Reference
Baby, S., Johnson, A. J., & Govindan, B. (2015). Secondary metabolites from Ganoderma . Phytochemistry, 114 , 66-101.
Balibar, C. J., & Roemer, T. (2016). Yeast: a microbe with macro-implications to antimicrobial drug discovery. Briefings in Functional Genomics, 15 (2), 147-154.
Bao, Z., Xiao, H., Liang, J., Zhang, L., Xiong, X., Sun, N., . . . Zhao, H. (2015). Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae .ACS Synthetic Biology, 4 (5), 585-594.
Bassard, J. E., Richert, L., Geerinck, J., Renault, H., Duval, F., Ullmann, P., . . . Werck-Reichhart, D. (2012). Protein-protein and protein-membrane associations in the lignin pathway. Plant Cell, 24 (11), 4465-4482.
Bishop, K. S., Kao, C. H., Xu, Y., Glucina, M. P., Paterson, R. R., & Ferguson, L. R. (2015). From 2000 years of Ganoderma lucidum to recent developments in nutraceuticals. Phytochemistry, 114 , 56-65.
Chen, S., Xu, J., Liu, C., Zhu, Y., Nelson, D. R., Zhou, S., . . . Sun, C. (2012). Genome sequence of the model medicinal mushroomGanoderma lucidum . Nature Communications, 3 , 913-921.
Cravens, A., Payne, J., & Smolke, C. D. (2019). Synthetic biology strategies for microbial biosynthesis of plant natural products.Nature Communications, 10 (1), 2142-2154.
Curran, K. A., Karim, A. S., Gupta, A., & Alper, H. S. (2013). Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications. Metabolic Engineering, 19 , 88-97.
Dai, Z., Liu, Y., Huang, L., & Zhang, X. (2012). Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae . Biotechnology and Bioengineering, 109 (11), 2845-2853.
Du, J., Yuan, Y., Si, T., Lian, J., & Zhao, H. (2012). Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Research, 40 (18), e142.
Forman, V., Bjerg-Jensen, N., Dyekjaer, J. D., Moller, B. L., & Pateraki, I. (2018). Engineering of CYP76AH15 can improve activity and specificity towards forskolin biosynthesis in yeast. Microbial Cell Factories, 17 (1), 181-197.
Gietz, R. D., & Schiestl, R. H. (2007). High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nature Protocols, 2 (1), 31-34.
Gou, M., Ran, X., Martin, D. W., & Liu, C. J. (2018). The scaffold proteins of lignin biosynthetic cytochrome P450 enzymes. Nature Plants, 4 (5), 299-310.
Guldener, U., Heck, S., Fielder, T., Beinhauer, J., & Hegemann, J. H. (1996). A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Research, 24 (13), 2519-2524.
Hasunuma, T., Ishii, J., & Kondo, A. (2015). Rational design and evolutional fine tuning of Saccharomyces cerevisiae for biomass breakdown. Current Opinion in Chemical Biology, 29 , 1-9.
Ignea, C., Pontini, M., Motawia, M. S., Maffei, M. E., Makris, A. M., & Kampranis, S. C. (2018). Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering. Nature Chemical Biology, 14 (12), 1090-1098.
Lan, X., Yuan, W., Wang, M., & Xiao, H. (2019). Efficient biosynthesis of antitumor ganoderic acid HLDOA using a dual tunable system for optimizing the expression of CYP5150L8 and a Ganoderma P450 reductase. Biotechnology and Bioengineering, 116 (12), 3301-3311.
Laursen, T., Borch, J., Knudsen, C., Bavishi, K., Torta, F., Martens, H. J., . . . Bassard, J. E. (2016). Characterization of a dynamic metabolon producing the defense compound dhurrin in sorghum. Science, 354 (6314), 890-893.
Li, X. M., Xie Y. Z., & Yang, B. B. (2018). Characterizing novel anti-oncogenic triterpenoids from ganoderma. Cell Cycle, 17 (5), 527-528.
Lian, J., Jin, R., & Zhao, H. (2016). Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration.Biotechnology and Bioengineering, 113 (11), 2462-2473.
Lian, J., Mishra, S., & Zhao, H. (2018). Recent advances in metabolic engineering of Saccharomyces cerevisiae : New tools and their applications. Metabolic Engineering, 50 , 85-108.
Liang, C., Tian, D., Liu, Y., Li, H., Zhu, J., Li, M., . . . Xia, J. (2019). Review of the molecular mechanisms of Ganoderma lucidumtriterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y. European Journal of Medicinal Chemistry, 174 , 130-141.
Liu, J., Han, Q., Cheng, Q., Chen, Y., Wang, R., Li, X., . . . Yan, D. (2020). Efficient expression of human lysozyme through the increased gene dosage and co-expression of transcription factor Hac1p inPichia pastoris . Current Microbiology(10.1007/s00284-019-01872-9).
Liu, Z., Hou, J., Martinez, J. L., Petranovic, D., & Nielsen, J. (2013). Correlation of cell growth and heterologous protein production by Saccharomyces cerevisiae . Applied Microbiology and Biotechnology, 97 (20), 8955-8962.
Qiao, J., Luo, Z., Cui, S., Zhao, H., Tang, Q., Mo, C., . . . Ding, Z. (2019). Modification of isoprene synthesis to enable production of curcurbitadienol synthesis in Saccharomyces cerevisiae .Journal of Industrial Microbiology & Biotechnology, 46 (2), 147-157.
Sha, C., Yu, X. W., Li, F., & Xu, Y. (2013). Impact of gene dosage on the production of lipase from Rhizopus chinensis CCTCC M201021 inPichia pastoris . Applied Biochemistry and Biotechnology, 169 (4), 1160-1172.
Shao, Z., Zhao, H., & Zhao, H. (2009). DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways.Nucleic Acids Research, 37 (2), e16.
Shiao, M. S. (2003). Natural products of the medicinal fungusGanoderma lucidum : occurrence, biological activities, and pharmacological functions. Chemical Record, 3 (3), 172-180.
Sugishima, M., Sato, H., Higashimoto, Y., Harada, J., Wada, K., Fukuyama, K., & Noguchi, M. (2014). Structural basis for the electron transfer from an open form of NADPH-cytochrome P450 oxidoreductase to heme oxygenase. Proceedings of the National Academy of Sciences of the United States of America, 111 (7), 2524-2529.
Wang, W. F., Xiao, H., & Zhong, J. J. (2018). Biosynthesis of a ganoderic acid in Saccharomyces cerevisiae by expressing a cytochrome P450 gene from Ganoderma lucidum . Biotechnology and Bioengineering, 115 (7), 1842-1854.
Wang, S. Z., Zhang, Y. H., Ren, H., Wang, Y. L., Jiang, W., & Fang, B. S. (2017). Strategies and perspectives of assembling multi-enzyme systems. Critical Reviews in Biotechnology, 37 (8), 1024-1037.
Wu, G. S., Guo, J. J., Bao, J. L., Li, X. W., Chen, X. P., Lu, J. J., & Wang, Y. T. (2013). Anti-cancer properties of triterpenoids isolated from Ganoderma lucidum - a review. Expert Opinion on Investigational Drugs, 22 (8), 981-992.
Xiao, H., Zhang, Y., & Wang, M. (2019). Discovery and Engineering of Cytochrome P450s for Terpenoid Biosynthesis. Trends in Biotechnology, 37 (6), 618-631.
Xiao, H., & Zhong, J. J. (2016). Production of Useful Terpenoids by Higher-Fungus Cell Factory and Synthetic Biology Approaches.Trends in Biotechnology, 34 (3), 242-255.
Yang, C., Li, W., Li, C., Zhou, Z., Xiao, Y., & Yan, X. (2018). Metabolism of ganoderic acids by a Ganoderma lucidum cytochrome P450 and the 3-keto sterol reductase ERG27 from yeast.Phytochemistry, 155 , 83-92.
Zhang, H., Yan, J. N., Zhang, H., Liu, T. Q., Xu, Y., Zhang, Y. Y., & Li, J. (2018). Effect of gpd box copy numbers in the gpdA promoter ofAspergillus nidulans on its transcription efficiency inAspergillus niger . FEMS Microbiology Letters, 365 (15).
Zhong, J. J., & Xiao, J. H. (2009). Secondary metabolites from higher fungi: discovery, bioactivity, and bioproduction. Advances in Biochemical Engineering-Biotechnology, 113 , 79-150.
Zhu, M., Wang, C., Sun, W., Zhou, A., Wang, Y., Zhang, G., . . . Li, C. (2018). Boosting 11-oxo-beta-amyrin and glycyrrhetinic acid synthesis inSaccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants. Metabolic Engineering, 45 , 43-50.
Table 1. The 13C-NMR and 1H-NMR data of compound A .