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Abstract

In this paper, we consider the following coupled Schrödinger system with
doubly critical exponents, which can be seen as a counterpart of the Brezis-
Nirenberg problem

−∆u+ λ1u = µ1u
5 + βu2v3, x ∈ Ω,

−∆v + λ2v = µ2v
5 + βv2u3, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,

where Ω is a ball in R3, −λ1(Ω) < λ1, λ2 < −1
4λ1(Ω), µ1, µ2 > 0 and β > 0.

Here λ1(Ω) is the first eigenvalue of −∆ with Dirichlet boundary condition in
Ω. We show that the problem has at least one nontrivial solution for all β > 0.
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1 Introduction and main results

In this paper, we study the following critically coupled perturbed Brezis-Nirenberg
system 

−∆u+ λ1u = µ1u
5 + βu2v3, x ∈ Ω,

−∆v + λ2v = µ2v
5 + βv2u3, x ∈ Ω,

u = v = 0, x ∈ ∂Ω,
(1.1)
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where Ω is a smooth bounded domain in R3, −λ1(Ω) < λ1, λ2 < 0, µ1, µ2 > 0 and
β 6= 0. Here λ1(Ω) is the first eigenvalue of −∆ with Dirichlet boundary condition in
Ω.

In recent years, there have been a lot of researches on the following coupled system
of the time-dependent nonlinear Schrödinger equations

−i ∂
∂t

Φ1 −∆Φ1 = µ1|Φ1|2Φ1 + β|Φ2|2Φ1, x ∈ Ω, t > 0,
−i ∂

∂t
Φ2 −∆Φ2 = µ2|Φ2|2Φ2 + β|Φ1|2Φ2, x ∈ Ω, t > 0,

Φj = Φj(x, t) ∈ C, j = 1, 2,
Φj(x, t) = 0, j = 1, 2, x ∈ ∂Ω, t > 0,

(1.2)

where Ω ⊂ RN(N ≤ 3) is the whole domain RN or a smooth bounded domain. i is the
imaginary unit, µ1, µ2 > 0 and a coupling constant β 6= 0. System (1.2) arises from
many branches of physics, including the Hartree-Fock theory for a binary mixture
of Bose-Einstein condensates in two different hyperfine states and an application
of nonlinear topics to birefringent optical fibers, see more details in [1, 14, 21] and
references theiren.

To obtain solitary wave solutions of system (1.2), we set Φ1(x, t) = eiλ1tu(x) and
Φ2(x, t) = eiλ2tv(x), then (1.2) turns to be the following elliptic system

−∆u+ λ1u = µ1u
3 + βuv2, x ∈ Ω,

−∆v + λ2v = µ2v
3 + βvu2, x ∈ Ω,

u = v = 0, x ∈ ∂Ω.
(1.3)

For a coupled system, we are interested in the existence of a nontrivial solution (u, v),
i.e. (u, v) satisfying the system with both u 6≡ 0 and v 6≡ 0. However, the system
problem may have solutions of the form (u, 0) or (0, v) with u, v 6≡ 0, which we call
semi-trivial solutions and may cause some difficulties. When N ≤ 3, system (1.3) is
a system problem of subcritical growth. It was first studied by Lin and Wei in [17],
who showed that (1.3) has a nontrivial solution when Ω = RN and 0 < β <

√
µ1µ2.

After that, the existence and multiplicity results have been extensively studied, see
e.g. [2, 3, 4, 6, 7, 13, 18, 19, 20, 26, 27, 28] and the references therein.

Recently, there have been some papers studying critical system problems related
to (1.3) in which the nonlinearity and coupling terms are of Sobolev critical growth,
i.e. 

−∆u+ λ1u = µ1|u|2
∗−2u+ β|u| 2

∗
2
−2u|v| 2

∗
2 , x ∈ Ω,

−∆v + λ2v = µ2|v|2
∗−2v + β|v| 2

∗
2
−2v|u| 2

∗
2 , x ∈ Ω,

u, v > 0, x ∈ Ω,
u = v = 0, x ∈ ∂Ω,

(1.4)

where Ω ⊂ RN (N ≥ 3) is a smooth bounded domain, 2∗ = 2N
N−2

,−λ1(Ω) < λ1, λ2 < 0,
µ1, µ2 > 0 and β 6= 0. Our problem (1.1) is a special case of (1.4) with N = 3.

When β = 0, (1.4) turns out to be the well known Brezis-Nirenberg single equation

−∆u+ λiu = µi|u|2
∗−2u, u ∈ H1

0 (Ω), i = 1, 2, (1.5)

2



which has been widely investigated in the past years, see e.g. [5, 8]. It is proved in
[5] that (1.5) has a positive least energy solution uµi if −λ1(Ω) < λi < 0 for N ≥ 4

or −λ1(Ω) < λi < −λ∗(Ω) (this set may be vacuous) for N = 3, where λ∗(Ω) = π2

4R2
0

with R0 = sup{R| BR(x) ⊂ Ω}, (see Theorems 1.1 and 1.2’ in [5]). In particular, for
Ω being a ball in R3, λ∗(Ω) = 1

4
λ1(Ω).

When β 6= 0, one easily sees that (uµ1 , 0) and (0, uµ2) are both semitrivial solutions
of problem (1.4). We are interested in the existence of nontrivial solutions. There are
some papers on this respect in the literature, see e.g. [9, 10, 11, 12, 15, 22, 23, 24, 25,
16, 30, 31] and the references therein. Chen and Zou studied the case where N = 4 in
[11]. They showed that for a special case where λ1 = λ2 = λ, (1.4) has a positive least
energy solution of the form (

√
kw,
√
lw) if 0 < β < min{µ1, µ2} or β > max{µ1, µ2},

where w is a positive least energy solution of −∆w+ λw = w3 in H1
0 (Ω) and k, l > 0

is the unique solution of the linear system µ1k + βl = 1, βk + µ2l = 1. For the
general case where −λ1(Ω) < λ1, λ2 < 0, by Ekeland’s variational principle and
the mountain pass theorem, they showed that there exist 0 < β1 ≤ min{µ1, µ2},
β2 ≥ max{µ1, µ2} such that (1.4) has a positive least energy solution for all β ∈
(−∞, 0) ∪ (0, β1) ∪ (β2,+∞). (1.4) does not have a nontrivial nonnegative solution
if min{µ1, µ2} ≤ β ≤ max{µ1, µ2} and µ1 6= µ2. But it is unknown whether the
least energy solution exists or not if β ∈ [β1, β2] (see Remark 1.3 in [12]). Recently,
by introducing a suitable submanifold, the author in [31] fills the narrow gap of the
range of β > 0 for the existence of positive solutions given in [11] and proved that
(1.4) has a positive solution for 0 < β < min{µ1, µ2} or β > max{µ1, µ2}. When
N = 4, A. Pistoia and H. Tavares studied the existence of spiked solutions for (1.4)
with β > 0 small or β < 0 (see [25]).

In [12], Chen and Zou studied the higher dimensional case N ≥ 5. By using
an essential fact that 2∗ < 4 and the mountain pass lemma, they proved that if
−λ1(Ω) < λ1, λ2 < 0, then (1.4) has a positive least energy solution for any β 6= 0.
When λ1 = λ2 = λ, they showed that (1.4) has a least energy solution (

√
k0w,

√
l0w)

if β ≥ 2
N−2

max{µ1, µ2}, where w is a positive least energy solution of −∆w + λw =

|w|2∗−2w in H1
0 (Ω) and (k0, l0) satisfies the following system

µ1k
2∗
2
−1 + βk

2∗
4
−1l

2∗
4 = 1, βk

2∗
4 l

2∗
4
−1 + µ2l

2∗
2
−1 = 1, k, l > 0 (1.6)

and k0 = min{k| (k, l) is a solution of (1.6)}; By an alternative method, Ye and
Peng in [30] prove that when λ1 = λ2, (1.4) has a least energy solution of the form
(
√
kw,
√
lw) for all β > 0.

Chen and Lin in [9] proved the asymptotic behavior of least energy solutions of
(1.4) when N ≥ 4. The existence of signchanging solutions for (1.4) with β < 0 has
been studied by Chen, Lin and Zou in [10] (N ≥ 6) and by Peng, Peng and Wang in
[22] (N = 5).

When N = 3, problem (1.4) becomes exactly (1.1) (if u, v > 0). In [16],
Kim proved that when 0 < µ1 ≤ µ2, there exists sufficiently large β3 such that
for β > β3, (1.1) has a nontrivial least energy solution if −λ1(Ω) < λ1, λ2 < 0
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and
λ1 + λ2θ

2

1 + θ2
< −λ∗(Ω), where θ = θ(β) → 1 as β → +∞ and satisfies that

βθ3 − µ2θ
4 − βθ + µ1 = 0. Kim also proved that (1.1) has a nontrivial solution

for small |β| if −λ1(Ω) < λ1, λ2 < −λ∗(Ω). In [30], Ye and Peng showed that
when −λ1(Ω) < λ1, λ2 < −λ∗(Ω), (1.1) has a positive least energy solution for

β > max{
√

2(19µ2−µ1)
8

,
√

2(19µ1−µ2)
8

, 9√
2 min{B2

µ1
,B2
µ2
}}, where Bµ1 , Bµ2 respectively denote

the least energy of the positive least energy solution to (1.5). For λ1 = λ2, it is proved
in [30] that (1.1) has at least one positive solution for all β > 0, and has a positive

least energy solution if β > max{
√

2(19µ2−µ1)
8

,
√

2(19µ1−µ2)
8

}. Guo and Zou showed in
[15] that (1.1) has a positive least energy solution when 0 < β ≤ 2 min{µ1, µ2}.
However, as far as we know, whether problem (1.1) has a nontrivial solution for all
β 6= 0 is unknown yet. It is quite interesting to find out what the optimal ranges of
β for the existence of nontrivial solutions might be. The present paper is devoted to
this aspect and partially answers this question.

When Ω = Ωε ⊂ RN(N = 3, 4) with small shrinking holes as the parameter ε→ 0,
A. Pistoia, N. Soave and H. Tavares studied the existence of positive solutions for
(1.4) (see [23, 24]).

In this paper, without loss of generality, we may assume that Ω is a ball in R3.
Define H := H1

0 (Ω) × H1
0 (Ω) with the norm defined as ‖(u, v)‖H = (

∫
Ω
|∇u|2 +∫

Ω
|∇v|2)

1
2 . Weak solutions of (1.1) correspond to critical points of the following

functional I : H → R:

I(u, v) =
1

2

∫
Ω

(|∇u|2 + λ1u
2 + |∇v|2 + λ2v

2)− 1

6

∫
Ω

(µ1|u|6 + µ2|v|6 + 2β|u|3|v|3),

for any (u, v) ∈ H. We call (u, v) a positive solution of (1.1) if (u, v) is a nontrivial
solution and u, v > 0 a.e. in Ω. We call (u, v) a positive least energy solution of (1.1)
if (u, v) is a positive solution and

I(u, v) = inf{I(ϕ, ψ)| (ϕ, ψ) is a nontrivial solution of (1.1)}.

Motivated by [11, 12], we define

M =
{

(u, v) ∈ H| u 6≡ 0, v 6≡ 0,

∫
Ω

(|∇u|2 + λ1u
2) =

∫
Ω

µ1|u|6 +

∫
Ω

β|u|3|v|3,∫
Ω

(|∇v|2 + λ2v
2) =

∫
Ω

µ2|v|6 +

∫
Ω

β|u|3|v|3
}
.

Then M contains all nontrivial solutions of (1.1). Take ϕ, ψ ∈ C∞0 (Ω)\{0} with
supp(ϕ) ∩ supp(ψ) = ∅, then there exist t1, t2 > 0 such that (t1ϕ, t2ψ) ∈ M , so
M 6= ∅. Set

B := inf
(u,v)∈M

I(u, v) = inf
(u,v)∈M

1

3

∫
Ω

(|∇u|2 + λ1u
2 + |∇v|2 + λ2v

2), (1.7)
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then B > 0.
We first consider a special case −λ1(Ω) < λ1 = λ2 = λ < −1

4
λ1(Ω). Recall that

it has been showed in [5] and [32] that

−∆w + λw = w5, w ∈ H1
0 (Ω) (1.8)

has a unique positive least energy solution w with its energy

B1 :=
1

3

∫
Ω

(|∇w|2 + λw2) =
1

3

∫
Ω

|w|6 < 1

3
S

3
2 , (1.9)

where S is the sharp constant of D1,2(R3) ↪→ L6(R3), i.e. S = inf
u∈D1,2(R3)

∫
R3 |∇u|2

(
∫
R3 |u|6)

1
3
.

Here D1,2(R3) = {u ∈ L2(R3)||∇u| ∈ L2(R3)}. Moreover, it is showed in [29] that

(3B1)
2
3 = inf

u∈H1
0 (Ω)\{0}

∫
Ω

(|∇u|2 + λu2)(∫
Ω
|u|6
) 1

3

. (1.10)

For any µ1, µ2, β > 0, the following system
µ1t

4 + βts3 = 1,
µ2s

4 + βst3 = 1,
t, s > 0

(1.11)

has a unique solution (t0, s0) such that

t20 + s2
0 = min{t2 + s2| (t, s) is a solution of (1.11)}

(see Lemma 2.9 below). Then our main results are as follows.

Theorem 1.1. Suppose that µ1, µ2, β > 0 and −λ1(Ω) < λ1 = λ2 = λ < −1
4
λ1(Ω)

for Ω being a ball in R3.
(1) If µ1 = µ2, then the following two conclusions hold.
(a1) For β ≤ 2µ1, (1.1) has a unique positive solution of the form (tw, sw);
(a2) For β > 2µ1, (1.1) has three positive solutions of the form (tw, sw);
Moreover, (t0w, s0w) is the unique least energy solution of (1.1) with B = (t20 +

s2
0)B1 for all β > 0.

(2) If µ1 6= µ2, then there exist β∗ > 2 max{µ1, µ2} such that the following three
conclusions hold.

(b1) For β < β∗, (1.1) has a unique positive solution of the form (tw, sw);
(b2) For β = β∗, (1.1) has exactly two positive solutions of the form (tw, sw);
(b3) For β > β∗, (1.1) has three positive solutions of the form (tw, sw);
Moreover, there exists 2 min{µ1, µ2} < β∗ < β∗ such that (t0w, s0w) is the unique

least energy solution of (1.1) with B = (t20 + s2
0)B1 for all β ∈ (0, β∗] ∪ [β∗,+∞).
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Theorem 1.2. Suppose that µ1, µ2 > 0 and −λ1(Ω) < λ1, λ2 < −1
4
λ1(Ω) for Ω

being a ball in R3, then (1.1) has a nontrivial solution for all β > 0. Moreover, if
0 < β < 2

√
µ1µ2, then (1.1) has a positive least energy solution (u, v) with I(u, v) =

B.

Remark 1.3. For arbitrary domain Ω ⊂ R3, by the same proof, Theorems 1.2 and
1.1 hold for −λ1(Ω) < λi < −λ∗(Ω) if the set (−λ1(Ω),−λ∗(Ω)) 6= ∅.

We give the main idea in the proof of the main theorems. To prove Theorem 1.1,
the key point is to search for positive solutions for the system (1.11), which can be
viewed as a special case of (1.6) with N = 3. However, the existence of solutions
to (1.11) is totally different from (1.6) with N ≥ 4. It has been proved in [11, 30]
that (1.6) has a unique positive solution when N ≥ 4. But for (1.11), by delicate
calculations, we show that if µ1 = µ2, then

#{(t, s)|(t, s) is a solution of (1.11)} =

{
1, if 0 < β ≤ 2µ1,
3, if β > 2µ1

and if µ1 6= µ2, then

#{(t, s)|(t, s) is a solution of (1.11)} =


1, if 0 < β < β∗,
2, if β = β∗,
3, if β > β∗,

here we denote #A to be the number of elements in a set A. We succeed in proving
Theorem 1.1 by getting a solution (t0, s0) of (1.11) satisfying t20 + s2

0 = min{t2 +
s2| (t, s) is a solution of (1.11)} and proving the following inequality

µ1t
4 + βts3 ≥ 1,

µ2s
4 + βst3 ≥ 1,

t, s > 0,
=⇒ t2 + s2 ≥ t20 + s2

0 (1.12)

holds for all β > 0 if µ1 = µ2 or β ∈ (0, β∗] ∪ [β∗,+∞) if µ1 6= µ2.
To prove Theorem 1.2, since (1.1) is a doubly Sobolev critical system, the func-

tional I does not satisfy (PS)c condition at every level c. We have to deal with two
bad possibilities that (PS)c sequences of I weakly converge to semetrivial solutions
or weakly converge to the trivial solution. This difficulty is usually overcome by
pulling the energy level down below some critical energy level. We recall that for
problem (1.4) with N ≥ 4, the critical energy level is obtained in [11, 12] by using
the important fact that 2∗ ≤ 4 and that the system (1.6) has a unique solution. In
[16, 30], by requiring that β > 0 is large enough, they show that for the mountain
pass level c, the corresponding function satisfies the (PS)c condition. However, since
we deal with all β > 0 in (1.1), the methods in [16, 30] does not work here. In (1.1),
2∗ = 6 > 4. The system (1.11), which is a special case of (1.6) with N = 3, may
have multiple solutions. Then the methods in [11, 12] to get the critical energy level
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cannot be directly applied to (1.1), To overcome this difficulty, we first prove that for
any β > 0 and any minimizing sequence {(un, vn)} ⊂M of B, there exist a constant
C0 > 0 such that

∫
Ω
|∇un|6,

∫
Ω
|vn|6 ≥ C0 and that for 0 < β < 2

√
µ1µ2, each mini-

mizer of B is a nontrivial critical point of I, which give us a clue that when β > 0 is
small, we could obtain least energy solutions of (1.1) by searching for minimizers of
B. Using the uniqueness of positive solutions to (1.11), we show that for β ≤ 2µ1 if

µ1 = µ2 or β < β∗ if µ1 6= µ2, B < min{Bµ1 +Bµ2 ,
1
3
(t20 + s2

0)S
3
2}. Therefore by using

the constrained minimization method, we succeed in proving that each minimizing
sequence of B may weakly converge to a positive least energy solution of (1.1) for
β < 2

√
µ1µ2.

For β ≥ 2
√
µ1µ2, the critical energy level cannot be similarly obtained since (1.11)

may have two or three solutions. To do so, without loss of generality, we may assume
that µ1 ≤ µ2. We introduce a suitable submanifold of the associated Nehari manifold

M =

{
(u, v) ∈ H\{(0, 0)}|

∫
Ω

(|∇u|2 + λ1u
2 + |∇v|2 + λ2v

2) =

∫
Ω

(µ1|u|6 + µ2|v|6

+ 2β|u|3|v|3), 2µ1

∫
Ω

|u|6 ≤ βτ 3
0

∫
Ω

|u|3|v|3, τ 3
∗

∫
Ω

|v|6 ≤
∫

Ω

|u|3|v|3
}
.

where τ0 = t0
s0

and τ∗ ∈ (0, τ0) is chosen to satisfy that τ2
∗+1

(µ1τ4
∗+βτ∗)

1
2
≥ t20 + s2

0 (see (3.7)

below). Indeed, the subset M excludes the bad possibility of semitrivial solutions
in the Nehari manifold. The definition of M requires us to learn more about the
solutions of (1.11) and the inequality (1.12). Then the constrained minimization
method is carried out on M, i.e. mβ := inf

(u,v)∈M
I(u, v) > 0, We prove that mβ <

1
3
(t20 + s2

0)S
3
2 and each minimizing sequence of mβ weakly converges to a nontrivial

critical point of I. Then the theorem is proved.
Throughout this paper, we use standard notations. For simplicity, we write

∫
Ω
h

to mean the Lebesgue integral of h(x) over a domain Ω ⊂ R3, Lp(Ω) (1 ≤ p < +∞)
is the usual Lebesgue space with the standard norm |u|p. We use “→, ⇀” to denote
the strong and weak convergence in the related function space respectively. Br(x) :=
{y ∈ R3| |x− y| < r}. C will denote a positive constant unless specified. We denote
a subsequence of a sequence {un} as {un} to simplify the notation unless specified.

The paper is organized as follows. In § 2, we prove Theorem 1.1. In § 3, we will
prove Theorem 1.2.

2 Proof of Theorem 1.1

In this section, we consider the case where −λ1(Ω) < λ1 = λ2 = λ < −1
4
λ1(Ω). First

we give some preliminary results, which are useful to prove the theorem.
Denote

µ := max{µ1, µ2}, µ := min{µ1, µ2}.
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We consider the following function φβ : (0,+∞)→ R defined as

φβ(τ) = µ+ βτ 3 − βτ − µτ 4, ∀ τ > 0. (2.1)

Note that

lim
τ→0+

φβ(τ) = µ > 0, φβ(1) = µ− µ ≥ 0 and lim
τ→+∞

φβ(τ) = −∞, (2.2)

then φβ(τ) has at least one positive zero point, i.e. {τ > 0| φβ(τ) = 0} 6= ∅.

Lemma 2.1. Let β > 0, the following system
µ1t

4 + βts3 = 1,
µ2s

4 + βst3 = 1,
t, s > 0

(2.3)

has at least one solution.

Proof. Without loss of generality, we may assume that µ1 ≤ µ2. Suppose that τ > 0
is a zero point of φβ, i.e. µ2 + βτ 3 = βτ + µ1τ

4, then

µ1[τ(µ1τ
4 + βτ)−

1
4 ]4 + βτ(µ1τ

4 + βτ)−
1
4 [(µ1τ

4 + βτ)−
1
4 ]3 = 1

and
µ2[(µ1τ

4 + βτ)−
1
4 ]4 + β(µ1τ

4 + βτ)−
1
4 [τ(µ1τ

4 + βτ)−
1
4 ]3 = 1,

i.e. (τ(µ1τ + βτ 4)−
1
4 , (µ1τ + βτ 4)−

1
4 ) is a solution of (2.3). Then the lemma is

proved.

For β > 0, set

Tβ := {(t, s)| (t, s) is a solution of system (2.3)}, (2.4)

then Lemma 2.1 shows that Tβ 6= ∅.

Lemma 2.2. Let β > 0.
(1) If (t, s) ∈ Tβ, then φβ( t

s
) = 0 for µ1 ≤ µ2 and φβ( s

t
) = 0 for µ2 < µ1.

(2) If φβ(τ) = 0, then

{
(τ(µ1τ

4 + βτ)−
1
4 , (µ1τ

4 + βτ)−
1
4 ) ∈ Tβ, if µ1 ≤ µ2,

((µ2τ
4 + βτ)−

1
4 , τ(µ2τ

4 + βτ)−
1
4 ) ∈ Tβ, if µ2 < µ1.

(3)
#Tβ = #{τ > 0| φβ(τ) = 0}.

Proof. (1) If (t, s) ∈ Tβ, then µ1( t
s
)4 + β t

s
= 1

s4
= µ2 + β( t

s
)3 and µ1 + β( s

t
)3 = 1

t4
=

µ2( s
t
)4 + β s

t
. So (1) holds.

(2) is a direct consequence of Lemma 2.1. (3) follows from (1)(2).

Lemma 2.3. Let β > 0, then Tβ is a finite set and 1 ≤ #Tβ ≤ 3.
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Proof. This result follows from Lemma 2.2 and a fact that 1 ≤ #{τ > 0| φβ(τ) =
0} ≤ 3.

In order to prove Theorem 1.1, we need to look for positive zero points of φβ. We
first consider a special case where µ1 = µ2.

Lemma 2.4. Suppose that β > 0 and µ1 = µ2.
(1) If β ≤ 2µ1, then τ1 = 1 is the unique positive zero point of φβ and φβ(τ)(τ −

1) < 0 for each τ 6= 1.

(2) If β > 2µ1, then φβ has three positive zero points τ1 =
β−
√
β2−4µ2

1

2µ1
, τ2 = 1 and

τ3 =
β+
√
β2−4µ2

1

2µ1
. Moreover, φβ(τ)(τ − τ1)(τ − 1)(τ − τ3) < 0 for each τ 6= τ1, 1, τ3.

Proof. Suppose that µ1 = µ2, then φβ(τ) can be rewritten as

φβ(τ) = (τ 2 − 1)(−µ1τ
2 + βτ − µ1).

Hence φβ(τ) = 0⇔ τ = 1 or −µ1τ
2 + βτ − µ1 = 0.

If β < 2µ1, then −µ1τ
2 + βτ − µ1 < 0 for all τ ∈ R; If β = 2µ1, then −µ1τ

2 +
βτ − µ1 = −µ1(τ − 1)2. So φβ(τ) = 0⇔ τ = 1 if β ≤ 2µ1.

If β > 2µ1, then −µ1τ
2 + βτ − µ1 = 0 ⇔ τ =

β±
√
β2−4µ2

1

2µ1
. So the lemma is

proved.

For the general case where µ1, µ2 > 0, the situation is more complicated. By
direct calculations, we have

φ′β(τ) = 3βτ 2 − β − 4µτ 3 and φ′′β(τ) = 6βτ − 12µτ 2, ∀ τ > 0.

Then φ′′β(τ) = 0 ⇔ τ = β
2µ

. Moreover, φ′′β(τ) > 0 if τ ∈ (0, β
2µ

) and φ′′β(τ) < 0 if

τ > β
2µ

. Thus

φ′β(τ) < φ′β(
β

2µ
) =

β3

4µ2
− β, ∀ τ 6= β

2µ
. (2.5)

We have to discuss the following cases:

(i) If 0 < β ≤ 2µ, then φ′β(
β

2µ
) ≤ 0. (2.6)

(ii) If β > 2µ, then φ′β( β
2µ

) > φ′β(1) > 0. Since lim
τ→0+

φ′β(τ) = −β and lim
τ→+∞

φ′β(τ) =

−∞, there exist 0 < aβ < 1 < β
2µ
< bβ depending on β such that

φ′β(aβ) = φ′β(bβ) = 0 and φ′β(τ)(τ − aβ)(τ − bβ) < 0 for all τ 6= aβ, bβ. (2.7)
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Moreover, by φ′β(aβ) = 0 and aβ < 1 we have

φ′β(
1

aβ
) =

3β

a2
β

− β −
4µ

a3
β

= β

(
1

a4
β

− 1

)
+

4µ

aβ

(
1− 1

a2
β

)

=

(
1

a2
β

− 1

)(
β

a2
β

+ β −
4µ

aβ

)
> 0.

Then 1 < 1
aβ
< bβ.

Lemma 2.5. Suppose that β > 0 and µ1 6= µ2, then there exists β∗ > 2µ such that
the following three cases hold:

(1) If 0 < β < β∗, then φβ has a unique positive zero point τ1 and φβ(τ)(τ−τ1) < 0
for each τ 6= τ1. Moreover, τ1 > 1 if 0 < β ≤ 2µ; τ1 > bβ if 2µ < β < β∗.

(2) If β = β∗, then φβ∗ has exactly two positive zero points τ1, τ2. Moreover,
min{τ1, τ2} = aβ∗ , max{τ1, τ2} > bβ∗ and φβ∗(τ)(τ − max{τ1, τ2}) < 0 for each
τ 6= τ1, τ2.

(3) If β > β∗, then φβ has three positive zero points τ1, τ2, τ3. Let

τmid :=
3∑
i=1

τi − min
1≤i≤3

{τi} − max
1≤i≤3

{τi}, (2.8)

then min
1≤i≤3

{τi} < aβ < τmid < 1 < bβ < max
1≤i≤3

{τi}. Moreover, φβ(τ)(τ − τ1)(τ − τ2)(τ −
τ3) < 0 for each τ 6= τ1, τ2, τ3.

Proof. By (2.5) and (2.6), we easily see that when 0 < β ≤ 2µ, φβ(τ) is strictly
decreasing on (0,+∞). Then we conclude from (2.2) that there exists a unique
τ1 > 0 such that φβ(τ1) = 0 and φβ(τ) > 0 for 0 < τ < τ1, φβ(τ) < 0 for τ > τ1.
Moreover, by φβ(1) > 0, we have τ1 > 1.

For β > 2µ, by (2.7) we see that φβ(τ) is strictly decreasing on (0, aβ], [bβ,+∞)
and strictly increasing on [aβ, bβ]. Then φβ(bβ) > φβ(1) > 0. So by (2.2), we see that

min
τ∈(0,bβ ]

φβ(τ) = φβ(aβ) and φβ has a unique zero point on [bβ,+∞). (2.9)

We consider the following function

hβ(τ) := 4φβ(τ)− τφ′β(τ) = 4µ+ βτ 3 − 3βτ, τ > 0. (2.10)

Then it follows from (2.7) that

4φβ(aβ) = hβ(aβ) and 4φβ(bβ) = hβ(bβ). (2.11)

Note that h′β(τ) = 3β(τ 2 − 1) = 0, τ > 0 ⇔ τ = 1 and h′β(τ)(τ − 1) > 0, ∀τ 6= 1.
Then

min
τ>0

hβ(τ) = hβ(1) = 4µ− 2β.
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If 2µ < β ≤ 2µ, then hβ(τ) > hβ(1) ≥ 0 for all τ 6= 1. By (2.11) we have
φβ(aβ) > 0, which and (2.9) imply that φβ has a unique positive zero point τ1 with
τ1 > bβ and φβ(τ) > 0 for 0 < τ < τ1, φβ(τ) < 0 for τ > τ1.

If β > 2µ, then hβ(1) < 0. There exist 0 < cβ < 1 < dβ such that hβ(cβ) =
hβ(dβ) = 0 and hβ(τ)(τ − cβ)(τ − dβ) > 0, ∀τ 6= cβ, dβ. Moreover,

hβ(τ) = 4(µ− µ)− τ 3φ′β(
1

τ
). (2.12)

then hβ( 1
aβ

) > 0 and hβ( 1
bβ

) > 0. Thus we have 1
bβ
< cβ < dβ <

1
aβ
< bβ.

We rewrite φ′β(aβ) = 0 and hβ(cβ) = 0 as

3a2
β − 1

a3
β

=
4µ

β
, 3cβ − c3

β =
4µ

β
. (2.13)

Then
√

3
3
< aβ < 1 and lim

β→+∞
cβ = 0. There exists β sufficiently large such that

cβ <
√

3
3
< aβ < dβ, hence hβ(aβ) < 0. Since φβ is continuous with respect to β

and h2µ(a2µ) > 0, there exists β∗ > 2µ such that hβ∗(aβ∗) = 0, i.e. φβ∗(aβ∗) = 0
and aβ∗ = cβ∗ . Then φβ∗ has exactly two positive zero points, denoted by τ1, τ2 with
min{τ1, τ2} = aβ∗ and max{τ1, τ2} > bβ∗ .

By aβ∗ < 1 < bβ∗ and (2.9), we have φβ∗(τ) ≥ 0 for all 0 < τ < 1. For each
2µ < β < β∗, we see that β(τ 3 − τ) > β∗(τ 3 − τ) for 0 < τ < 1. Then

φβ(τ) = µ− µτ 4 + β(τ 3 − τ) > µ− µτ 4 + β∗(τ 3 − τ) = φβ∗(τ) ≥ 0, ∀ 0 < τ < 1,

which implies that φβ(aβ) > 0. Then we see from (2.9) that φβ has a unique positive
zero point τ1 with τ1 > bβ and φβ(τ)(τ − τ1) < 0 for each τ 6= τ1.

For any β > β∗, similarly, we see that φβ(aβ∗) < φβ∗(aβ∗) = 0, which and
(2.7)(2.9) show that φβ has three positive zero points, denoted by τ1, τ2, τ3 with
min

1≤i≤3
{τi} < aβ < τmid < 1 < bβ < max

1≤i≤3
{τi} and φβ(τ)(τ − τ1)(τ − τ2)(τ − τ3) < 0 for

each τ 6= τ1, τ2, τ3.

Remark 2.6. (1) The positive zero points τi obtained in Lemma 2.5 are indeed
dependent on β, i.e. τi = τi(β).

(2) When µ1 = µ2, by (2.12) we have hβ(τ) = −τ 3φ′β( 1
τ
). For β > 2µ = 2µ1, we

have cβ = 1
bβ

and dβ = 1
aβ

. Then cβ < aβ < dβ. So 4φβ(aβ) = hβ(aβ) < 0, which and

(2.7) show that φβ(τ) has three positive zero points for µ1 = µ2 and β > 2µ1.

Lemma 2.7. When β = β∗, then aβ∗ =
(

5(β∗)2−8µ1µ2−4
√

(4µ1µ2−(β∗)2)(µ1µ2−(β∗)2)

3(β∗)2

) 1
2
.

Proof. When β = β∗, by φβ∗(aβ∗) = 1
4
hβ∗(aβ∗) = 0 and (2.13), we see that

3a2
β∗ − 1

a3
β∗

(3aβ∗ − a3
β∗) =

16µ1µ2

(β∗)2
,
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i.e. aβ∗ is a positive solution of the equation 3a4
β∗ + [16µ1µ2

(β∗)2 − 10]a2
β∗ + 3 = 0. By

β∗ > 2µ, then (β∗)2 > 4µ1µ2, which implies that 16µ1µ2

(β∗)2 −10 < −6. So by 0 < aβ∗ < 1

we have a2
β∗ =

10−16
µ1µ2
(β∗)2

−

√[
16

µ1µ2
(β∗)2

−10

]2

−36

6
. The lemma is proved.

Based on Lemmas 2.2-2.5 we have the following lemma.

Lemma 2.8. (1) If µ1 = µ2, then #Tβ =

{
1, if 0 < β ≤ 2µ1,
3, if β > 2µ1.

.

(2) If µ1 6= µ2, then #Tβ =


1, if 0 < β < β∗,
2, if β = β∗,
3, if β > β∗.

By Lemmas 2.2-2.8, we see that

Tβ =


{

(τi(µ1τ
4
i + βτi)

− 1
4 , (µ1τ

4
i + βτi)

− 1
4 )
}#Tβ

i=1
, if µ1 ≤ µ2,{

((µ2τ
4
i + βτi)

− 1
4 , τi(µ2τ

4
i + βτi)

− 1
4 )
}#Tβ

i=1
, if µ2 < µ1,

(2.14)

where τi is defined in Lemmas 2.4 and 2.5.
Set

m2
0 := min

{
τ 2
i + 1

(µτ 4
i + βτi)

1
2

| 1 ≤ i ≤ #Tβ

}
(2.15)

and

Pβ :=

{
τi|

τ 2
i + 1

(µτ 4
i + βτi)

1
2

= m2
0, 1 ≤ i ≤ #Tβ

}
. (2.16)

Lemma 2.9. Let β > 0. Then Pβ = {τ0} with τ0 = 1 if µ1 = µ2 and

τ0 =


τ1, if β < β∗,
aβ∗ , if β = β∗,
τmid, if β > β∗,

if µ1 6= µ2,

where aβ and τ1, τmid are given in (2.7) and Lemma 2.5.

Proof. For β ≤ 2µ1 if µ1 = µ2 or β < β∗ if µ1 6= µ2, then obviously, by Lemmas 2.4
and 2.5, we see that Pβ = {τ1}.

For β > 2µ1 if µ1 = µ2 or β ≥ β∗ if µ1 6= µ2, to prove the lemma, we consider the
following function introduced in [30]:

Fβ(τ) =
1 + τ 2

(µ+ µτ 6 + 2βτ 3)
1
3

, τ > 0.
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Note that F ′β(τ) = 2τ

(µ+µτ6+2βτ3)
4
3
φβ(τ), where φβ(τ) is defined in (2.1). Moreover, by

φβ(τi) = 0, we have [Fβ(τi)]
3
2 =

1+τ2
i

(µτ4
i +βτi)

1
2
. It is enough to consider Fβ(τi), 1 ≤ i ≤

#Tβ.
If µ1 6= µ2 and β = β∗, then we conclude from Lemma 2.5 that F ′β∗(τ)(τ −

max{τ1, τ2}) < 0 for all τ 6= τ1, τ2. Hence Fβ∗(τ) is strictly increasing on (0,max{τ1, τ2}]
and strictly decreasing on [max{τ1, τ2},+∞). So Fβ∗(min{τ1, τ2}) < Fβ∗(max{τ1, τ2}).

If µ1 6= µ2 and β > β∗, then similarly, Fβ(τ) is strictly increasing on (0, min
1≤i≤3

{τi}],
[τmid, max

1≤i≤3
{τi}] and strictly decreasing on [ min

1≤i≤3
{τi}, τmid], [max

1≤i≤3
{τi},+∞). There-

fore, Fβ(τmid) < Fβ( min
1≤i≤3

{τi}), Fβ(max
1≤i≤3

{τi}). Similarly, if µ1 = µ2 and β > 2µ1, we

can show that Fβ(1) < Fβ(τ1), Fβ(τ3).

Lemma 2.10. Suppose that (t, s) satisfies
µ1t

4 + βts3 ≥ 1,
µ2s

4 + βst3 ≥ 1,
t, s > 0.

(2.17)

(1) If µ1 = µ2, then t2 + s2 ≥ m2
0 for all β > 0.

(2) If µ1 6= µ2, then there exists β∗ ∈ (2µ, β∗) such that t2 + s2 ≥ m2
0 for all

β ∈ (0, β∗] ∪ [β∗,+∞).

Proof. By (2.17), we have

(t2 + s2)2 ≥ gβ(τ) :=
(τ 2 + 1)2

µτ 4 + βτ
, (t2 + s2)2 ≥ fβ(τ) :=

(τ 2 + 1)2

µ+ βτ 3
, (2.18)

where τ = t
s

if µ1 ≤ µ2 and τ = s
t

if µ2 > µ1. Then (t2 +s2)2 ≥ max{gβ(τ), fβ(τ), τ >
0}. It is enough to show that max{gβ(τ), fβ(τ), τ > 0} ≥ m4

0.
Note that

gβ(τ) = fβ(τ)⇐⇒ φβ(τ) = 0⇐⇒ τ ∈ {τi}
#Tβ
i=1 , (2.19)

where τi is defined in Lemmas 2.4 and 2.5. Moreover,

(gβ(τ)− fβ(τ))sgn(φβ(τ)) > 0, ∀ τ 6∈ {τi}
#Tβ
i=1 . (2.20)

By direct calculations, we have

lim
τ→0+

gβ(τ) = +∞, lim
τ→+∞

gβ(τ) = µ−1 and g′β(τ) =
τ 2 + 1

(µτ 4 + βτ)2
φ′β(τ).

The function gβ(τ) has the same monotonicity as φβ(τ), i.e. if β ≤ 2µ, then gβ(τ) is
strictly decreasing on (0,+∞); if β > 2µ, then gβ(τ) is strictly decreasing on (0, aβ],
[bβ,+∞) and strictly increasing on [aβ, bβ].
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Similarly, we have

lim
τ→0+

fβ(τ) = µ−1, lim
τ→+∞

fβ(τ) = +∞ and f ′β(τ) =
τ(τ 2 + 1)

(µ+ βτ 3)2
hβ(τ),

where hβ(τ) is defined in (2.10). By the same proof as in Lemma 2.5, then fβ(τ)
is strictly increasing on (0,+∞) if β ≤ 2µ; fβ(τ) is strictly increasing on (0, cβ],
[dβ,+∞) and strictly decreasing on [cβ, dβ] if β > 2µ. Moreover, bβ > dβ if β > 2µ.
For β ≥ β∗, by 4φβ(aβ) = hβ(aβ) ≤ 0, we see that aβ ≥ cβ.

So by Lemmas 2.4-2.9 and (2.20), we have the following four conclusions.
(1) For β ≤ 2µ, then

max{gβ(τ), fβ(τ), τ > 0} =

{
gβ(τ), if 0 < τ ≤ τ1

fβ(τ), if τ ≥ τ1

≥ gβ(τ1) = m4
0.

(2) For µ1 6= µ2 and β = β∗, then

max{gβ∗(τ), fβ∗(τ), τ > 0} =

{
gβ∗(τ), if τ ∈ (0,max{τ1, τ2}]
fβ∗(τ), if τ ≥ max{τ1, τ2}

≥ gβ∗(min{τ1, τ2}) = gβ∗(aβ∗) = m4
0.

(3) For β > 2µ if µ1 = µ2 or β > β∗ if µ1 6= µ2, then

max{gβ(τ), fβ(τ), τ > 0} =

 gβ(τ), if τ ∈ (0, min
1≤i≤3

{τi}] ∪ [τmid, max
1≤i≤3

{τi}]
fβ(τ), if τ ∈ [ min

1≤i≤3
{τi}, τmid] ∪ [max

1≤i≤3
{τi},+∞)

≥ gβ(τmid) = m4
0.

(4) For µ1 6= µ2 and 2µ < β < β∗, then we also have

max{gβ(τ), fβ(τ), τ > 0} =

{
gβ(τ), if 0 < τ ≤ τ1

fβ(τ), if τ ≥ τ1

≥ min{gβ(aβ), gβ(τ1)}.

We should consider the value of gβ(aβ) and gβ(τ1). We claim that there exists 2µ <
β∗ < β∗ such that

(gβ(aβ)− gβ(τ1))(β − β∗) ≤ 0 for all 2µ < β < β∗, (2.21)

where the equality gβ(aβ) = gβ(τ1) holds only if β = β∗. Indeed, we consider the
following two functions H,G : R2 → R defined as

H(β, a) = 3βa2 − β − 4µa3, G(β, τ) = µ+ βτ 3 − βτ − µτ 4.
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For each 2µ < β < β∗, by (2.7) and Lemma 2.5, we see that H(β, aβ) = 0 and
Ha(β, aβ) = φ′′β(aβ) > 0; G(β, τ1) = 0 and Gτ (β, τ1) = φ′β(τ1) < 0. By the implicit
function theorem, there exist two functions a(β), τ(β) ∈ C1(2µ, β∗) satisfying that

a(β) = aβ, H(β, a(β)) = 0 and a′(β) = −Hβ(β, a)

Ha(β, a)

and τ(β) = τ1, G(β, τ(β)) = 0 and τ ′(β) = −Gβ(β,τ)

Gτ (β,τ)
. In particular,

a′(β) = −
3a2

β − 1

φ′′β(aβ)
< 0, τ ′(β) = −τ

3
1 − τ1

φ′β(τ1)
> 0.

Then gβ(aβ) = gβ(a(β)) and gβ(τ1) = gβ(τ(β)). Thus by φ′β(aβ) = 0 and φ′β(τ1) < 0
we see that

dgβ(a(β))

dβ
= −

aβ(a2
β + 1)2

(βaβ + µa4
β)2

= − 16

9β2aβ
,

dgβ(τ(β))

dβ
= −2τ1(τ 2

1 + 1)

(β + µτ 3
1 )2

> − 16

9β2τ 2
1

.

Note that 0 < aβ < 1 < τ1, we have |dgβ(τ(β))

dβ
| < |dgβ(a(β))

dβ
|, i.e. gβ(a(β)), gβ(τ(β)) are

both strictly decreasing with respect to β and gβ(τ(β)) decreases more slowly than
gβ(a(β)). We see from (1) that g2µ(τ) > g2µ(τ1) for all 0 < τ < τ1 and from (2)
that gβ∗(aβ∗) < gβ∗(τ1). So by the continuity of the functions gβ(aβ) and gβ(τ1) with
respect to β, we conclude that (2.21) holds. Then max{gβ(τ), fβ(τ)} ≥ gβ(τ1) = m4

0

for all 0 < β ≤ β∗.
Therefore, we conclude from (2.18) and (1)-(4) that the lemma is proved.

The following lemma is a consequence of the proof of Lemma 2.10.

Lemma 2.11. Suppose that µ1 6= µ2. Then

#
{
τ > 0|

√
gβ(τ) = m2

0, 2µ < β < β∗
}

=


1, 2µ < β < β∗,
2, β = β∗,
3, β∗ < β < β∗.

Proof of Theorem 1.1

Proof. When λ1 = λ2, for any β > 0, problem (1.1) has at least one positive solution
of the form (tiw, siw), where (ti, si) ∈ Tβ, 1 ≤ i ≤ #Tβ and w is defined in (1.8).

Let

(t0, s0) :=

{
(τ0(µ1τ

4
0 + βτ0)−

1
4 , (µ1τ

4
0 + βτ0)−

1
4 ), if µ1 ≤ µ2,

((µ2τ
4
0 + βτ0)−

1
4 , τ0(µ2τ

4
0 + βτ0)−

1
4 ), if µ2 < µ1,

(2.22)

where τ0 is given in Lemma 2.9. We see that (t0w, s0w) is a positive solution of (1.1)
and

B ≤ I(t0w, s0w) =
1

3
(t20 + s2

0)

∫
Ω

(|∇w|2 + λw2) = (t20 + s2
0)B1 = m2

0B1,
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where B1 is defined in (1.9).
For any (u, v) ∈M , by the Hölder inequality and (1.10) we have

(3B1)
2
3

[( ∫
Ω

|u|6
) 1

3
+
(∫

Ω

|v|6
) 1

3
]
≤
∫

Ω

(|∇u|2+λu2+|∇v|2+λv2) = 3I(u, v), (2.23)

(3B1)
2
3

(∫
Ω

|u|6
) 1

3 ≤
∫

Ω

(|∇u|2 + λu2) ≤ µ1

∫
Ω

|u|6 + β
(∫

Ω

|u|6
) 1

2
(∫

Ω

|v|6
) 1

2
, (2.24)

(3B1)
2
3

(∫
Ω

|v|6
) 1

3 ≤
∫

Ω

(|∇v|2 + λv2) ≤ µ2

∫
Ω

|v|6 + β
(∫

Ω

|v|6
) 1

2
(∫

Ω

|u|6
) 1

2
. (2.25)

Set

t :=
(∫

Ω
|u|6

3B1

) 1
6
> 0, s :=

(∫
Ω
|v|6

3B1

) 1
6
> 0,

then by (2.24) and (2.25) we have

1 ≤ µ1t
4 + βts3, 1 ≤ µ2s

4 + βst3. (2.26)

By Lemma 2.10 we see that t2 + s2 ≥ m2
0 when β > 0 if µ1 = µ2 or when β ∈

(0, β∗]∪ [β∗,+∞) if µ1 6= µ2. We conclude from (2.23) that B = m2
0B1 = I(t0w, s0w).

So (t0w, s0w) is a positive least energy solution of (1.1).
Next we prove that for β > 0 if µ1 = µ2 or for β ∈ (0, β∗] ∪ [β∗,+∞) if µ1 6= µ2,

(t0w, s0w) is the unique least energy solution of (1.1). Let (u, v) be any a nontrivial
least energy solution of (1.1), then (u, v) ∈ M and I(u, v) = B. Similarly by (2.23)-
(2.26), we see that

(

∫
Ω
|u|6

3B1

)
1
3 + (

∫
Ω
|v|6

3B1

)
1
3 = m2

0

and (3B1)
2
3 =

∫
Ω(|∇u|2+λu2)

(
∫
Ω |u|6)

1
3

=
∫
Ω(|∇v|2+λv2)

(
∫
Ω |v|6)

1
3

. So u, v ∈ H1
0 (Ω)\{0} is a minimizer of

(3B1)
2
3 defined in (1.10). Then there exist two Lagrange multipliers L1 = ( 3B1∫

Ω |u|6
)

2
3 >

0, L2 = ( 3B1∫
Ω |v|6

)
2
3 > 0 such that

−∆u+ λu− L1u
5 = 0, −∆v + λv − L2v

5 = 0.

Set (û, v̂) := (L
1
4
1 u, L

1
4
2 v), then û, v̂ are both nontrivial solution of −∆u + λu = u5

in H1
0 (Ω) with 1

3

∫
Ω

(|∇û|2 + λû2) = 1
3

∫
Ω

(|∇v̂|2 + λv̂2) = B1. Thus û = v̂ = w. So

we see that (u, v) = (L
− 1

4
1 w,L

− 1
4

2 w). We conclude from (u, v) ∈ M that (L
− 1

4
1 , L

− 1
4

2 )

is a solution of (2.3) and L
− 1

2
1 + L

− 1
2

2 = m2
0. It follows from Lemmas 2.4-2.9 that

(L
− 1

4
1 , L

− 1
4

2 ) = (t0, s0). Therefore we have (u, v) = (t0w, s0w). Then the theorem is
proved.
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3 Proof of Theorem 1.2

In this section, we consider the general case where −λ1(Ω) < λ1, λ2 < −1
4
λ1(Ω). The

Aubin-Talenti instanton [1] defined as

U(x) =
3

1
4

(1 + |x|2)
1
2

satisfies the equation −∆u = u5 in R3 and
∫
R3 |∇U |2 =

∫
R3 |U |6 = S

3
2 .

As recalled in section 1, −∆u + λiu = µiu
5 in H1

0 (Ω) has a unique positive least
energy solution uµi ∈ C2(Ω) ∩ C(Ω) with its energy

Bµi :=
1

3

∫
Ω

(|∇uµi |2 + λiu
2
µi

) =
1

3
µi

∫
Ω

|uµi |6 <
1

3
µ
− 1

2
i S

3
2 . (3.1)

We have ∫
Ω

(|∇u|2 + λiu
2) ≥ (3Bµi)

2
3

(
µi

∫
Ω

|u|6
) 1

3
, ∀ u ∈ H1

0 (Ω). (3.2)

Lemma 3.1. Suppose that β > 0, then there exists C0 > 0 such that
∫

Ω
|u|6,

∫
Ω
|v|6 ≥

C0 for any (u, v) ∈M with I(u, v) ≤ 1
3
m2

0S
3
2 .

Proof. For any (u, v) ∈M , by (3.2) and the Hölder inequality we have

(3µ
1
2
1Bµ1)

2
3

(∫
Ω

|u|6
) 1

3 ≤
∫

Ω

(|∇u|2 + λ1u
2) ≤ µ1

∫
Ω

|u|6 + β
(∫

Ω

|u|6
) 1

2
(∫

Ω

|v|6
) 1

2
,

(3µ
1
2
2Bµ2)

2
3

(∫
Ω

|v|6
) 1

3 ≤
∫

Ω

(|∇v|2 + λ2v
2) ≤ µ2

∫
Ω

|v|6 + β
(∫

Ω

|u|6
) 1

2
(∫

Ω

|v|6
) 1

2
.

By contradiction, we suppose that there exists a sequence {(un, vn)} ⊂ M with

I(un, vn) ≤ 1
3
m2

0S
3
2 satisfying that

∫
Ω
|un|6 → 0 as n → +∞. Since

∫
Ω

(|∇un|2 +

λ1u
2
n + |∇vn|2 + λ2v

2
n) = 3I(un, vn) ≤ m2

0S
3
2 and −λ1(Ω) < λ1, λ2 < 0, {(un, vn)} is

uniformly bounded in H. Hence

(3µ
1
2
1Bµ1)

2
3 ≤ µ1

(∫
Ω

|un|6
) 2

3

+ β

(∫
Ω

|un|6
) 1

6
(∫

Ω

|vn|6
) 1

2

→ 0 as n→ +∞,

which is impossible. Similarly,
∫

Ω
|vn|6 → 0 is also impossible. So there exists a

constant C0 > 0 such that
∫

Ω
|u|6,

∫
Ω
|v|6 ≥ C0. Then the lemma is proved.

Lemma 3.2. Suppose that β > 0, for any u, v ∈ H1
0 (Ω)\{0}, there exist t, s > 0

such that (tu, sv) ∈M .
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Proof. It is enough to prove that there exist t, s > 0 such that{ ∫
Ω

(|∇u|2 + λ1u
2)− t4µ1

∫
Ω
|u|6 − ts3β

∫
Ω
|u|3|v|3 = 0,∫

Ω
(|∇v|2 + λ2v

2)− s4µ2

∫
Ω
|v|6 − st3β

∫
Ω
|u|3|v|3 = 0.

(3.3)

By β > 0 and the first equation in (3.3), we see that

s = f1(t) :=
(∫

Ω
(|∇u|2 + λ1u

2)− t4µ1

∫
Ω
|u|6

tβ
∫

Ω
|u|3|v|3

) 1
3
, 0 < t < T,

where T = (
∫
Ω(|∇u|2+λ1u2)

µ1

∫
Ω |u|6

)
1
4 . Moreover, lim

t→0+
f1(t) = +∞ and lim

t→T−
f1(t) = 0. Then

to prove (3.3) is equivalent to show that

f2(t) :=

∫
Ω

(|∇v|2 + λ2v
2)− [f1(t)]4µ2

∫
Ω

|v|6 − f1(t)t3β

∫
Ω

|u|3|v|3 = 0, 0 < t < T

has a solution. Note that lim
t→0+

f2(t) = −∞ and

lim
t→T−

f2(t) =

∫
Ω

(|∇v|2 + λ2v
2) ≥ (λ1(Ω) + λ2)

∫
Ω

v2 > 0

since λ2 > −λ1(Ω), then there exists 0 < t < T such that f2(t) = 0. Set s = f1(t) > 0,
then (tu, sv) ∈M .

Lemma 3.3. Suppose that 0 < β ≤ 2µ1 if µ1 = µ2 or 0 < β < β∗ if µ1 6= µ2,

then B < min
{
Bµ1 +Bµ2 ,

1
3
m2

0S
3
2

}
, where B,Bµi ,m

2
0 are respectively given as in

(1.7),(3.1) and (2.15).

Proof. For simplicity, we take Ω = B1(0). Then λ1(Ω) = π2. Set ϕ(x) = cos(π|x|
2

)
and

wε(x) = ϕ(x)ε−
1
2U(

x

ε
) (3.4)

for any ε > 0. Then we obtain that (see e.g. Lemma 1.3 in [5]),∫
B1(0)

|∇wε|2 = S
3
2 +

√
3

2
π3ε+O(ε2),

∫
B1(0)

|wε|6 = S
3
2 +O(ε2), (3.5)

∫
B1(0)

|wε|2 = 2
√

3πε+O(ε2). (3.6)

For 0 < β ≤ 2µ1 if µ1 = µ2 or 0 < β < β∗ if µ1 6= µ2, then by Lemmas 2.4-2.9, then
Tβ = {(t0, s0)}. Set C1 := 2

√
3πmin{−λ1 − π2

4
,−λ2 − π2

4
} > 0 since λ1, λ2 < −π2

4
.

We consider the maximal point of the following function

f(t, s) =
t2 + s2

2
(S

3
2 − C1ε+O(ε2))− µ1t

6 + µ2s
6 + 2βt3s3

6
(S

3
2 +O(ε2)), t, s > 0.

18



By ft(t, s) = fs(t, s) = 0, we have
S

3
2−C1ε+O(ε2)

S
3
2 +O(ε2)

= µ1t
4 + βts3,

S
3
2−C1ε+O(ε2)

S
3
2 +O(ε2)

= µ2s
4 + βst3,

then (t, s) =
(
S

3
2−C1ε+O(ε2)

S
3
2 +O(ε2)

) 1
4
(t0, s0).

By Lemma 3.2, there exist tε, sε > 0 such that (tεwε, sεwε) ∈ M . So we see from
(3.4)-(3.6) that

B ≤ I(tεwε, sεwε) ≤ max
t,s>0

I(twε, swε) ≤ max
t,s>0

f(t, s)

=
1

3
(t20 + s2

0)
[S

3
2 − C1ε+O(ε2)]

3
2

[S
3
2 +O(ε2)]

1
2

<
1

3
m2

0S
3
2 ,

for ε small enough. For any ball in R3, applying the above argument, we also get
B < 1

3
m2

0S
3
2 .

By Lemma 3.2, there exist t̄, s̄ > 0 such that (t̄uµ1 , s̄uµ2) ∈M . Then

B ≤ I(t̄uµ1 , s̄uµ2) < max
t>0

{t2
2

∫
Ω

(|∇uµ1 |2 + λ1|uµ1|2)− t6

6
µ1

∫
Ω

|uµ1|6
}

+ max
s>0

{s2

2

∫
Ω

(|∇uµ2|2 + λ2|uµ2|2)− s6

6
µ2

∫
Ω

|uµ2|6
}

< Bµ1 +Bµ2 .

Lemma 3.4. Let 0 < β < 2
√
µ1µ2. If (u, v) ∈ M is a minimizer of B, then (u, v)

is a nontrivial critical point of I.

Proof. Let

G1(u, v) =

∫
Ω

(|∇u|2 + λ1u
2)−

∫
Ω

(µ1|u|6 + β|u|3|v|3),

G2(u, v) =

∫
Ω

(|∇v|2 + λ2v
2)−

∫
Ω

(µ2|v|6 + β|u|3|v|3).

Since (u, v) ∈ M is a minimizer of B, there exist L1, L2 ∈ R such that 〈I ′(u, v) +
L1G

′
1(u, v) + L2G

′
2(u, v), (ϕ, φ)〉 = 0 for any (ϕ, φ) ∈ H. Taking (ϕ, φ) = (u, 0) and

(ϕ, φ) = (0, v) respectively, we have the following linear system
∫

Ω

(4µ1|u|6 + β|u|3|v|3)L1 + 3β

∫
Ω

|u|3|v|3L2 = 0,

3β

∫
Ω

|u|3|v|3L1 +

∫
Ω

(4µ2|v|6 + β|u|3|v|3)L2 = 0.
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By 0 < β < 2
√
µ1µ2, the Hölder inequality and the Cauchy inequality, we see that

β

∫
Ω

|u|3|v|3 ≤ 2
(
µ1

∫
Ω

|u|6
) 1

2
(
µ2

∫
Ω

|v|6
) 1

2 ≤ µ1

∫
Ω

|u|6 + µ2

∫
Ω

|v|6,

which and Lemma 3.1 imply that∫
Ω

(4µ1|u|6 + β|u|3|v|3)

∫
Ω

(4µ2|v|6 + β|u|3|v|3)− 9
(
β

∫
Ω

|u|3|v|3
)2

≥ 16µ1µ2

∫
Ω

|u|6
∫

Ω

|v|6 − 4
(
β

∫
Ω

|u|3|v|3
)2

= 4(4µ1µ2 − β2)

∫
Ω

|u|6
∫

Ω

|v|6

≥ 4(4µ1µ2 − β2)C2
0 > 0.

So we see that L1 = L2 = 0 and I ′(u, v) = 0.

Next we consider the case where β ≥ 2
√
µ1µ2. We consider the following set

defined in Lemma 2.11

Xβ :=
{
τ > 0|

√
gβ(τ) =

τ 2 + 1

(µτ 4 + βτ)
1
2

= m2
0

}
,

where m2
0 is defined in (2.15). Then τ0 ∈ Xβ for each β > 0, where τ0 is defined as in

Lemma 2.9. Note that 2µ ≤ 2
√
µ1µ2 ≤ 2µ, by Lemma 2.11 and the proof of Lemma

2.10 we see that for β∗ < β < β∗, Xβ = {τ̃1, τ̃2, τ0} with 0 < τ̃1 < aβ < τ̃2 < bβ < τ0.
For β ≥ 2

√
µ1µ2, we define

τ∗ :=

{
τ̃2, max{2√µ1µ2, β∗} < β < β∗ or β = 2

√
µ1µ2 if β∗ < 2

√
µ1µ2,

any element in (0, τ0), otherwise.
(3.7)

Then we obtain the following modified version of Lemma 2.10, which will be crucial
to deal with the case where β ≥ 2

√
µ1µ2.

Lemma 3.5. Let β ≥ 2
√
µ1µ2. Suppose that (t, s) satisfies

µ1t
4 + βts3 ≥ 1,

µ2s
4 + βst3 ≥ 1,

t
s
≥ τ∗ if µ1 ≤ µ2 or s

t
≥ τ∗ if µ1 > µ2,

t, s > 0,

then t2 + s2 ≥ m2
0.
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Proof. By Lemmas 2.10 and 2.11, it is enough to prove the case where β∗ < β < β∗.
Using the definition of τ∗, similarly to the proof of Lemma 2.10, by the monotonicity
of the functions gβ(τ) and fβ(τ) we see that

(t2 + s2)2 ≥ max{gβ(τ), fβ(τ), τ ≥ τ∗} =

{
gβ(τ), if τ∗ ≤ τ ≤ τ0,
fβ(τ), if τ ≥ τ0,

≥ gβ(τ0) = m4
0,

To prove the theorem, without loss of generality, we may assume that µ1 ≤ µ2 in
what follows. We consider the following manifold

M =

{
(u, v) ∈ H\{(0, 0)}|

∫
Ω

(|∇u|2 + λ1u
2 + |∇v|2 + λ2v

2) =

∫
Ω

(µ1|u|6 + µ2|v|6

+ 2β|u|3|v|3), 2µ1

∫
Ω

|u|6 ≤ βτ 3
0

∫
Ω

|u|3|v|3, τ 3
∗

∫
Ω

|v|6 ≤
∫

Ω

|u|3|v|3
}
.

For any u ∈ H1
0 (Ω)\{0}, then there exists t > 0 such that (tt0u, ts0u) ∈ M, where

(t0, s0) is defined in (2.22). So M 6= ∅. Set

mβ := inf
(u,v)∈M

I(u, v) = inf
(u,v)∈M

1

3

∫
Ω

(|∇u|2 + λ1u
2 + |∇v|2 + λ2v

2),

then mβ > 0.

Lemma 3.6. Suppose that β ≥ 2
√
µ1µ2. Then mβ <

1
3
m2

0S
3
2 .

Proof. We first consider Ω = B1(0). For any ε > 0, let wε(x) and (t0, s0) be defined
in (3.4) and (2.22). Then there exists

tε =
(m2

0

∫
Ω
|∇wε|2 + (t20λ1 + s2

0λ2)
∫

Ω
w2
ε

m2
0

∫
Ω
w6
ε

) 1
4

such that (tεt0wε, tεs0wε) ∈M. So by (3.5) and (3.6), we have

mβ ≤ I(tεt0wε, tεs0wε)

=
1

3
t2ε

[
m2

0

∫
Ω

|∇wε|2 + (t20λ1 + s2
0λ2)

∫
Ω

w2
ε

]

=
1

3

(
m2

0S
3
2 + [π

2

4
m2

0 + (λ1t
2
0 + λ2s

2
0)]2
√

3πε+O(ε2)
) 3

2

[
m2

0(S
3
2 +O(ε2))

] 1
2

<
1

3
m2

0S
3
2
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for ε > 0 small enough, where we have used a fact that λ1t
2
0 + λ2s

2
0 < −π2

4
m2

0 since

λ1, λ2 < −1
4
λ1(B1(0)) = −π2

4
. So mβ < 1

3
m2

0S
3
2 . We can similarly prove that the

lemma holds for any ball in R3.

Lemma 3.7. Suppose that β ≥ 2
√
µ1µ2, then there exists a bounded (PS)mβ

sequence {(un, vn)} ⊂ M for I.

Proof. By the Ekeland variational principle, there exists a sequence {(un, vn)} ⊂ M
satisfying that

mβ ≤ I(un, vn) ≤ mβ +
1

n
,

I(u, v) ≥ I(un, vn)− 1

n
‖(un, vn)− (u, v)‖H , ∀ (u, v) ∈M. (3.8)

We easily see that {(un, vn)} is uniformly bounded in H. For any ϕ, φ ∈ H1
0 (Ω), we

consider a function Fn : R2 → R as

Fn(t, s) = 〈I ′(un + tϕ+ sun, vn + tφ+ svn), (un + tϕ+ sun, vn + tφ+ svn)〉.

Then Fn(0, 0) = 0 and ∂Fn(0,0)
∂s

= −4
∫

Ω
(µ1|un|6 + µ2|vn|6 + 2β|un|3|vn|3) 6= 0. By the

Implicit Function theorem, there exists {δn} ⊂ R+ and a function sn(t) ∈ C1(−δn, δn)
such that

sn(0) = 0, Fn(t, sn(t)) = 0, ∀ t ∈ (−δn, δn) and s′n(0) = −
∂Fn(0,0)

∂t
∂Fn(0,0)

∂s

.

Then s′n(0) is bounded since {(un, vn)} is uniformly bounded. Moreover, (un + tϕ+
sn(t)un, vn + tφ + sn(t)vn) → (un, vn) in H as t → 0. Then there exists εn ∈ (0, δn)
small such that (un+tϕ+sn(t)un, vn+tφ+sn(t)vn) ∈M for all t ∈ (−εn, εn). Denote

ϕn,t := un + tϕ+ sn(t)un, φn,t := vn + tφ+ sn(t)vn,

then (ϕn,t, φn,t) ∈M for ∀ t ∈ (−εn, εn). It follows from (3.8) that

I(ϕn,t, φn,t)− I(un, vn) ≥ − 1

n
‖(tϕ+ sn(t)un, tφ+ sn(t)vn)‖H . (3.9)

By (un, vn) ∈M and the Taylor Expansion we have

I(ϕn,t, φn,t)− I(un, vn) = 〈I ′(un, vn), (tϕ+ sn(t)un, tφ+ sn(t)vn)〉+ r(n, t)
= t〈I ′(un, vn), (ϕ, φ)〉+ r(n, t),

(3.10)
where r(n, t) = o(‖(tϕ+ sn(t)un, tφ+ sn(t)vn)‖H) as t→ 0. We see that

lim sup
t→0

‖(ϕ+
sn(t)

t
un, φ+

sn(t)

t
vn)‖H ≤ C, (3.11)
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where C is independence of n. Hence r(n, t) = o(t). By (3.8)-(3.11) and letting
t→ 0, we have

|〈I ′(un, vn), (ϕ, φ)〉| ≤ C

n
,

where C is independence of n. Hence I ′(un, vn) → 0, i.e. {(un, vn)} is a bounded
(PS)mβ sequence for I.

Lemma 3.8. ( [29], Lemma 1.32) Let Ω be an open subset of RN and let {un} ⊂
Lp(Ω), 1 ≤ p <∞. If {un} is bounded in Lp(Ω) and un → u a.e. on Ω, then

lim
n→+∞

(|un|pp − |un − u|pp) = |u|pp.

Lemma 3.9. ( [12], Lemma 3.3) Let un ⇀ u, vn ⇀ v in H1
0 (Ω) as n → +∞ and

1 < p < +∞, then passing to a subsequence, there holds

lim
n→+∞

∫
Ω

(|un|p|vn|p − |un − u|p|vn − v|p − |u|p|v|p) = 0.

Proof of Theorem 1.2

Proof. (1) For 0 < β < 2
√
µ1µ2, let {(un, vn)} ⊂ M be a minimizing sequence for

B, i.e. I(un, vn) → B as n → +∞, then {(un, vn)} is uniformly bounded in H. By
Lemma 3.1, we see that ∫

Ω

|un|6,
∫

Ω

|vn|6 ≥ C0, (3.12)

where C0 is a positive constant given in Lemma 3.1. Up to a subsequence, we may
assume that (u, v) ∈ H such that (un, vn) ⇀ (u, v) in H. By the Sobolev embedding
inequality, we have 

un ⇀ u, vn ⇀ v in L6(Ω),
u3
n ⇀ u3, v3

n ⇀ v3 in L2(Ω),

u5
n ⇀ u5, v5

n ⇀ v5 in L
6
5 (Ω),

un → u, vn → v in L2(Ω).

(3.13)

So I ′(u, v) = 0. Let wn := un − u, σn := vn − v and

b1 := lim
n→+∞

(∫
Ω

|wn|6
) 1

6
, b2 := lim

n→+∞

(∫
Ω

|σn|6
) 1

6
. (3.14)
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By (un, vn) ∈M , the Sobolev embedding inequality and Lemma 3.8 we have

B = lim
n→+∞

I(un, vn)

=
1

3
lim

n→+∞

∫
Ω

(|∇un|2 + |∇vn|2 + λ1|un|2 + λ2|vn|2)

=
1

3
lim

n→+∞

∫
Ω

(|∇wn|2 + |∇σn|2) +
1

3

∫
Ω

(|∇u|2 + λ1|u|2 + |∇v|2 + λ2|v|2)

≥ 1

3
S(b2

1 + b2
2) + I(u, v).

(3.15)
We claim that

both u 6= 0 and v 6= 0⇐⇒ b1 = b2 = 0.

Indeed, if u 6= 0, v 6= 0, then (u, v) is a nontrivial solution of (1.1), i.e. (u, v) ∈ M .
Hence we have I(u, v) ≥ B, which and (3.15) show that b1 = b2 = 0. On the other
hand, if b1 = b2 = 0, then (un, vn) → (u, v) in H. We conclude from (3.12) that
u 6= 0, v 6= 0.

It is enough to show that b1 = b2 = 0. By contradiction, we just suppose that
b1 = b2 = 0 does not hold, then u = 0 or v = 0 holds. By (un, vn) ∈ M , Lemmas
3.8-3.9 and the Hölder inequality, we have

S
(∫

Ω

|wn|6
) 1

3 ≤
∫

Ω

|∇wn|2 ≤ µ1

∫
Ω

|wn|6+β
(∫

Ω

|wn|6
) 1

2
(∫

Ω

|σn|6
) 1

2
+on(1), (3.16)

S
(∫

Ω

|σn|6
) 1

3 ≤
∫

Ω

|∇σn|2 ≤ µ2

∫
Ω

|σn|6 +β
(∫

Ω

|wn|6
) 1

2
(∫

Ω

|σn|6
) 1

2
+on(1), (3.17)

where on(1)→ 0 as n→ +∞.
If b1, b2 > 0, then {

µ1( b1

S
1
4

)4 + β( b1

S
1
4

)( b2

S
1
4

)3 ≥ 1,

µ2( b2

S
1
4

)4 + β( b2

S
1
4

)( b1

S
1
4

)3 ≥ 1.
(3.18)

By 0 < β < 2
√
µ1µ2 and Lemma 2.10, we have b2

1 + b2
2 ≥ m2

0S
1
2 . We conclude from

(3.15) that B ≥ 1
3
S(b2

1 + b2
2) ≥ 1

3
m2

0S
3
2 , which contradicts Lemma 3.3.

If b1 = 0 and b2 > 0, then un → u in H1
0 (Ω). By (3.12), we see that u is a

nontrivial solution of −∆u + λ1u = µ1u
5 in H1

0 (Ω). Hence v = 0 and I(u, 0) ≥ Bµ1 .

We conclude from (3.17) that b2
2 ≥ µ

− 1
2

2 S
1
2 . Then

B ≥ 1

3

∫
Ω

(|∇u|2 + λ1u
2) +

1

3
Sb2

2 ≥ Bµ1 +
1

3
b2

2S = Bµ1 +
1

3
µ
− 1

2
2 S

3
2 ,

which contradicts Lemma 3.3 and (3.1). Similarly, we can get a contradiction if b1 > 0
and b2 = 0.
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Therefore, b1 = b2 = 0. Then u 6= 0,v 6= 0 and I(u, v) = B. Since the functional
I and the manifold M are symmetric, we may assume that u, v ≥ 0 in Ω. By the
strong maximum principle, we see that u, v > 0 in Ω. So (u, v) is a positive least
energy solution of (1.1).

(2) Let β ≥ 2
√
µ1µ2. By Lemma 3.7, there exists a bounded (PS)mβ sequence

{(un, vn)} ⊂ M for I, then we may assume that (u, v) ∈ H such that (un, vn) ⇀ (u, v)
in H and (3.13) holds. So I ′(u, v) = 0. We first show that lim

n→+∞

∫
Ω
|un|6 > 0 and

lim
n→+∞

∫
Ω
|vn|6 > 0. By contradiction, if we assume that

∫
Ω
|un|6 → 0, then by the

Hölder inequality, we have
∫

Ω
|un|3|vn|3 → 0 as n → +∞. By (un, vn) ∈ M, we

see that
∫

Ω
|vn|6 → 0. Then mβ = lim

n→+∞
1
3

∫
Ω

(µ1|un|6 + µ2|vn|6 + 2β|un|3|vn|3) = 0,

which contradicts mβ > 0. So lim
n→+∞

∫
Ω
|un|6 > 0. Similarly, we can prove that

lim
n→+∞

∫
Ω
|vn|6 > 0. Let wn, σn, b1, b2 be defined as in (3.14). By the boundedness of

{(un, vn)} and I ′(un, vn)→ 0 we see that{ ∫
Ω
|∇wn|2 =

∫
Ω

(µ1|wn|6 + β|wn|3|σn|3) + β
∫

Ω
|u|3|v|3 + on(1),∫

Ω
|∇σn|2 =

∫
Ω

(µ2|σn|6 + β|wn|3|σn|3) + β
∫

Ω
|u|3|v|3 + on(1).

Similarly to (3.15), we also have

mβ =
1

3
lim

n→+∞

∫
Ω

(|∇wn|2 + |∇σn|2) +
1

3

∫
Ω

(|∇u|2 + λ1|u|2 + |∇v|2 + λ2|v|2)

≥ 1

3
S(b2

1 + b2
2) + I(u, v).

If u = 0, then b1 > 0. By (un, vn) ∈M and the Hölder inequality, we see that

2µ1

βτ 3
0

∫
Ω

|un|6 ≤
∫

Ω

|un|3|vn|3 =

∫
Ω

|un|3|σn|3+on(1) ≤
(∫

Ω

|un|6
) 1

2
(∫

Ω

|σn|6
) 1

2

+on(1),

which implies that b2
b1
≥ ( 2µ1

βτ3
0
)

1
3 > 0, i.e. b2 > 0. Moreover, by Lemma 3.8,

we have τ 3
∗
∫

Ω
|σn|6 + on(1) = τ 3

∗
∫

Ω
|vn|6 ≤

∫
Ω
|un|3|vn|3 =

∫
Ω
|un|3|σn|3 + on(1) ≤(∫

Ω
|un|6

) 1
2
(∫

Ω
|σn|6

) 1
2 + on(1), which implies that

∫
Ω |un|

6+on(1)∫
Ω |σn|6

≥ τ 6
∗ . Similarly to the

proof of (3.16)-(3.18), we get that
µ1( b1

S
1
4

)4 + β( b1

S
1
4

)( b2

S
1
4

)3 ≥ 1,

µ2( b2

S
1
4

)4 + β( b2

S
1
4

)( b1

S
1
4

)3 ≥ 1,
b1
b2
≥ τ∗.

(3.19)

By Lemma 3.5 we have b2
1 + b2

2 ≥ m2
0S

1
2 . So mβ ≥ 1

3
S(b2

1 + b2
2) ≥ 1

3
m2

0S
3
2 , which

contradicts Lemma 3.6. So u 6= 0.
Similarly, we can show that v 6= 0. Therefore we have u 6= 0 and v 6= 0. Then

(u, v) is a nontrivial solution of (1.1).
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