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Abstract

In this paper, we consider the following coupled Schrodinger system with
doubly critical exponents, which can be seen as a counterpart of the Brezis-
Nirenberg problem

—Av 4 Agv = v’ + Boud, € Q,

—Au+ Mu = pud + Buted, e,
u=v=0, x € 012,

where Q is a ball in R3, —A\1(2) < A, X2 < —%)\1(9), pi, 2 > 0 and g > 0.
Here \1(€2) is the first eigenvalue of —A with Dirichlet boundary condition in
Q2. We show that the problem has at least one nontrivial solution for all 5 > 0.
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1 Introduction and main results

In this paper, we study the following critically coupled perturbed Brezis-Nirenberg
system
—Au+ Mu = pu’ + puted, x e Q,
—Av + Xov = pv® + Bo*ud, x € Q, (1.1)
u=v=0, x € 08,
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where € is a smooth bounded domain in R3, —X;(Q) < A, A2 < 0, g, 2 > 0 and
B # 0. Here A\1(Q2) is the first eigenvalue of —A with Dirichlet boundary condition in
Q.

In recent years, there have been a lot of researches on the following coupled system
of the time-dependent nonlinear Schrodinger equations

—i 201 — APy = 11| P1]>Py + B|Po[* Py, z€Q, t >0,
—i%@g — Ady = /Lglq)2|2q)2 + B|q)1|2(1)2, x € Q, t>0,
q)j:q)j(l'7t) GC, j:1,2,

®i(z,t) =0, j=1,2, x €00, t>0,

(1.2)

where Q C RV (N < 3) is the whole domain RY or a smooth bounded domain. i is the
imaginary unit, uy, g2 > 0 and a coupling constant 5 # 0. System (1.2) arises from
many branches of physics, including the Hartree-Fock theory for a binary mixture
of Bose-Einstein condensates in two different hyperfine states and an application
of nonlinear topics to birefringent optical fibers, see more details in [1, 14, 21] and
references theiren.

To obtain solitary wave solutions of system (1.2), we set ®;(x,t) = ety (x) and
Oy (x,t) = e?!v(x), then (1.2) turns to be the following elliptic system

—Au+ Mu = pud + fur?, x € Q,
—Av + Xv = v + Bou?, x € Q, (1.3)
u=v=0, x € 0f.

For a coupled system, we are interested in the existence of a nontrivial solution (u,v),
ie. (u,v) satisfying the system with both v # 0 and v #Z 0. However, the system
problem may have solutions of the form (u,0) or (0,v) with w,v # 0, which we call
semi-trivial solutions and may cause some difficulties. When N < 3, system (1.3) is
a system problem of subcritical growth. It was first studied by Lin and Wei in [17],
who showed that (1.3) has a nontrivial solution when Q@ = RY and 0 < 8 < /i1 /2.
After that, the existence and multiplicity results have been extensively studied, see
e.g. [2,3,4,6,7, 13, 18, 19, 20, 26, 27, 28] and the references therein.

Recently, there have been some papers studying critical system problems related
to (1.3) in which the nonlinearity and coupling terms are of Sobolev critical growth,
ie.

—Au+ A= el "2+ Blul T 2ulu| T, e Q,

— AV + Av = polo|2 20 + Blo] T 2ojulZT, z e, (1.4)
u,v > 0, x €,
u=v=0, x € 08,

where Q C RY (N > 3) is a smooth bounded domain, 2* = %, —A1(Q) < A, A2 <0,

1, pe > 0 and 5 # 0. Our problem (1.1) is a special case of (1.4) with N = 3.
When 5 = 0, (1.4) turns out to be the well known Brezis-Nirenberg single equation

—Au+ Nu = pilu)* Pu,  uwe HY(Q), i=1,2, (1.5)
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which has been widely investigated in the past years, see e.g. [5, 8. It is proved in
[5] that (1.5) has a positive least energy solution w,, if —A;(2) < A; <0 for N >4
or —A1(2) < A < —A(Q) (this set may be vacuous) for N = 3, where \.(Q) = %
with Ry = sup{R| Br(z) C Q}, (see Theorems 1.1 and 1.2’ in [5]). In particular, for
Q being a ball in R3, A, () = 1 A(Q).

When § # 0, one easily sees that (u,,,0) and (0,u,,) are both semitrivial solutions
of problem (1.4). We are interested in the existence of nontrivial solutions. There are
some papers on this respect in the literature, see e.g. [9, 10, 11, 12, 15, 22, 23, 24, 25,
16, 30, 31] and the references therein. Chen and Zou studied the case where N = 4 in
[11]. They showed that for a special case where \; = Ay = A, (1.4) has a positive least
energy solution of the form (vEkw, viw) if 0 < f < min{py, g2} or 8 > max{p, po},
where w is a positive least energy solution of —Aw + Aw = w? in H}(Q) and k,[ > 0
is the unique solution of the linear system 1k + 5l = 1,8k + pusl = 1. For the
general case where —\1(2) < A, A2 < 0, by Ekeland’s variational principle and
the mountain pass theorem, they showed that there exist 0 < £; < min{puq, ps},
Po > max{u, po} such that (1.4) has a positive least energy solution for all g €
(—00,0) U (0, 81) U (Ba, +00). (1.4) does not have a nontrivial nonnegative solution
if min{ug, po} < B < max{pu, po} and py # po. But it is unknown whether the
least energy solution exists or not if 8 € [8y, B2] (see Remark 1.3 in [12]). Recently,
by introducing a suitable submanifold, the author in [31] fills the narrow gap of the
range of 5 > 0 for the existence of positive solutions given in [11] and proved that
(1.4) has a positive solution for 0 < f < min{uy, po} or § > max{py, u2}. When
N =4, A. Pistoia and H. Tavares studied the existence of spiked solutions for (1.4)
with 5 > 0 small or 5 < 0 (see [25]).

In [12], Chen and Zou studied the higher dimensional case N > 5. By using
an essential fact that 2* < 4 and the mountain pass lemma, they proved that if
—A(Q) < A, A2 <0, then (1.4) has a positive least energy solution for any 5 # 0.
When \; = Xy = ), they showed that (1.4) has a least energy solution (v/kow, v/Iow)
if B> %5 max{ui, 12}, where w is a positive least energy solution of —Aw + Aw =

lw|* ~2w in HE(Q) and (ko, lo) satisfies the following system
kT BT =1, BETIT T el =1, kI>0  (1.6)

and ky = min{k| (k,[) is a solution of (1.6)}; By an alternative method, Ye and
Peng in [30] prove that when A\; = Ao, (1.4) has a least energy solution of the form
(vVkw, VIw) for all 8 > 0.

Chen and Lin in [9] proved the asymptotic behavior of least energy solutions of
(1.4) when N > 4. The existence of signchanging solutions for (1.4) with § < 0 has
been studied by Chen, Lin and Zou in [10] (N > 6) and by Peng, Peng and Wang in
[22] (N = 5).

When N = 3, problem (1.4) becomes exactly (1.1) (if u,v > 0). In [16],
Kim proved that when 0 < p; < o, there exists sufficiently large B3 such that
for p > p3, (1.1) has a nontrivial least energy solution if —A;(Q) < A, Ay < 0
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A1+ \o6?
and 11—:_—922 < —=A(Q), where 0§ = 0(f) — 1 as f§ — 400 and satisfies that

B0 — pe0* — B0 + p1 = 0. Kim also proved that (1.1) has a nontrivial solution
for small || if —A1(2) < A, A2 < —A(Q). In [30], Ye and Peng showed that
when —A;(2) < A, A2 < —A(Q), (1.1) has a positive least energy solution for

V2(19u2—p1)  V2(19u1—p2) 9
B > max{ R e \/émin{Bgl,Bg2}}’ where B

the least energy of the positive least energy solution to (1.5). For A\; = A, it is proved
in [30] that (1.1) has at least one positive solution for all 5 > 0, and has a positive
least energy solution if 5 > max{ \/5(19;(;27#1)’ ﬁ(lggr’”)}. Guo and Zou showed in
[15] that (1.1) has a positive least energy solution when 0 < f < 2min{u, ps}.
However, as far as we know, whether problem (1.1) has a nontrivial solution for all
B # 0 is unknown yet. It is quite interesting to find out what the optimal ranges of
[ for the existence of nontrivial solutions might be. The present paper is devoted to
this aspect and partially answers this question.

When Q = Q. € RY(N = 3,4) with small shrinking holes as the parameter ¢ — 0,
A. Pistoia, N. Soave and H. Tavares studied the existence of positive solutions for
(1.4) (see [23, 24]).

In this paper, without loss of generality, we may assume that €2 is a ball in R3.
Define H := Hj(Q) x Hj(2) with the norm defined as [|(u,v)||nz = ([, |Vul* +
Jo IVv[?)z. Weak solutions of (1.1) correspond to critical points of the following
functional I : H — R:

> B, respectively denote

1 1
Iuv) = 5 / (IVul? + 2w + [V + dr?) — ¢ / (aul® + paslol® + 281l [o),

for any (u,v) € H. We call (u,v) a positive solution of (1.1) if (u,v) is a nontrivial
solution and w,v > 0 a.e. in 2. We call (u, v) a positive least energy solution of (1.1)
if (u,v) is a positive solution and

I(u,v) = inf{I(p,v¥)| (¢,?) is a nontrivial solution of (1.1)}.

Motivated by [11, 12], we define

M:{ (u,v) € H u;éO,v;éO,/ﬂVuF—l—/\luQ):/u1|u|6+/ﬁ|u|3|v|3,
0 Q 0

J09eR #3007 = [ pabl®+ [ glufof’}

Then M contains all nontrivial solutions of (1.1). Take p,¢ € C§°(2)\{0} with
supp(¢) Nsupp(¢)) = @, then there exist t1,t; > 0 such that (t1¢,t210) € M, so
M # &. Set

1
B:= inf I(u,v)= 1inf —/(|Vu|2+/\1u2+|Vv|2+/\202), (1.7)
0

(u,v)EM (u,w)eM 3
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then B > 0.
We first consider a special case —A;(2) < Ay = A=A < —i)\l(Q)- Recall that
it has been showed in [5] and [32] that

—Aw 4+ w =w’, we Hy(N) (1.8)

has a unique positive least energy solution w with its energy

1 1 1
By = - /(|Vw|2 + \w?) = —/ lw|® < ~ 53, (1.9)
3/, 3/, 3
where S is the sharp constant of D'?(R3) — L(R?), ie. S =  inf g [Vl

WEDL2(R) (fia [ul)3
Here DV2(R?) = {u € L*(R?)||Vu| € L*(R?)}. Moreover, it is showed in [29] that

Jo(IVul? —|—>\u2)'

2
(3B))5 =  inf 8 (1.10)
weHS OO} ([ [ufo) ]
For any g, p2, 8 > 0, the following system
patt + Btsd =1,
post + Bst® =1, (1.11)

t,s >0
has a unique solution (g, sg) such that
t2 + st = min{t* + s°| (¢, s) is a solution of (1.11)}
(see Lemma 2.9 below). Then our main results are as follows.

Theorem 1.1.  Suppose that py, pe, 5> 0 and =\ () < \j =l =A< _zl;/\l(Q)
for Q being a ball in R3.

(1) If 1 = po, then the following two conclusions hold.

(a1) For f < 2uy, (1.1) has a unique positive solution of the form (tw, sw);

(az) For B> 2uy, (1.1) has three positive solutions of the form (tw, sw);

Moreover, (tow, sow) is the unique least energy solution of (1.1) with B = (% +
s2)By for all B> 0.

(2) If uy # po, then there exist f* > 2max{py, po} such that the following three
conclusions hold.

(by) For p < *, (1.1) has a unique positive solution of the form (tw, sw);

(by) For = %, (1.1) has ezactly two positive solutions of the form (tw, sw);

(bs) For > %, (1.1) has three positive solutions of the form (tw, sw);

Moreover, there exists 2min{uy, po} < B < B* such that (tow, sow) is the unique
least energy solution of (1.1) with B = (t% + s2)By for all B € (0, 8,] U [B*, +00).



Theorem 1.2.  Suppose that py, pe > 0 and —A(Q) < A\, A < _}1)‘1(9) for Q
being a ball in R3, then (1.1) has a nontrivial solution for all 3 > 0. Moreover, if
0 < B < 2\/fipiz, then (1.1) has a positive least enerqy solution (u,v) with I(u,v) =
B.

Remark 1.3. For arbitrary domain Q@ C R3, by the same proof, Theorems 1.2 and
1.1 hold for —X1(2) < \; < =AM (Q) if the set (—A1(2), =\(Q)) # .

We give the main idea in the proof of the main theorems. To prove Theorem 1.1,
the key point is to search for positive solutions for the system (1.11), which can be
viewed as a special case of (1.6) with V = 3. However, the existence of solutions
to (1.11) is totally different from (1.6) with N > 4. It has been proved in [11, 30]
that (1.6) has a unique positive solution when N > 4. But for (1.11), by delicate
calculations, we show that if p; = uso, then

i <
#{(t, s)|(t, s) is a solution of (1.11)} = { é’ i%igﬂ_ 214,
) 1

and if uq # pa, then

1, if0<p<p,
#{(t,s)|(t,s) is a solution of (1.11)} = ¢ 2, if = B~
3, if B> p7,

here we denote #A to be the number of elements in a set A. We succeed in proving
Theorem 1.1 by getting a solution (Zg, so) of (1.11) satisfying 2 + s2 = min{¢* +
s?| (t,s) is a solution of (1.11)} and proving the following inequality

pitt 4+ Btsd > 1,
past 4+ Bstd > 1, = t?+ > >t + st (1.12)
t,s >0,

holds for all > 0if uy = pg or g € (0, B U [B*, +00) if py # uo.

To prove Theorem 1.2, since (1.1) is a doubly Sobolev critical system, the func-
tional I does not satisfy (PS). condition at every level c. We have to deal with two
bad possibilities that (P.S). sequences of I weakly converge to semetrivial solutions
or weakly converge to the trivial solution. This difficulty is usually overcome by
pulling the energy level down below some critical energy level. We recall that for
problem (1.4) with N > 4, the critical energy level is obtained in [11, 12] by using
the important fact that 2* < 4 and that the system (1.6) has a unique solution. In
[16, 30], by requiring that § > 0 is large enough, they show that for the mountain
pass level ¢, the corresponding function satisfies the (PS). condition. However, since
we deal with all # > 0in (1.1), the methods in [16, 30] does not work here. In (1.1),
2* = 6 > 4. The system (1.11), which is a special case of (1.6) with N = 3, may
have multiple solutions. Then the methods in [11, 12] to get the critical energy level



cannot be directly applied to (1.1), To overcome this difficulty, we first prove that for
any > 0 and any minimizing sequence {(u,,v,)} C M of B, there exist a constant
Co > 0 such that [, |[Vu,|°, [, [va|® > Cy and that for 0 < 3 < 2,/p112, each mini-
mizer of B is a nontrivial critical point of I, which give us a clue that when g > 0 is
small, we could obtain least energy solutions of (1.1) by searching for minimizers of
B. Using the uniqueness of positive solutions to (1.11), we show that for 5 < 2pu, if
1 = o or 8 < B*if py # po, B < min{B,, + By, 5 (t§ + sg)S%}. Therefore by using
the constrained minimization method, we succeed in proving that each minimizing
sequence of B may weakly converge to a positive least energy solution of (1.1) for
B <2/

For > 2,/ji1fi2, the critical energy level cannot be similarly obtained since (1.11)
may have two or three solutions. To do so, without loss of generality, we may assume
that p1 < ps. We introduce a suitable submanifold of the associated Nehari manifold

M = {(u,v) e H\{(0,0)}| /Q(|Vu]2 + Mu? + Vol + Ag?) = /Q(M1|U|6 + pglv®

T 281uof). 2 / [l < Br / o, 7 / off < / |u|3|v|3}.
Q Q Q Q

where 79 = £ and 7, € (0, 79) is chosen to satisfy that Tl > 2 g2 (see (3.7)
0= 5 * » T0 y (nritprs = 0 0 :

below). Indeed, the subset M excludes the bad possibility of semitrivial solutions
in the Nehari manifold. The definition of M requires us to learn more about the
solutions of (1.11) and the inequality (1.12). Then the constrained minimization

method is carried out on M, i.e. mg = ( iI)lfM I(u,v) > 0, We prove that mg <
u,v)e

%(t% + s2)S 3 and each minimizing sequence of mg weakly converges to a nontrivial
critical point of I. Then the theorem is proved.

Throughout this paper, we use standard notations. For simplicity, we write fQ h
to mean the Lebesgue integral of h(z) over a domain Q C R3, LP(Q) (1 < p < +00)
is the usual Lebesgue space with the standard norm |uf,. We use “—, —” to denote
the strong and weak convergence in the related function space respectively. B, (z) :=
{y € R3| |[x — y| < r}. C will denote a positive constant unless specified. We denote
a subsequence of a sequence {u,} as {u,} to simplify the notation unless specified.

The paper is organized as follows. In § 2, we prove Theorem 1.1. In § 3, we will
prove Theorem 1.2.

2 Proof of Theorem 1.1

In this section, we consider the case where —\;(Q) < A =Xy = A < —1)\(Q). First
we give some preliminary results, which are useful to prove the theorem.
Denote

7= max{un, o}, = minp, o).



We consider the following function ¢g : (0, +00) — R defined as
op(T) :,TL+BT?’—5T—,L_LT4, V7 >0. (2.1)
Note that

lim ¢g(7) =1 >0, ¢p(l)=p—p>0 and lim ¢g(7) = —o0, (2.2)

T—0t T—+00
then ¢g(7) has at least one positive zero point, i.e. {T > 0| ¢3(7) =0} # 2.

Lemma 2.1. Let > 0, the following system

it + Bts® =1,
post + Bstd =1, (2.3)
t,s >0

has at least one solution.
Proof.  Without loss of generality, we may assume that p; < ps. Suppose that 7 > 0
is a zero point of ¢g, i.e. g+ B> = B7 + py7?, then

1

palr(ur? + Br) 1) + Brur + Br) 71 [(urt + Br) 1) = 1

and
1

pa[(p ™+ Br) A 4 Bt + Br) A [r(purt + Br) I = 1,

ie. (t(ur + Br*) "1, (it + Br4)74) is a solution of (2.3). Then the lemma is
proved. O

For 8 > 0, set
Ty :={(t,s)| (t,s) is a solution of system (2.3)}, (2.4)
then Lemma 2.1 shows that T # @.

Lemma 2.2. Let 5 > 0.
(1) If (t,s) € Tp, then ¢g(X) =0 for py < po and ¢s(2) =0 for s < 1.
_ (T(7* + Br) 73, (it + B7)71) € Ty, if i < pia,
EQ; ¥ 95(7) =0, then { (uom" + B) "5, 7o + 7)) € Ty, if po < pur.
3

PN

#1s = #{1 > 0] ¢p(7) = 0}.

Proof. (1) 1If (t,s) € T, then py(4)* + L = Si4 =g+ B(4) and py + B(2)* = ti4 —
p2(2)* + B2, So (1) holds.
(2) is a direct consequence of Lemma 2.1. (3) follows from (1)(2). O

Lemma 2.3.  Let 8 > 0, then T3 is a finite set and 1 < #T < 3.



Proof. This result follows from Lemma 2.2 and a fact that 1 < #{7 > 0| ¢p(7) =
0} < 3. O

In order to prove Theorem 1.1, we need to look for positive zero points of ¢z. We
first consider a special case where p1; = ps.

Lemma 2.4. Suppose that > 0 and p, = ps.

(1) If 8 < 2uq, then 71 = 1 is the unique positive zero point of ¢p and qb@(T)(T —
1) <0 for each T # 1.

_ ./ _ 2
(2) If B > 2u1, then ¢p has three positive zero points T, = %24”1
M1
/32 _ 2

7y = VT aoreover, Gp(T)(T — 1) (T — 1)(7 — 73) <0 for each T # 71,1, 73.

2p1

, =1 and

Proof. Suppose that p; = us, then ¢g(7) can be rewritten as

¢p(r) = (7* = (=7 + 1 — ).

Hence ¢3(1) =0 7=1o0r —puy72 + B7 — g = 0.

If B < 2u, then —py72 + 87 — 1y < 0 for all 7 € R; If 8 = 2u4, then —p 72 +
BT — 1= —pui (7 —1)% So ¢s(1) =0 7=11if 8 < 2.

If 8> 2u;, then — 7 + B —pp = 0 & 7 = Vi W. So the lemma is
proved. O

For the general case where py, o > 0, the situation is more complicated. By
direct calculations, we have

Pp(1) = 36712 — 5 — 4,1_”3 and ¢p(1) = 66T — 12HT2, V71 >0.

Then ¢f(7) = 0 & 7 = % Moreover, ¢j(7) > 0 if 7 € (0,%) and ¢j(7) < 0 if

T > 2ﬁ Thus
P

s 3° s
! W(—) = — — v —. 2.5
We have to discuss the following cases:
. B
(i) 0 < B <2pu, then ¢s(-—) < 0. (2.6)

2u

(if) If B > 24, then qﬁ'ﬁ(%) > ¢fy(1) > 0. Since lim ¢fy(r) = —Fand lim ¢}(r) =
—00, there exist 0 < ag <1< % < bg depending on /3 such that

¢s(ag) = ¢a(bg) = 0 and ¢a(7)(T — ag)(T — bg) < 0 for all T # ag, bg. (2.7)



Moreover, by ¢(as) = 0 and ag < 1 we have

Ly _ 38 R (I Ll_L
Pl e 0 T ( 1) %(1 )

Then 1 < .- < bg.

Lemma 2.5. Suppose that 5 > 0 and py # ps, then there exists 5* > 2 such that
the following three cases hold:

(1) If0 < B < B*, then ¢z has a unique positive zero point Ty and ¢p(T)(T—71) < 0
for each T # 1. Moreover, Ty > 1 if 0 < 8 <2u; 7 > bg if 2u < B < 5*.

(2) If B = B*, then ¢g« has exactly two positive zero points T1,Ts. Moreover,
min{r,n} = ag-, max{m,n} > bg and ¢p-(7)(7 — max{m,}) < 0 for each
T # T, T

(3) If B > %, then ¢p has three positive zero points Ty, Ty, T3. Let

1<i<3 1<:<3

Tomid = ZTZ — min {7;} — max {7}, (2.8)

then 1Enn {mn}<ag <Tmia<1<bg< max{n} Moreover, ¢p(T)(T —11)(T —72) (T —

73) < 0 for each T # 11,79, T3.

Proof. By (2.5) and (2.6), we easily see that when 0 < 8 < 2u, ¢g(7) is strictly
decreasing on (0,400). Then we conclude from (2.2) that there exists a unique
71 > 0 such that ¢g(m) = 0 and ¢g(7) > 0 for 0 < 7 < 74, ¢p(7) < 0 for 7 > 7.
Moreover, by ¢s(1) > 0, we have 7, > 1.

For 8 > 2u, by (2.7) we see that ¢z(7) is strictly decreasing on (0, agl, [bg, +o0)
and strictly increasing on [ag, bs]. Then ¢5(bs) > ¢5(1) > 0. So by (2.2), we see that

II(l(}Ibl o5(7) = ¢s(ag) and ¢z has a unique zero point on [bg, +00). (2.9)
TE 8]

We consider the following function
ha(T) = 4¢s(1) — T¢4(1) = 41+ B7° — 3671, 7> 0. (2.10)
Then it follows from (2.7) that
Agp(ap) = hg(ag) and  4dg(bs) = hs(bs). (2.11)

Note that hj(7) = 36(7° —=1) = 0,7 > 0 & 7 = 1L and hjy(7)(r — 1) > 0, V7 # 1.
Then
min hg(7) = hg(l) = 4 — 26.

7>0
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If 2u < B < 2p, then hg(1) > hg(l) > 0 for all 7 # 1. By (2.11) we have
op(ag) > 0, which and (2.9) imply that ¢p has a unique positive zero point 7 with
71 > bg and ¢g(7) > 0 for 0 < 7 < 71, ¢s(7) < 0 for 7 > 7.

If 8 > 27, then hg(l) < 0. There exist 0 < ¢ < 1 < dg such that hg(cg) =
hg(dg) = 0 and hg(7)(T — ¢g)(7 — dg) > 0, VT # ¢, dz. Moreover,

_ 301
h(r) = 41— p) = 705 (=). (2.12)
then h/g(é) > 0 and h/g(i) > 0. Thus we have i <cg<dg< i < bg.

We rewrite ¢3(ag) = 0 and hg(cg) =0 as

3a%—1_4_ﬂ

.
a% B’

3cg — g =

5= (2.13)

Then \/?g < ag < 1 and ﬁlim cg = 0. There exists § sufficiently large such that
—+00

cg < \/Tg < ag < dg, hence hg(ag) < 0. Since ¢z is continuous with respect to J
and hoz(agz) > 0, there exists §* > 21 such that hg«(ag-) = 0, i.e. ¢p«(ag-) =0
and ag« = cg«. Then ¢g- has exactly two positive zero points, denoted by 71, 7 with
min{7y, o} = ag« and max{7m, o} > bg-.

By ag- < 1 < bg« and (2.9), we have ¢g-(7) > 0 for all 0 < 7 < 1. For each

211 < B < B*, we see that 3(73 — 1) > B*(7® — 7) for 0 < 7 < 1. Then
¢ﬁ(7)zﬁ—ﬁ74+ﬁ(73—7) >/_L—ET4+ﬁ*(T3—T):¢/3*(T) >0, VOo<T<1,

which implies that ¢g(ag) > 0. Then we see from (2.9) that ¢z has a unique positive
zero point 7 with 77 > bg and ¢g(7)(7 — 1) < 0 for each 7 # 7.

For any f > %, similarly, we see that ¢g(ag) < ¢p«(ag-) = 0, which and
(2.7)(2.9) show that ¢z has three positive zero points, denoted by 7,72, 75 with

121%13{%} <ag < Tmia <1 <bg < 1125%{73} and ¢g(7)(7 — 1) (T — 12) (7 — 73) <0 for

each 7 # 11, T, T3. n

Remark 2.6. (1) The positive zero points 1; obtained in Lemma 2.5 are indeed
dependent on 3, i.e. T, = 1;(53).

(2) When iy = pa, by (2.12) we have hy(t) = —73¢,(L). For 8 > 2 = 2p1, we
have cg = é and dg = é. Then cg < ag < dg. So 4¢p(ag) = hg(ag) < 0, which and
(2.7) show that ¢g(T) has three positive zero points for py = ps and 5> 2.

1
*\2 _ _(R* — * 5
Lemma 2.7. When § = §*, then ag- = (5“3 ) Bui 4\/<§*(ng)22 (B*)") (12— (B )2)>2.

Proof. When 8 = 3%, by ¢g-(ag) = Ths-(as) = 0 and (2.13), we see that

3a3. — 1 16
a.

11



i.e. ag is a positive solution of the equation 3aj. + [1(6;*1)‘52 — 10Ja3. +3 = 0. By
B* > 271, then (%)% > 4y 12, which implies that 12442 10 < —6. So by 0 < ag- < 1

(B*)?
2
_ H1H2 H1H2 _
10-16 (53 \/[16<B*)2 10} 36

6

we have a%* = . The lemma is proved. ]

Based on Lemmas 2.2-2.5 we have the following lemma.

) <
Lemma 2.8. a)yuﬁqmtmn#%:{1,40<ﬂ_2m,

3, Zfﬁ > 2,&1
Loaf 0<p<p,
(2) If i # pio, then #T5 = { 2, if B = 5,
3, if B> B

By Lemmas 2.2-2.8, we see that

1 1 #Tp .
{(Ti(ule—FﬁTi)j,(Mle+BT¢)7)}, o 1f i < o,
%ﬁlﬁ (2.14)

Ts =
{(art + Br) 3 mitpart 4 Br) D)} i s < g,

where 7; is defined in Lemmas 2.4 and 2.5.

Set
241
m2i=—mind — 1 |1<i< #Tp (2.15)
(pr + p7i)z
and
241
Py = 7 L —m2, 1<i<#Tyzp. (2.16)
(pr! + Br;)2

Lemma 2.9. Let > 0. Then Pz = {10} with 7o =1 if py = po and

T, iff<pB,
o= ag-, if =75, if i # o,
Tmid, Zfﬁ > ﬁ*7

where ag and Ty, Tpia are given in (2.7) and Lemma 2.5.

Proof. For f < 2uq if py = pg or B < B* if uy # peo, then obviously, by Lemmas 2.4
and 2.5, we see that Ps = {7 }.

For B > 2uy if py = ps or 8> B* if gy # pe, to prove the lemma, we consider the
following function introduced in [30]:

1 2
Fs(r) = al - 17>0.
(7 + pr® 4 267%)3

12



Note that Fj(7) = mgbﬁ(ﬂ, where ¢g(7) is defined in (2.1). Moreover, by

¢5(7;) = 0, we have [Fs(r;)]2 = Tt s enough to consider Fy(7;),1 < i <

(prit4B74)
AT,

If uy # po and 8 = B, then we conclude from Lemma 2.5 that Fj.(7)(1 —
max{7y, 7o }) < 0forall 7 # 7y, 5. Hence F«(7) is strictly increasing on (0, max{7y, 75 }|
and strictly decreasing on [max{7y, 72}, +00). So Fg«(min{7y, 2 }) < Fp«(max{r, m}).

If 4y # po and B > *, then similarly, Fz(7) is strictly increasing on (0, 112i23{7i}]’

Nl

[Timids max {7:}] and strictly decreasing on [1f£1i1£3{71},7mid]7 [&12@{@-},%—0@). There-
fore, Fi(Tmia) < Fﬁ(lriljgg{Ti}),Fﬂ(lrr<1a<xg{7'i}). Similarly, if p; = e and 8 > 2u, we
can show that Fj(1) < Fs(my), Fs(r3). O

Lemma 2.10. Suppose that (t,s) satisfies

:U’lt4 + ﬁtsg Z 17
post 4+ Bstd > 1, (2.17)
t,s > 0.

(1) 1If py = pa, then t* + s* > m2 for all > 0.
(2) If p1 # pa, then there exists B, € (2p, %) such that t* 4+ s> > mg for all
B € (0,5]U[B*,+00).

Proof. By (2.17), we have

(12 41)?

2 1 2
(tQ 4 82)2 2 95(7_) — u ﬁ_|_ 573 ,

= g PSPz p =

(2.18)

where 7 = Lif iy < pip and 7 = 2 if jip > piy. Then (#*+5%)* > max{gs(7), fs(7), 7 >
0}. It is enough to show that max{gs(7), f5(7), 7 > 0} > mg.
Note that
99(7) = f3(r) = 63(r) = 0 = 7 € {r}, (2.19)

where 7; is defined in Lemmas 2.4 and 2.5. Moreover,

(95() — fa(r))sen(es(r) >0, V7¢ {n}lY. (2.20)

By direct calculations, we have

Uand gy = — L),

lim g3(7) = 400, lim gg(7) = uo = (i & B 3

=07+ T——+00
The function gg(7) has the same monotonicity as ¢(7), i.e. if 8 < 2u, then gs(7) is

strictly decreasing on (0, +00); if 8 > 2, then gg(7) is strictly decreasing on (0, ag],
[bg, +00) and strictly increasing on [ag, bs].

13



Similarly, we have

2+1
T folr) =l o) =toe and  fi() = (o),

where hg(7) is defined in (2.10). By the same proof as in Lemma 2.5, then fs(7)
is strictly increasing on (0,+o0) if 5 < 2@; fs(7) is strictly increasing on (0, cg],
[ds, +00) and strictly decreasing on [cg, dg| if § > 2. Moreover, bg > dg if § > 2.
For 5 > B*, by 4¢3(ag) = hg(ag) < 0, we see that ag > cg.

So by Lemmas 2.4-2.9 and (2.20), we have the following four conclusions.

(1) For 8 < 2u, then

S R VS

> gg(m1) = my.

(2) For py # po and = 5%, then

[ gp(7), if 7€ (0,max{m,n}]
maxigs: (7), fo-(7),7 > 0} = { fZ (1), if 7 > max{m,n}

> gg+(min{ri, 72}) = gp-(ag-) = myg.
(3) For B > 2p if py = py or B > B* if puy # po, then

gs(T), if 1€ (0, 1%123{71-}] U [Timids lrI<1?<)§{TZ}]

max{gs(7), fs(7), 7 >0} = fa(r), ifre [fgii{ﬁ}ﬁmd] U [1H<l.a<>_§{_ﬂ'}a +00)
> g5(Tmia) = mi -

(4) For py # po and 2u < B < %, then we also have

9(7'), if0<7-§7—1
max{gs(7), fs(7), 7 > 0} = { fZ(T>, if 7> 7

> min{gg(ag), gs(m)}.

We should consider the value of gs(ag) and gz(71). We claim that there exists 2u <
B, < B* such that

(98(ag) — gp(m:))(B—B) <0 forall 2u < B < f%, (2.21)

where the equality gg(ag) = ¢s(m1) holds only if 5 = f,. Indeed, we consider the
following two functions H, G : R? — R defined as

H(B,a) :36a2—ﬁ—4ﬁa3, G(B, 1) :ﬁ+573—ﬁT—ET4.

14



For each 2u < B < % by (2.7) and Lemma 2.5, we see that H(f,as) = 0 and
H,(B,a5) = ¢f3(ag) > 0; G(B,71) = 0 and G,(8,71) = ¢3(1) < 0. By the implicit
function theorem, there exist two functions a(8), 7(8) € C'(2u, 5*) satisfying that

_ _ ’ _ _H@(ﬁ,@)
a(B) = ag, H(B,a(8)) =0 and a'(B) = H.(5.q)
and 7(8) =1, G(B,7(6)) =0 and 7/(B) = _gfggg In particular,
. __3&%—1 / __Tf_Tl
a (6) - ¢2§(a5) < 07 T (ﬁ) - ¢2}(7_1) > 0.

Then gs(ag) = gs(a(B)) and gz(m1) = gg(7(5)). Thus by ¢/’3(a5) =0 and ¢’5(7'1) <0
we see that

dgs(a(B)) _  aglez+1?® 16 dgs(r(8)) _ 2nm(?+1) 16
ag (Bag + pag)? 952%as’ g (B + pri)? 95272
Note that 0 < ag < 1 < 71, we have ]dgﬁgl;(’g))| < |d95£l%(6))|, i.e. gs(a(B)), gs(T(B)) are

both strictly decreasing with respect to 8 and gg(7(5)) decreases more slowly than
gs(a(B)). We see from (1) that g, (7) > gou(m1) for all 0 < 7 < 7 and from (2)
that gs« (ag+) < gs-(11). So by the continuity of the functions gz(as) and gs(r;) with
respect to 3, we conclude that (2.21) holds. Then max{gs(7), f5(7)} > gs(11) = m
for all 0 < B < B,.

Therefore, we conclude from (2.18) and (1)-(4) that the lemma is proved. O

The following lemma is a consequence of the proof of Lemma 2.10.

Lemma 2.11. Suppose that p # po. Then

L, 2u<pB<pB,

#{r >0\ Jos(r) =mb2u< B< g} =2 2 B=4.

3, [B.<p<pr
Proof of Theorem 1.1

Proof. When A\; = )y, for any 8 > 0, problem (1.1) has at least one positive solution
of the form (t;w, s;w), where (¢;,s;) € Tp,1 < i < #Ts and w is defined in (1.8).
Let

(to, s0) := { (ol + B70) 4, (g + Bro)

), if g < po,
2.22
(o + B0) ™7, To(parit + o)™ (222)

)7 if M2 < 1,

FN SN

where 79 is given in Lemma 2.9. We see that (tyw, sow) is a positive solution of (1.1)
and

1
B < I(tyw, sow) = §(t3 + 53) /(]Vw\2 + \w?) = (t2 + s5) B1 = mj By,
Q

15



where Bj is defined in (1.9).
For any (u,v) € M, by the Holder inequality and (1.10) we have

(3B;) % /|u] ( ) } < /Q(\Vu\z—ir)\uQ—l—Wv]Q—l—)\vz) = 31(u,v), (2.23)

B0t ([ ) "< [ava ) )< [ Jul+5( /|u| /|v| (2.24)
Q

([ ) s/|W|2+Av <t [ 10l°+ 5 /|v| /|u| . (229)
Q

™ t:= <f9 |ul6>é >0, s = <f9\v\6>é > 0,

3B, 3B,
then by (2.24) and (2.25) we have

1 < it + pts®, 1 < pos* + Bst?. (2.26)

By Lemma 2.10 we see that t* + s> > m32 when 8 > 0 if y; = ps or when 3 €
(0, B.]U[B*, +00) if py # pe. We conclude from (2.23) that B = m2B; = I(tyw, sow).
So (tow, spw) is a positive least energy solution of (1.1).

Next we prove that for § > 0 if py = uy or for 8 € (0, 5, U [B*, +00) if 1 # po,
(tow, spw) is the unique least energy solution of (1.1). Let (u,v) be any a nontrivial
least energy solution of (1.1), then (u,v) € M and I(u,v) = B. Similarly by (2.23)-

(2.26), we see that
fQ wly Ja ol

331 ) T 3B, )

and (3B;)3 = Jo(VulPtda®) _ JoUVol+Xe?) g, ) e H}(Q)\{0} is a minimizer of

(Jiy lul®)3 (Jov®)3
(3B1)3 defined in (1.10). Then there exist two Lagrange multipliers L; = (—fsﬁhe )i >

0,Ly = (f B |6)3 > 0 such that

_ 2
=m

W=

—Au+ \u— Liu’ =0, — Av+ M — Lyv® =0.

1o
Set (a,9) := (L{u, Ljv), then 4,9 are both nontrivial solution of —Au + Au = u®
in Hj(Q) with 3 [,(IVa> + Aa?) = 3 [(|VD* + A0?) = By, Thus @ = 9 = w. So
we see that (u,v) = (L; *w, Ly, *w). We conclude from (u,v) € M that (L, *, Ly *)
i 1
is a solution of (2.3) and L, ? + L, > = m?. It follows from Lemmas 2.4-2.9 that
11

(Ly*, Ly*) = (to,S0). Therefore we have (u,v) = (fow, sow). Then the theorem is
proved.

[
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3 Proof of Theorem 1.2

In this section, we consider the general case where —A;(Q) < A, Ay < —3A1(Q2). The
Aubin-Talenti instanton [1] defined as

Ll

3
(1+ |z]2)>

Ulz) =

satisfies the equation —Au = »° in R? and fRS VU = [: |U]° =
As recalled in section 1, —Au + \u = p;u’® in Hj(Q2) has a unique positive least
energy solution u,, € CZ(Q) N C(Q2) with its energy

1 1 1 1 3
B = [V i) = g [l < g b2 (3.1)
We have .
JvuP e xat) 2 6B, (s [ 1), vueni@. (32
Q Q

Lemma 3.1. Suppose that § > 0, then there exists Cy > 0 such that [, ul®, [, [v]® >
Cy for any (u,v) € M with I(u,v) < m052

Proof.  For any (u,v) € M, by (3.2) and the Holder inequality we have

@t B ([ 1) < [ty < [t s( [l ( / o)
Q
g % 2 6 62
(312 B,,)} |U| (Ve + Aav?) < g 1ol +5 |u! [l
Q

By contradlctlon, we suppose that there exists a sequence {(un,vn)} C M with
I(tn,v,) < 1m2S3 satistying that [, [u,|® — 0 as n — 400, Since [,(|Vu,|* +
MU2 + [Vop|? 4 Agv2) = 31 (up, v,) < m2S2 and =M\ (Q) < A, Ao < 0, {(un,v,)} is

uniformly bounded in H. Hence

(3ufB D3 < (/Q ]un]6) +6(/ \u,f’)ﬁ (/Q \vn\6>2 — 0 as n — +oo,

which is impossible. Similarly, [, |v,|® — 0 is also impossible. So there exists a
constant Cy > 0 such that [, [ul®, [, [v]° > Cy. Then the lemma is proved. O

Lemma 3.2.  Suppose that 8 > 0, for any u,v € H}(Q)\{0}, there exist t,s > 0
such that (tu, sv) € M.

17



Proof. 1t is enough to prove that there exist ¢, s > 0 such that

{ fﬂ(|Vu]2 + Mu?) — thuy fﬂ lul® — ts*3 fQ lul|v]® = 0, (3.3)
fQ(|Vv|2 + Xov?) — st fQ [v|® — st3p fQ lul?|v]® = 0.

By > 0 and the first equation in (3.3), we see that

Jo(IVul? + Mu?) =ty [, |ul®
th [ lulPlvf?

S=f1(t)::< )é, 0<t<T,

where T' = (M)i Moreover, lim fi(t) = +oo and lim fi(¢) = 0. Then
K fo lul® ' TS0t ! t—T— ! ’

to prove (3.3) is equivalent to show that

folt) = / (V02 + Aoo?) — [fa(8)] a2 / of® — F (BB / WP =0, 0<t<T

has a solution. Note that lim f5(t) = —oo and
t—0t

T (0 = [ (VoP +2a?) = (@ +20) [ >0

since Ay > — A1 (), then there exists 0 < t < T such that fo(t) = 0. Set s = fi(t) > 0,
then (tu,sv) € M. O

Lemma 3.3. Suppose that 0 < B < 2uy if up = o or 0 < B < B* if uy # poa,
then B < min{BM1 + B,,, %mgS%}, where B, B,,,m§ are respectively given as in
(1.7),(3.1) and (2.15).

Proof. For simplicity, we take Q = B;(0). Then A\ (Q) = 2. Set ¢(z) = cos(@)
and o
we() = p(2)e"=U(2) (3-4)

for any € > 0. Then we obtain that (see e.g. Lemma 1.3 in [5]),

/ V.| = 5% + ﬁﬂgf +0(e%, / w.|S = S + O(?), (3.5)
B1(0) 2 B (0)

/ lwe|? = 2v/3me + O(2). (3.6)
B1(0)

For0 < B <2uyif g = poor 0 < B < 5% if py # po, then by Lemmas 2.4-2.9, then
2 2

Ts = {(to, s0)}. Set C1 := 2/Brmin{—X\; — -, =\, — %2} > 0 since A, Ay < —Z-.
We consider the maximal point of the following function

15 + pps8 4+ 281383
6

2 + 52

5 (S? + 0(?)), t,s > 0.

(53— Cre+0(2) = &

f(t,s) =

18



By ft(ta S) = fs(t7s) = 07 we have

S5 Cl€+o(€2) . 13
352+0( £2) pt” + s,
S2— Cla+0(a2) _ 4 t3
SerO( 2) H2s +58 )

AN

3 2
then (¢, s) = (%) (o, S0)-

By Lemma 3.2, there exist t., s. > 0 such that (t.w.,s.w.) € M. So we see from
(3.4)-(3.6) that

B < I(t.we, scw.) < rrizfocl(twa,swg) < {rﬁ}éf(t s)

(52 — Cie + O(£2)]2
[57 +0(e2)]2

1
= g(t?) + 57)

< 3m057

for € small enough. For any ball in R?, applying the above argument, we also get
3
B < sm§Se.
By Lemma 3.2, there exist ¢,5 > 0 such that (tu,,, Su,,) € M. Then

>0

§2
+I£1303><{2 /(|Vuﬂ2| —1—)\2|u#2| /|“#2|
< By, + B,

_ 2
B < 1t 5u) < max {5 [ (90 + Ml - / 0"}

]

Lemma 3.4. Let0< f < 2\/pipz. If (u,v) € M is a minimizer of B, then (u,v)
1s a nontrivial critical point of I.

Proof. Let
G (u,v) = / (Va2 4+ M) — / (uaul® + Bl o),
QO Q

Ga(u, v) =/Q(!VUIQ+A2U2)—/Q(uzlvl6+5IUI3!vl3)'

Since (u,v) € M is a minimizer of B, there exist Li, Ly € R such that (I'(u,v) +
LlGIl(“?”) + LQG/2<U7U)7 (§0,¢)> = 0 for any ((,O,Qb) € H. Taklng (%ﬁb) = (u70) and
(p,®) = (0,v) respectively, we have the following linear system

/ (4guaful® + BluP o)Ly + 38 / oLy = 0,
35 / oLy + / (4pfol® + Bluf*lof*) Lz = 0.
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By 0 < B < 2,/u1p12, the Holder inequality and the Cauchy inequality, we see that

8 [Pl <2 [ 1) (e [ 1) <m [ fult e [ 1l
Q Q

which and Lemma 3.1 imply that
2
[ tmlal® + Sl [ (palol® + 8purlof®) = 9(5 [ fuplof?)
Q Q Q
2
> 16pup [ Jul® [ Jof* = (3 [ uflof)
Q Q Q
—4(4M1M2—52)/ ’U‘ﬁ/ [0]°
Q Q

> 44 ps — 5*)CF > 0.
So we see that Ly = Ly =0 and I'(u,v) = 0. O

Next we consider the case where 8 > 2,/uiji2. We consider the following set
defined in Lemma 2.11

/ 1
X,@ _{T>O| s 1:m(2)}7
,u74—|—ﬁ7' 2

where m2 is defined in (2.15). Then 7y € Xj for each 3 > 0, where 7y is defined as in
Lemma 2.9. Note that 2 < 2/, < 271, by Lemma 2.11 and the proof of Lemma
2.10 we see that for 8, < f < 8*, Xg = {71, T2, 7o} wWith 0 < 7 < ag < T2 < bg < 7.

For 8 > 2,/p1 2, we define

o { T, max{2y/fifiz, 8.} < B < B* or B = 2\/mpiz if B < 2\/fapia,
* any element in (0,7p), otherwise.
(3.7)
Then we obtain the following modified version of Lemma 2.10, which will be crucial

to deal with the case where 5 > 2, /pu1puz.

Lemma 3.5. Let 5 > 2,/pijiz. Suppose that (t,s) satisfies

pitt + ptsd > 1,

,u284+/88t3 Z 17

L>7 ifpn <pp oor 22>7 if g > po,
t,s >0,

then t* + s* > mj.

20



Proof. By Lemmas 2.10 and 2.11, it is enough to prove the case where 3, < g < g*.
Using the definition of 7, similarly to the proof of Lemma 2.10, by the monotonicity
of the functions gs(7) and fz(7) we see that

2 2\2 > > _ 9/3(7')7 if 7. <7 <7,
(t%+ )" 2 maxigs(7), fo(r), 7 2 72} { fa(r), if 1>,

> gs(10) = my,
0

To prove the theorem, without loss of generality, we may assume that p; < s in
what follows. We consider the following manifold

M = {(Uav) 6H\{(0,0)}|/Q(|Vu| + A’ + [Vl 4 Agu ):/Q(ul|u| + 2]

T 281uPof). 2 / ul® < Br / o, 72 / o] < / |u|3|v|3}.
Q Q Q Q

For any u € H}(2)\{0}, then there exists ¢t > 0 such that (ttyu,tsou) € M, where
(to, o) is defined in (2.22). So M # &. Set

1
mg = (UEEM I(u,v) = (ung 3 Q(|Vu|2 + Mu? + Vol 4 \v?),

then mg > 0.
Lemma 3.6. Suppose that B > 2,/piipiz. Then mg < %m%S%.

Proof. We first consider Q = B;(0). For any ¢ > 0, let w.(z) and (%o, s¢) be defined
in (3.4) and (2.22). Then there exists

. <m3 fQ [Vw.? + (t5M1 + s55)) fQ w§>}l
) my fQ w?
such that (t.towe,t-sow.) € M. So by (3.5) and (3.6), we have
mg < I(t-towe, t-Sow;)
1
= Lol / Ves? + (22A, + 520) / w?
3 Q Q

(mgs% +Zm2 + (Mt + Aps2)]2v/3me + 0(62)>

|wo

2

1

-3 5 2
(51 +0(=2)|

< %mgsi
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for £ > 0 small enough, where we have used a fact that A\;t3 + Aas? < —%m% since

AL A < —3M(B(0) = —%2. So mg < %mgS%. We can similarly prove that the
lemma holds for any ball in R3. O

Lemma 3.7. Suppose that B > 2/jiifiz, then there exists a bounded (PS)m,
sequence {(un,v,)} C M for 1.

Proof. By the Ekeland variational principle, there exists a sequence {(un,v,)} C M
satisfying that

mﬁ S ](un7vn) S mﬁ + la
n
1
I(u,v) > I(uy,v,) — EH(un,vn) — (u, )|y, V (u,v) € M. (3.8)

We easily see that {(u,,v,)} is uniformly bounded in H. For any ¢, ¢ € H}(Q), we
consider a function F, : R? — R as

Fo(t,s) = (I'(up + tp + Stp, vy + 1@ + s0,), (Uy + L@ + Stp, v, + t) + S,,)).

Then F,(0,0) = 0 and 2200 — 4 [ (11w, |0 + pa|v, |0 + 28[unl?|va|?) # 0. By the
Implicit Function theorem, there exists {4, } C Ry and a function s, (t) € C'(=6,,4,)
such that

9F,,(0,0)

50(0) =0, Fo(t,su(t) =0, V1€ (=0,,0,) and s,(0) = — -2

Jds

Then s/, (0) is bounded since {(uy,,v,)} is uniformly bounded. Moreover, (u, + ty +
S () Uy U + t) + $p(t)0y) = (Uup,v,) in H as t — 0. Then there exists ¢, € (0,0,)
small such that (u, +to+ s, (t)un, v, +td+ s, (t)v,) € M for allt € (—e,,e,). Denote

@nt = Un + tQO + Sn(t>un7 gbn,t =U, + t¢ + Sn(t)vnu

then (©nt, ¢nt) € M for Vit € (—e,,,). It follows from (3.8) that
1
I((pn,ta ¢n,t) - I(Um Un) Z _EH (t(p + 3n<t)un7 t(b + Sn(t)vn) HH (39>
By (un,v,) € M and the Taylor Expansion we have

Ity Pn) = L(un; vn) - = (I'(un, 0n), (L + 80 (), 1) + sn(t)vn)) +7(n, 1)
=t

I/
(I'(un, vn), (0, 0)) +7(n,1),

(3.10)
where 7(n,t) = o(||(te + sn(t)tun, td + s (t)vy)|| ) as t — 0. We see that
nll nll
timsup (g + 2P, o1+ 201, <0 (3.11)
t—0 t t
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where C' is independence of n. Hence r(n,t) = o(t). By (3.8)-(3.11) and letting
t — 0, we have

[T (s ) (0, 0))] <

where C' is independence of n. Hence I'(un,v,) — 0, i.e. {(u,,v,)} is a bounded
(PS)m, sequence for I. O

¢
n

Lemma 3.8. ( [29], Lemma 1.32) Let Q be an open subset of RN and let {u,} C
LP(Q), 1 < p < oo. If {u,} is bounded in LP(2) and u, — u a.e. on 2, then

i (fun 2 — = ) = [ul

Lemma 3.9. ( [12], Lemma 5.3) Let u, — u, v, — v in H}(Q) as n — +o0 and
1 < p < 400, then passing to a subsequence, there holds

m f ([un|?|on |’ = |un — uf?lon — 0" = [ul’[v]") = 0.
n—-+o0o Q

Proof of Theorem 1.2

Proof. (1) For 0 < 8 < 2,/u1ja, let {(un,v,)} C M be a minimizing sequence for
B, ie. I(uy,v,) = B asn — 400, then {(u,,v,)} is uniformly bounded in H. By

Lemma 3.1, we see that
/Iun!6,/ |va|® > Co, (3.12)
Q Q

where (Y is a positive constant given in Lemma 3.1. Up to a subsequence, we may
assume that (u,v) € H such that (u,,v,) = (u,v) in H. By the Sobolev embedding
inequality, we have

{O

Up —u, v, —=v in L5(Q),
ud =3, vd =03 in L*(Q), (3.13)
u?> = v’ v2 —v° in L5(Q), '

Up — U, v, — v in L*(Q).

vl N

So I'(u,v) = 0. Let w,, := u, — u, 0, :== v, — v and

1
= lim /|wn] by := lim (/|an|6>6. (3.14)
n—+00 n—+o0o Q
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By (un,v,) € M, the Sobolev embedding inequality and Lemma 3.8 we have

B = lim I(up,vy)

n—-4o00

1
== lim [ (|Vun|* + [Va|® + Mlua]? + Xa|va]?)
Q

3 n——4oo

~ L i (IVw,|* + [Von|?) + 1/(|Vu|2 + Aiful® + [Vo]? 4 Xo|v]?)
3 n—+oo 3 Ja
> %S(b? +03) + I(u,v).
(3.15)
We claim that
both u # 0 and v # 0 <= b; = by = 0.

Indeed, if u # 0,v # 0, then (u,v) is a nontrivial solution of (1.1), i.e. (u,v) € M.
Hence we have I(u,v) > B, which and (3.15) show that b; = by = 0. On the other
hand, if by = by = 0, then (un,v,) — (u,v) in H. We conclude from (3.12) that
u#0,v#0.

It is enough to show that b; = by = 0. By contradiction, we just suppose that
by = by = 0 does not hold, then u = 0 or v = 0 holds. By (u,,v,) € M, Lemmas
3.8-3.9 and the Hélder inequality, we have

S([1unt®)" < [ 9wl < [l +5( [ 1) ( [ lonl?) +on). 16)
S([1l)’ < [ 9oult < [l +5( [ 1) ([ 10af) +ont0) 17

where 0,(1) — 0 as n — +00.
If bhbg > 0, then

()" + B
pa( B )+ B(

=) > 1
g_f)g - (3.18)
) >

By 0 < 8 < 2,/uipiz and Lemma 2.10, we have b + b2 > m%S%. We conclude from
(3.15) that B > 1S(b? + 3) > 1m2S3, which contradicts Lemma 3.3.

If b, = 0 and by > 0, then uw, — u in H}(Q). By (3.12), we see that u is a
nontrivial solution of —Au + A\ju = ,ulu in Hg(9). Hence v = 0 and I(u,0) > B,

We conclude from (3.17) that b3 > u, %93, Then
1 2 2 Lo L L 1.3
BZg (lVU’ +)\1U)+§Sb2EB#1+§bQS:B#1+§M22S2,
Q

which contradicts Lemma 3.3 and (3.1). Similarly, we can get a contradiction if b; > 0
and by = 0.
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Therefore, by = by = 0. Then u # 0,0 # 0 and [(u,v) = B. Since the functional
I and the manifold M are symmetric, we may assume that u,v > 0 in €). By the
strong maximum principle, we see that w,v > 0 in Q. So (u,v) is a positive least
energy solution of (1.1).

(2) Let 8 > 2/p1piz. By Lemma 3.7, there exists a bounded (PS),,, sequence
{(tn,v,)} C M for I, then we may assume that (u,v) € H such that (u,,v,) = (u,v)
in H and (3.13) holds. So I'(u,v) = 0. We first show that nl_lgloo Jq [un|® > 0 and

lim [, [v,|° > 0. By contradiction, if we assume that [, |u,|® — 0, then by the

n—-+00
Hélder inequality, we have [, [u,[*[v,|* — 0 as n — +oo. By (up,v,) € M, we
see that [, |v,|® — 0. Then mg = lirf 5 Jo(]unl® + polvn|® + 28|u, *lon*) = 0,
n—-+00o
which contradicts mg > 0. So lir}rﬂ Jo [unl® > 0. Similarly, we can prove that
n—-+0oo
lim [, [v,]® > 0. Let wy, 0y, by, by be defined as in (3.14). By the boundedness of

n——+oo

{(un,vn)} and I'(uy, v,) — 0 we see that

{ Jo IVwa? = [ (pawn|® + Blw, Plonl?) + B [o [ul*|v]* + 0a(1),
fQ |V‘7n|2 = fQ(M2|0n|6 + B|7~UN|3|U7L|3) + 6fQ |u|3|v|3 + On(l)-

Similarly to (3.15), we also have

3 n—-+0o

1 1
mg == lim [ (|Vw,)* +|Vo,|*) + g/(]VuF + M uf + | Vo2 + X fv]?)
Q Q

> —S(b] + b3) + I(u,v).

W =

If w =0, then b; > 0. By (uy,v,) € M and the Hélder inequality, we see that

211 6 3 3 3 3 6 : 6 :
= / un® < / tn[Bfoa® = / P[P 00(1) < / et / 0al®) on(1),
57'0 Q Q Q Q Q

which implies that Z—f > (Z%)% > 0, i.e. by > 0. Moreover, by Lemma 3.8,
0

we have 7 [ |00]® 4+ 0,(1) = 72 [ |[0nl® < [ [unlPloal® = [ [ual?lon]® + 0n(1) <

(fo 1nl®) 2 ([ 170l%)® + 04 (1), which implies that Jal%l5220) > 26 Ginilarly to th

o ltn olon (1), plies that > 1,.. Similarly to the

Jo lonl®
proof of (3.16)-(3.18), we get that !

m(Z) + A5 = 1,
i)+ () > 1, (3.19)
o>,

By Lemma 3.5 we have b? + b3 > m3S2. So mg > 1S(b3 + b2) > 1m2S>, which
contradicts Lemma 3.6. So u # 0.

Similarly, we can show that v # 0. Therefore we have u # 0 and v # 0. Then
(u,v) is a nontrivial solution of (1.1). O
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