis. Hence, in the present investigation 411 

Weibull distribution is selected for reliability prediction model. However, the statistical 412 

results of all three distributions are presented for comparison in table 9(a-b). The Weibull 413 

distribution parameters are estimated from the 27 test results of Inconel 825 for High-414 

Low load sequence using maximum likehood function are a  0.965 and b 14.513. and 415 

taken to illustrate the application and derivation of the probabilistic cumulative damage 416 

model as below.  417 

𝑛2

𝑁2
= 0.965 (𝑙𝑛

1

1−𝜉
)

1

14.513
−

𝑛1

𝑁1
                                                                    (21)               418 



To compute the upper and lower limit of the predicted life, the probability of failure ξ 419 

should be used as ξ  or 1 − 𝜉     respectively. For example, for 90% probability level, the 420 

values of ξ are 0.90 and 0.1 for upper and lower bound of the predicted life. Eq 21 is 421 

suitable for prediction of fatigue life or remaining life when the requirement is limited to 422 

given probability.  Fig. 7-9 shows the predicted results along with the validation data 423 

points at different probability using Eq. 21. In validation data all combination of loads are 424 

considered to illustrate the model capability.   425 

         426 

Fig. 7 Validation of the probabilistic cumulative fatigue damage model at 50% 427 

probability (validated data) 428 
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 431 

Fig. 8 Validation of the probabilistic cumulative fatigue damage model at 90% 432 

probability (validated data) 433 

 434 

Fig. 9 Validation of the probabilistic cumulative fatigue damage model at 95% 435 

probability (validated data) 436 
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Fig 7-9 illustrated the use of probabilistic approach to estimate the lower and 437 

upper limit of the predicted live for given probability of failure. Fig. 7 is plotted for 50% 438 

probability level. The predicted results shown in Fig. 7 indicate the mean curve of the 439 

experimental data. Fig. 8 and 9 are plotted for 90% and 95% probability level 440 

respectively. The figures reveals that about 45 % and 67% data are well within the two 441 

limits predicted by the proposed method for unknown dataset (i.e data not used for 442 

probabilistic modeling) at 90% and 99% probability. It is important to mention that the 443 

derived statistical parameter used in the validation are taken from H-L load sequence 444 

whereas in the validation both H-L and L-H load sequence at different temperature are 445 

considered. More study is required to find the distribution parameters of damage constant 446 

and their correlation with loading sequence and other loading parameters. The proposed 447 

method shows the importance of inclusion of probability into the cumulative damage 448 

model. Hence, it can be said that the fatigue life or the fraction of fatigue life predicted by 449 

proposed probabilistic cumulative damage model is found to be more suitable and shows 450 

that it is reasonably good to use in the reliability based design approach.  451 

5.0 Conclusions 452 

     On the basis of experimental investigation of fatigue life of Inconel 825 at different 453 

temperature following conclusions can be drawn:  454 

1. Power law modeling of the temperature effect is found to be more suitable at low 455 

temperature range and exponential modeling at higher temperature beyond 673 K.  456 

2. From the stress temperature curve it was observed that the slope change effect is 457 

decreased for higher number of cycles to failure as compared to that of lower 458 

number of cycles to failure. 459 

3. The experimental results under variable amplitude loading shows that 460 

summation of the life ratio is not unity as described in Palmgren-Miners rule, but 461 

it varies from 0.8 to 1.05 with a mean and standard deviation of 0.930 and 0.077 462 

for High-Low load sequence and 0.92 to 1.24 with mean and standard deviation 463 

of 1.131 and 0.108 for low –high load sequence.  464 

4. The constant is found to be random in nature and it most suitably fits to normal 465 

or Weibull probability distribution.  466 



5. The probabilistic cumulative damage model presented in this work is more 467 

suitable to predict the fatigue life under variable amplitude loading at any desired 468 

level of probability. This can also be helpful for the reliability assessment of a 469 

component under variable amplitude loading.  470 

 471 
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