Acknowledgement
This work was supported by China National GeneBank (CNGB). Our project was financially supported by funding from the Guangdong Provincial Key Laboratory of Genome Read and Write (grant No. 2017B030301011). We thank the Guangdong Provincial Academician Workstation of BGI Synthetic Genomics (No. 2017B090904014).
[1] L. The, Emerging understandings of 2019-nCoV, The Lancet 395 (2020) 311.
[2] World Health Organization. WHO Novel Coronavirus (2019-nCoV) situation reports, https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/.
[3] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, X. Zhao, B. Huang, W. Shi, R. Lu, P. Niu, F. Zhan, X. Ma, D. Wang, W. Xu, G. Wu, G.F. Gao, W. Tan, I. China Novel Coronavirus, T. Research, A Novel Coronavirus from Patients with Pneumonia in China, 2019, N Engl J Med 382 (2020) 727-733.
[4] P. Zhou, X.L. Yang, X.G. Wang, B. Hu, L. Zhang, W. Zhang, H.R. Si, Y. Zhu, B. Li, C.L. Huang, H.D. Chen, J. Chen, Y. Luo, H. Guo, R.D. Jiang, M.Q. Liu, Y. Chen, X.R. Shen, X. Wang, X.S. Zheng, K. Zhao, Q.J. Chen, F. Deng, L.L. Liu, B. Yan, F.X. Zhan, Y.Y. Wang, G.F. Xiao, Z.L. Shi, A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature 579 (2020) 270-273.
[5] T.T. Lam, M.H. Shum, H.C. Zhu, Y.G. Tong, X.B. Ni, Y.S. Liao, W. Wei, W.Y. Cheung, W.J. Li, L.F. Li, G.M. Leung, E.C. Holmes, Y.L. Hu, Y. Guan, Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins, Nature (2020).
[6] K. Xiao, J. Zhai, Y. Feng, N. Zhou, X. Zhang, J.J. Zou, N. Li, Y. Guo, X. Li, X. Shen, Z. Zhang, F. Shu, W. Huang, Y. Li, Z. Zhang, R.A. Chen, Y.J. Wu, S.M. Peng, M. Huang, W.J. Xie, Q.H. Cai, F.H. Hou, W. Chen, L. Xiao, Y. Shen, Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins, Nature (2020).
[7] J. Shi, Z. Wen, G. Zhong, H. Yang, C. Wang, B. Huang, R. Liu, X. He, L. Shuai, Z. Sun, Y. Zhao, P. Liu, L. Liang, P. Cui, J. Wang, X. Zhang, Y. Guan, W. Tan, G. Wu, H. Chen, Z. Bu, Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2, Science 368 (2020) 5.
[8] Q. Zhang, H. Zhang, K. Huang, Y. Yang, X. Hui, J. Gao, X. He, C. Li, W. Gong, Y. Zhang, C. Peng, X. Gao, H. Chen, Z. Zou, Z. Shi, M. Jin, SARS-CoV-2 neutralizing serum antibodies in cats: a serological investigation, bioRxiv (2020).
[9] P.J. Halfmann, M. Hatta, S. Chiba, T. Maemura, S. Fan, M. Takeda, N. Kinoshita, S.I. Hattori, Y. Sakai-Tagawa, K. Iwatsuki-Horimoto, M. Imai, Y. Kawaoka, Transmission of SARS-CoV-2 in Domestic Cats, N Engl J Med (2020).
[10] T.H.C. Sit, C.J. Brackman, S.M. Ip, K.W.S. Tam, P.Y.T. Law, E.M.W. To, V.Y.T. Yu, L.D. Sims, D.N.C. Tsang, D.K.W. Chu, R. Perera, L.L.M. Poon, M. Peiris, Infection of dogs with SARS-CoV-2, Nature (2020).
[11] S.F. Sia, L.M. Yan, A.W.H. Chin, K. Fung, K.T. Choy, A.Y.L. Wong, P. Kaewpreedee, R. Perera, L.L.M. Poon, J.M. Nicholls, M. Peiris, H.L. Yen, Pathogenesis and transmission of SARS-CoV-2 in golden hamsters, Nature (2020).
[12] W. Li, M.J. Moore, N. Vasilieva, J. Sui, S.K. Wong, M.A. Berne, M. Somasundaran, J.L. Sullivan, K. Luzuriaga, T.C. Greenough, H. Choe, M. Farzan, Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus, Nature 426 (2003) 5.
[13] M. Hoffmann, H. Kleine-Weber, S. Schroeder, N. Kruger, T. Herrler, S. Erichsen, T.S. Schiergens, G. Herrler, N.H. Wu, A. Nitsche, M.A. Muller, C. Drosten, S. Pohlmann, SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell 181 (2020) 271-280 e278.
[14] Y. Qiu, Y.B. Zhao, Q. Wang, J.Y. Li, Z.J. Zhou, C.H. Liao, X.Y. Ge, Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2, Microbes Infect (2020).
[15] S. Kumar, G. Stecher, M. Li, C. Knyaz, K. Tamura, MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms, Mol Biol Evol 35 (2018) 1547-1549.
[16] K. Katoh, D.M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol Biol Evol 30 (2013) 772-780.
[17] S. Lu, J. Wang, F. Chitsaz, M.K. Derbyshire, R.C. Geer, N.R. Gonzales, M. Gwadz, D.I. Hurwitz, G.H. Marchler, J.S. Song, N. Thanki, R.A. Yamashita, M. Yang, D. Zhang, C. Zheng, C.J. Lanczycki, A. Marchler-Bauer, CDD/SPARCLE: the conserved domain database in 2020, Nucleic Acids Res 48 (2020) D265-D268.
[18] I.A. Adzhubei, S. Schmidt, L. Peshkin, V.E. Ramensky, A. Gerasimova, P. Bork, A.S. Kondrashov, S.R. Sunyaev, A method and server for predicting damaging missense mutations, Nat Methods 7 (2010) 248-249.
[19] A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F.T. Heer, T.A.P. de Beer, C. Rempfer, L. Bordoli, R. Lepore, T. Schwede, SWISS-MODEL: homology modelling of protein structures and complexes, Nucleic Acids Res 46 (2018) W296-W303.
[20] X. Zhai, J. Sun, Z. Yan, J. Zhang, J. Zhao, Z. Zhao, Q. Gao, W.T. He, M. Veit, S. Su, Comparison of SARS-CoV-2 spike protein binding to ACE2 receptors from human, pets, farm animals, and putative intermediate hosts, J Virol (2020).
[21] K.D. Sonawane, S.S. Barale, M.J. Dhanavadeb, S.R. Waghmare, N.H. Nadaf, S.A. Kamble, A.A. Mohammed, A.M. Makandar, P.M. Fandilolu, A.S. Dound, N.M. Naik, , Homology modeling and docking studies of TMPRSS2 with experimentally known inhibitors Camostat mesylate, Nafamostat and Bromhexine hydrochloride to control SARS-Coronavirus-2, ChemRxiv (2020).