Reference
Baby, S., Johnson, A. J., & Govindan, B. (2015). Secondary metabolites
from Ganoderma . Phytochemistry, 114 , 66-101.
Balibar, C. J., & Roemer, T. (2016). Yeast: a microbe with
macro-implications to antimicrobial drug discovery. Briefings in
Functional Genomics, 15 (2), 147-154.
Bao, Z., Xiao, H., Liang, J., Zhang, L., Xiong, X., Sun, N., . . . Zhao,
H. (2015). Homology-integrated CRISPR-Cas (HI-CRISPR) system for
one-step multigene disruption in Saccharomyces cerevisiae .ACS Synthetic Biology, 4 (5), 585-594.
Bassard, J. E., Richert, L., Geerinck, J., Renault, H., Duval, F.,
Ullmann, P., . . . Werck-Reichhart, D. (2012). Protein-protein and
protein-membrane associations in the lignin pathway. Plant Cell,
24 (11), 4465-4482.
Bishop, K. S., Kao, C. H., Xu, Y., Glucina, M. P., Paterson, R. R., &
Ferguson, L. R. (2015). From 2000 years of Ganoderma lucidum to
recent developments in nutraceuticals. Phytochemistry, 114 ,
56-65.
Chen, S., Xu, J., Liu, C., Zhu, Y., Nelson, D. R., Zhou, S., . . . Sun,
C. (2012). Genome sequence of the model medicinal mushroomGanoderma lucidum . Nature Communications, 3 , 913-921.
Cravens, A., Payne, J., & Smolke, C. D. (2019). Synthetic biology
strategies for microbial biosynthesis of plant natural products.Nature Communications, 10 (1), 2142-2154.
Curran, K. A., Karim, A. S., Gupta, A., & Alper, H. S. (2013). Use of
expression-enhancing terminators in Saccharomyces cerevisiae to
increase mRNA half-life and improve gene expression control for
metabolic engineering applications. Metabolic Engineering, 19 ,
88-97.
Dai, Z., Liu, Y., Huang, L., & Zhang, X. (2012). Production of
miltiradiene by metabolically engineered Saccharomyces
cerevisiae . Biotechnology and Bioengineering, 109 (11),
2845-2853.
Du, J., Yuan, Y., Si, T., Lian, J., & Zhao, H. (2012). Customized
optimization of metabolic pathways by combinatorial transcriptional
engineering. Nucleic Acids Research, 40 (18), e142.
Forman, V., Bjerg-Jensen, N., Dyekjaer, J. D., Moller, B. L., &
Pateraki, I. (2018). Engineering of CYP76AH15 can improve activity and
specificity towards forskolin biosynthesis in yeast. Microbial
Cell Factories, 17 (1), 181-197.
Gietz, R. D., & Schiestl, R. H. (2007). High-efficiency yeast
transformation using the LiAc/SS carrier DNA/PEG method. Nature
Protocols, 2 (1), 31-34.
Gou, M., Ran, X., Martin, D. W., & Liu, C. J. (2018). The scaffold
proteins of lignin biosynthetic cytochrome P450 enzymes. Nature
Plants, 4 (5), 299-310.
Guldener, U., Heck, S., Fielder, T., Beinhauer, J., & Hegemann, J. H.
(1996). A new efficient gene disruption cassette for repeated use in
budding yeast. Nucleic Acids Research, 24 (13), 2519-2524.
Hasunuma, T., Ishii, J., & Kondo, A. (2015). Rational design and
evolutional fine tuning of Saccharomyces cerevisiae for biomass
breakdown. Current Opinion in Chemical Biology, 29 , 1-9.
Ignea, C., Pontini, M., Motawia, M. S., Maffei, M. E., Makris, A. M., &
Kampranis, S. C. (2018). Synthesis of 11-carbon terpenoids in yeast
using protein and metabolic engineering. Nature Chemical Biology,
14 (12), 1090-1098.
Lan, X., Yuan, W., Wang, M., & Xiao, H. (2019). Efficient biosynthesis
of antitumor ganoderic acid HLDOA using a dual tunable system for
optimizing the expression of CYP5150L8 and a Ganoderma P450
reductase. Biotechnology and Bioengineering, 116 (12), 3301-3311.
Laursen, T., Borch, J., Knudsen, C., Bavishi, K., Torta, F., Martens, H.
J., . . . Bassard, J. E. (2016). Characterization of a dynamic metabolon
producing the defense compound dhurrin in sorghum. Science,
354 (6314), 890-893.
Li, X. M., Xie Y. Z., & Yang, B. B. (2018). Characterizing novel
anti-oncogenic triterpenoids from ganoderma. Cell Cycle, 17 (5),
527-528.
Lian, J., Jin, R., & Zhao, H. (2016). Construction of plasmids with
tunable copy numbers in Saccharomyces cerevisiae and their
applications in pathway optimization and multiplex genome integration.Biotechnology and Bioengineering, 113 (11), 2462-2473.
Lian, J., Mishra, S., & Zhao, H. (2018). Recent advances in metabolic
engineering of Saccharomyces cerevisiae : New tools and their
applications. Metabolic Engineering, 50 , 85-108.
Liang, C., Tian, D., Liu, Y., Li, H., Zhu, J., Li, M., . . . Xia, J.
(2019). Review of the molecular mechanisms of Ganoderma lucidumtriterpenoids: Ganoderic acids A, C2, D, F, DM, X and Y. European
Journal of Medicinal Chemistry, 174 , 130-141.
Liu, J., Han, Q., Cheng, Q., Chen, Y., Wang, R., Li, X., . . . Yan, D.
(2020). Efficient expression of human lysozyme through the increased
gene dosage and co-expression of transcription factor Hac1p inPichia pastoris . Current Microbiology(10.1007/s00284-019-01872-9).
Liu, Z., Hou, J., Martinez, J. L., Petranovic, D., & Nielsen, J.
(2013). Correlation of cell growth and heterologous protein production
by Saccharomyces cerevisiae . Applied Microbiology and
Biotechnology, 97 (20), 8955-8962.
Qiao, J., Luo, Z., Cui, S., Zhao, H., Tang, Q., Mo, C., . . . Ding, Z.
(2019). Modification of isoprene synthesis to enable production of
curcurbitadienol synthesis in Saccharomyces cerevisiae .Journal of Industrial Microbiology & Biotechnology, 46 (2),
147-157.
Sha, C., Yu, X. W., Li, F., & Xu, Y. (2013). Impact of gene dosage on
the production of lipase from Rhizopus chinensis CCTCC M201021 inPichia pastoris . Applied Biochemistry and Biotechnology,
169 (4), 1160-1172.
Shao, Z., Zhao, H., & Zhao, H. (2009). DNA assembler, an in vivo
genetic method for rapid construction of biochemical pathways.Nucleic Acids Research, 37 (2), e16.
Shiao, M. S. (2003). Natural products of the medicinal fungusGanoderma lucidum : occurrence, biological activities, and
pharmacological functions. Chemical Record, 3 (3), 172-180.
Sugishima, M., Sato, H., Higashimoto, Y., Harada, J., Wada, K.,
Fukuyama, K., & Noguchi, M. (2014). Structural basis for the electron
transfer from an open form of NADPH-cytochrome P450 oxidoreductase to
heme oxygenase. Proceedings of the National Academy of Sciences of
the United States of America, 111 (7), 2524-2529.
Wang, W. F., Xiao, H., & Zhong, J. J. (2018). Biosynthesis of a
ganoderic acid in Saccharomyces cerevisiae by expressing a
cytochrome P450 gene from Ganoderma lucidum . Biotechnology
and Bioengineering, 115 (7), 1842-1854.
Wang, S. Z., Zhang, Y. H., Ren, H., Wang, Y. L., Jiang, W., & Fang, B.
S. (2017). Strategies and perspectives of assembling multi-enzyme
systems. Critical Reviews in Biotechnology, 37 (8), 1024-1037.
Wu, G. S., Guo, J. J., Bao, J. L., Li, X. W., Chen, X. P., Lu, J. J., &
Wang, Y. T. (2013). Anti-cancer properties of triterpenoids isolated
from Ganoderma lucidum - a review. Expert Opinion on
Investigational Drugs, 22 (8), 981-992.
Xiao, H., Zhang, Y., & Wang, M. (2019). Discovery and Engineering of
Cytochrome P450s for Terpenoid Biosynthesis. Trends in
Biotechnology, 37 (6), 618-631.
Xiao, H., & Zhong, J. J. (2016). Production of Useful Terpenoids by
Higher-Fungus Cell Factory and Synthetic Biology Approaches.Trends in Biotechnology, 34 (3), 242-255.
Yang, C., Li, W., Li, C., Zhou, Z., Xiao, Y., & Yan, X. (2018).
Metabolism of ganoderic acids by a Ganoderma lucidum cytochrome
P450 and the 3-keto sterol reductase ERG27 from yeast.Phytochemistry, 155 , 83-92.
Zhang, H., Yan, J. N., Zhang, H., Liu, T. Q., Xu, Y., Zhang, Y. Y., &
Li, J. (2018). Effect of gpd box copy numbers in the gpdA promoter ofAspergillus nidulans on its transcription efficiency inAspergillus niger . FEMS Microbiology Letters, 365 (15).
Zhong, J. J., & Xiao, J. H. (2009). Secondary metabolites from higher
fungi: discovery, bioactivity, and bioproduction. Advances in
Biochemical Engineering-Biotechnology, 113 , 79-150.
Zhu, M., Wang, C., Sun, W., Zhou, A., Wang, Y., Zhang, G., . . . Li, C.
(2018). Boosting 11-oxo-beta-amyrin and glycyrrhetinic acid synthesis inSaccharomyces cerevisiae via pairing novel oxidation and
reduction system from legume plants. Metabolic Engineering, 45 ,
43-50.
Table 1. The 13C-NMR and 1H-NMR data
of compound A .