Acknowledgement
This work was supported by China National GeneBank (CNGB). Our project
was financially supported by funding from the Guangdong Provincial Key
Laboratory of Genome Read and Write (grant No. 2017B030301011). We thank
the Guangdong Provincial Academician Workstation of BGI Synthetic
Genomics (No. 2017B090904014).
[1] L. The, Emerging
understandings of 2019-nCoV, The Lancet 395 (2020) 311.
[2] World Health Organization. WHO
Novel Coronavirus (2019-nCoV) situation reports,
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/.
[3] N. Zhu, D. Zhang, W. Wang, X.
Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan,
X. Ma, D. Wang, W. Xu, G. Wu, G.F. Gao, W. Tan, I. China Novel
Coronavirus, T. Research, A Novel Coronavirus from Patients with
Pneumonia in China, 2019, N Engl J Med 382 (2020) 727-733.
[4] P. Zhou, X.L. Yang, X.G. Wang,
B. Hu, L. Zhang, W. Zhang, H.R. Si, Y. Zhu, B. Li, C.L. Huang, H.D.
Chen, J. Chen, Y. Luo, H. Guo, R.D. Jiang, M.Q. Liu, Y. Chen, X.R. Shen,
X. Wang, X.S. Zheng, K. Zhao, Q.J. Chen, F. Deng, L.L. Liu, B. Yan, F.X.
Zhan, Y.Y. Wang, G.F. Xiao, Z.L. Shi, A pneumonia outbreak associated
with a new coronavirus of probable bat origin, Nature 579 (2020)
270-273.
[5] T.T. Lam, M.H. Shum, H.C. Zhu,
Y.G. Tong, X.B. Ni, Y.S. Liao, W. Wei, W.Y. Cheung, W.J. Li, L.F. Li,
G.M. Leung, E.C. Holmes, Y.L. Hu, Y. Guan, Identifying SARS-CoV-2
related coronaviruses in Malayan pangolins, Nature (2020).
[6] K. Xiao, J. Zhai, Y. Feng, N.
Zhou, X. Zhang, J.J. Zou, N. Li, Y. Guo, X. Li, X. Shen, Z. Zhang, F.
Shu, W. Huang, Y. Li, Z. Zhang, R.A. Chen, Y.J. Wu, S.M. Peng, M. Huang,
W.J. Xie, Q.H. Cai, F.H. Hou, W. Chen, L. Xiao, Y. Shen, Isolation of
SARS-CoV-2-related coronavirus from Malayan pangolins, Nature (2020).
[7] J. Shi, Z. Wen, G. Zhong, H.
Yang, C. Wang, B. Huang, R. Liu, X. He, L. Shuai, Z. Sun, Y. Zhao, P.
Liu, L. Liang, P. Cui, J. Wang, X. Zhang, Y. Guan, W. Tan, G. Wu, H.
Chen, Z. Bu, Susceptibility of ferrets, cats, dogs, and other
domesticated animals to SARS–coronavirus 2, Science 368 (2020) 5.
[8] Q. Zhang, H. Zhang, K. Huang,
Y. Yang, X. Hui, J. Gao, X. He, C. Li, W. Gong, Y. Zhang, C. Peng, X.
Gao, H. Chen, Z. Zou, Z. Shi, M. Jin, SARS-CoV-2 neutralizing serum
antibodies in cats: a serological investigation, bioRxiv (2020).
[9] P.J. Halfmann, M. Hatta, S.
Chiba, T. Maemura, S. Fan, M. Takeda, N. Kinoshita, S.I. Hattori, Y.
Sakai-Tagawa, K. Iwatsuki-Horimoto, M. Imai, Y. Kawaoka, Transmission of
SARS-CoV-2 in Domestic Cats, N Engl J Med (2020).
[10] T.H.C. Sit, C.J. Brackman,
S.M. Ip, K.W.S. Tam, P.Y.T. Law, E.M.W. To, V.Y.T. Yu, L.D. Sims, D.N.C.
Tsang, D.K.W. Chu, R. Perera, L.L.M. Poon, M. Peiris, Infection of dogs
with SARS-CoV-2, Nature (2020).
[11] S.F. Sia, L.M. Yan, A.W.H.
Chin, K. Fung, K.T. Choy, A.Y.L. Wong, P. Kaewpreedee, R. Perera, L.L.M.
Poon, J.M. Nicholls, M. Peiris, H.L. Yen, Pathogenesis and transmission
of SARS-CoV-2 in golden hamsters, Nature (2020).
[12] W. Li, M.J. Moore, N.
Vasilieva, J. Sui, S.K. Wong, M.A. Berne, M. Somasundaran, J.L.
Sullivan, K. Luzuriaga, T.C. Greenough, H. Choe, M. Farzan,
Angiotensin-converting enzyme 2 is a functional receptor for the SARS
coronavirus, Nature 426 (2003) 5.
[13] M. Hoffmann, H.
Kleine-Weber, S. Schroeder, N. Kruger, T. Herrler, S. Erichsen, T.S.
Schiergens, G. Herrler, N.H. Wu, A. Nitsche, M.A. Muller, C. Drosten, S.
Pohlmann, SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is
Blocked by a Clinically Proven Protease Inhibitor, Cell 181 (2020)
271-280 e278.
[14] Y. Qiu, Y.B. Zhao, Q. Wang,
J.Y. Li, Z.J. Zhou, C.H. Liao, X.Y. Ge, Predicting the angiotensin
converting enzyme 2 (ACE2) utilizing capability as the receptor of
SARS-CoV-2, Microbes Infect (2020).
[15] S. Kumar, G. Stecher, M. Li,
C. Knyaz, K. Tamura, MEGA X: Molecular Evolutionary Genetics Analysis
across Computing Platforms, Mol Biol Evol 35 (2018) 1547-1549.
[16] K. Katoh, D.M. Standley,
MAFFT multiple sequence alignment software version 7: improvements in
performance and usability, Mol Biol Evol 30 (2013) 772-780.
[17] S. Lu, J. Wang, F. Chitsaz,
M.K. Derbyshire, R.C. Geer, N.R. Gonzales, M. Gwadz, D.I. Hurwitz, G.H.
Marchler, J.S. Song, N. Thanki, R.A. Yamashita, M. Yang, D. Zhang, C.
Zheng, C.J. Lanczycki, A. Marchler-Bauer, CDD/SPARCLE: the conserved
domain database in 2020, Nucleic Acids Res 48 (2020) D265-D268.
[18] I.A. Adzhubei, S. Schmidt,
L. Peshkin, V.E. Ramensky, A. Gerasimova, P. Bork, A.S. Kondrashov, S.R.
Sunyaev, A method and server for predicting damaging missense mutations,
Nat Methods 7 (2010) 248-249.
[19] A. Waterhouse, M. Bertoni,
S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F.T. Heer, T.A.P. de
Beer, C. Rempfer, L. Bordoli, R. Lepore, T. Schwede, SWISS-MODEL:
homology modelling of protein structures and complexes, Nucleic Acids
Res 46 (2018) W296-W303.
[20] X. Zhai, J. Sun, Z. Yan, J.
Zhang, J. Zhao, Z. Zhao, Q. Gao, W.T. He, M. Veit, S. Su, Comparison of
SARS-CoV-2 spike protein binding to ACE2 receptors from human, pets,
farm animals, and putative intermediate hosts, J Virol (2020).
[21] K.D. Sonawane, S.S. Barale,
M.J. Dhanavadeb, S.R. Waghmare, N.H. Nadaf, S.A. Kamble, A.A. Mohammed,
A.M. Makandar, P.M. Fandilolu, A.S. Dound, N.M. Naik, , Homology
modeling and docking studies of TMPRSS2 with experimentally known
inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride to
control SARS-Coronavirus-2, ChemRxiv (2020).