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Summary

Stochastic processes are very useful and have a very important role in modeling the
evolution of processes that take different states over time, a situation frequently found
in fields like Medical Research and Engineering. In a previous paper and within this
framework, we developed the sum of two independent phase–type (PH) distributed
variables, each of them being associated with a Markovian process of one absorbing
state. In that analysis, we computed the distribution function, and its associated sur-
vival function, of the sum of both variables also PH–distributed. In this work, in one
more step, we have developed a first approximation of that distribution function to
avoid the calculation of an inverse matrix due to the possibility of bad conditioning
of the matrix involved in the expression of the distribution function in the previous
paper. Next, in a second step, we improve this result, giving a second more accurate
approximation. Two numerical applications, one with simulated data and the other
one with bladder cancer data, are used to illustrate the two proposed approaches to the
distribution function. We compare and argue the accuracy and precision of every one
of them using their error bounds and the application to real data of bladder cancer.

KEYWORDS:
Survival analysis, Bladder cancer, Markov process, Fréchet derivative, Kronecker product, Phase–type
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1 INTRODUCTION

Stochastic processes have proved to be very useful in the evolution of processes that can take different states over time. In
this regard, Markov models have been widely used for this purpose in fields like Medical Research and Engineering as well
as the Phase–Type distributions. A Phase–Type (PH) distribution is the distribution of the time to absorption in a finite–state
absorbing Markov chain1,2,3. A PH–distribution is represented by (�, T ) where � is an initial probability vector and T is a
squared matrix representing the rates between the transient states in the Markov process. Phase–type distributions are a powerful
tool in stochastic models of real systems. A lot of applications have been reported in queueing theory models4 and Reliability
in the context to model the failure of electrical components5 and applications in shock and wear systems6 among others. These
distributions also arise in the evolution of some chronic diseases since the process goes through a series of states or phases7,8
and in applications to the length of stay at hospitals9,10,11. See Chapter 1 in12 for a sample of the diversity of contexts where the

0Abbreviations: PH, Phase-Type; NMIBC, Non Muscle Invasive Bladder Cancer.
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phase–type distributions are used (telecommunications, finance, teletraffic modelling, biostatistics, drug kinetics and survival
analysis).
On the other hand, one of the major interests in cancer research is to model its evolution from the beginning of the disease

until the death going through a number of states before reaching the absorbing state (death). However, sometimes the real data do
not include the complete evolution of the disease because this evolution is treated in different and independent units within the
same department or hospital and consequently the real data are registered separately. For this reason, before the need to describe
the complete evolution of the bladder cancer (from a primary tumor to the extirpation of the bladder), in a previous paper13, we
concatenated two Markov processes. Each one analyzed one part of the evolution of this chronic disease because in that study
we had two different and independent real databases belonging to different units of the La Fe University Hospital, in Valencia
(Spain). The first database described the disease from a primary tumor until a more aggressive tumor, through several states.
The second database described the evolution from the aggressive tumors until the bladder extirpation (death of the bladder), also
through several states. Both bases were disconnected and our objective was to connect both and be able to study the evolution of
the whole disease divided in two phases; from the primary tumor (start state in the first database) to the removal of the bladder
(absorbing state in the second database).
In the modelling of these two phases of the disease, we considered two consecutive homogeneous Markov processes with

state spaces {1, 2 … , m+1} and {1, 2 … , n+1} respectively and glued together to become a unique continuous–time Markov
chain with m+ n+1 states, identifying the state m+1 with the first state of the second Markov chain. The absorbing state of the
resullting concatenatedMarkov process was them+n+1 state.We have also considered two random continuous and independent
variables representing two absorption times: the absorption time of the first process (the appearance of the first aggressive or
progression tumor) and the absorption time of the second one (the bladder extirpation). Both variables were considered PH-
distributed with representations (�, T ) and (�, S) respectively, with � and � initial probability vectors in each process. T and
S were squared matrices of orders m and n respectively, representing the rates between the transient states in each process. In
order to study the Survival function of the absorption time of this concatenated process (m + n + 1 state) we obtained a new
distribution function of the sum of these two variables also PH-distributed.
Thinking in the practical application of our approach, for example, if we find large matrices because of dealing with many

states, we aim to build approximations that facilitate the task. So in Section 2 we present the distribution function of the previous
paper13 . In Section 3, we develop a first approximation of this distribution function to avoid the calculation of an inverse matrix
in its expression due to the possibility of bad conditioning of the matrix. We start developing the expression of that inverse by a
numeric series. We also compute an error bound for this first approximation. In a second step, we improve this result with a new
and more accurate approximation. We have also developed an error bound for this second approach that allows us to compare
them and improve the result of this study. In Section 4, we illustrate the results of both approaches with a numerical application
of simulated data. We compare them with the exact distribution function in13. In Section 5 we apply this methodology to real
data of bladder cancer and we argue the improvement and the usefulness of the second approach compared to the first one.
Finally we conclude the study in Section 6 with some discussion.

2 THE SURVIVAL FUNCTION OF TWO CONCATENATED MARKOV PROCESSES

Throughout this paper we use the Kronecker matrix form just like the Kronecker sum and product, denoted with ⊕ and ⊗
(mathematical notation) respectively. The main definitions about these two concepts as well as the properties are in the appendix
A. We start with the following result proved in13.

Theorem 1. Let X1 and X2 be nonnegative random two independent variables representing the absorbing times in the Markov
chains with state spaces {1, 2, … , m, m + 1} and {1, 2, … , n, n + 1} respectively. The groups of states {1, 2, … , m} and
{1, 2, … , n} are the transient states in each Markov process and the states m + 1 and n + 1 are the absorbing ones. X1 and X2
are PH-distributed and the representations are (�, T ) and (�, S) respectively. Thus, the Survival function S(x) = P (X > x) =
1 − F (x) for the sum X1 +X2 is given by

S(x) = � eTxem + �m+1�eSxen +
(

en
′ ⊗ �

)

1

∫
0

esS
′x⊕(1−s)Tx ds vec

(

T 0�x
)

(1)
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where �m+1 is the initial probability of reaching the absorbing state m + 1, ek = (1, 1,… , 1)′ ∈ ℝk×1 and T 0 = −T em, being
T 0 a matrix of order m × 1 with the entries ti,m+1, i = 1,… , m, that represent the absorbing rates from the transient states. The
expression for the calculated integral is

1

∫
0

esS
′x⊕(1−s)Tx ds = [S ′x ⊕ (−Tx)]−1

(

eS
′x ⊗ Im − In ⊗ eTx

)

(2)

See results (15)–(17) in13.

3 THE APPROXIMATED SURVIVAL FUNCTION FOR TWO CONCATENATED MARKOV
PROCESSES

The calculation of the inverse of the previous matrix S ′x ⊕ (−Tx) giving in (2) can present serious difficulties if this matrix is
badly conditioned. To avoid a possible bad conditioning we perform one approximation for the Survival function S(x).

3.1 An approximated Survival function
Firstly, we consider the distribution function, F (x) = 1 − S(x), using the expression given in (1),

F (x) = 1 − � eTxem − �m+1�eSxen −
(

en
′ ⊗ �

)

1

∫
0

esS
′x⊕(1−s)Tx ds vec

(

T 0�x
)

(3)

and let us calculate an approximation for the term ∫ 1
0 e

sS′x⊕(1−s)Tx ds. For that purpose we use the expansion of the Taylor
series for an exponential function in the integrand of (3). We denote this integrand by the function f (S, T , s, x) = esS

′x⊕(1−s)Tx

f (S, T , s, x) = Im×n +
(

S′s ⊕ T (1 − s)
)

x + 1
2!

(

S′s ⊕ T (1 − s)
)2 x2 +… (4)

…+ 1
k!

(

S′s ⊕ T (1 − s)
)k xk +…

Let us call the k-th term of (4) by the function fk(S, T , s, x) and taking into account that

||fk(S, T , s, x)||2 =
1
k!
||

(

S′s ⊕ T (1 − s)
)k

||2 x
k ≤ 1

k!
(||S′||2 + ||T ||2)kxk

then ∞
∑

k=0

1
k!
(||S′||2 + ||T ||2)kxk = e(||S

′
||2+||T ||2)x (5)

is a convergent series of constant terms. Then, applying the Weierstrass’ criterion of uniform convergence, the Taylor series
expansion f (S, T , s, x) =

∑∞
k=0 fk(S, T , s, x) converges uniformly in s ∈ [0, 1]. Thus the integral in (3) can be obtained by

integrating term by term (4). For this, as S′⊗ I and I⊗T commute (see demostration in the Appendix A for k = 2) the binomial
of Newton can be used in each term fk(S, T , s, x) and so one gets to

∞
∑

k=0
fk(S, T , s, x) = Im×n +

(

S′s ⊕ T (1 − s)
)

x + x2

2!

2
∑

j=0

(

2
j

)

(S′)2−j ⊗ T js2−j(1 − s)j +…

…+ xk

k!

k
∑

j=0

(

k
j

)

(S′)k−j ⊗ T jsk−j(1 − s)j +… (6)
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Integrating each term of (6) it follows that

I(x) =

1

∫
0

esS′x⊕(1−s)Tx ds

= Im×n +
[

S′
1

∫
0

s ds ⊕ T

1

∫
0

(1 − s) ds
]

x +…

+x
k

k!

k
∑

j=0
(S′)k−j ⊗ T j

(

k
j

)

1

∫
0

sk−j(1 − s)j ds +…

= Im×n +
1
2
(S′ ⊕ T )x +…+ xk

k!

k
∑

j=0
(S′)k−j ⊗ T j

(

k
j

)

B(j + 1, k − j + 1) +…

= Im×n +
1
2
(S′ ⊕ T )x +…+ xk

k!

k
∑

j=0
(S′)k−j ⊗ T j

(

k
j

)

Γ(j + 1)Γ(k − j + 1)
Γ(k + 2)

+…

= Im×n +
1
2
(S′ ⊕ T )x +…+ xk

k!

k
∑

j=0
(S′)k−j ⊗ T j k!

j!(k − j)!
j!(k − j)!
(k + 1)!

+…

= Im×n +
∞
∑

k≥1

xk

(k + 1)!

k
∑

j=0
(S′)k−j ⊗ T j (7)

Now if we take in (7) the following finite sum until the p–th term, we have

�p(x) = Im×n +
p
∑

k=1

xk

(k + 1)!

k
∑

j=0
(S′)k−j ⊗ T j (8)

as an approximation to I(x) and we can substitute the expression (8) by the integral of the distribution function (3). Then F̂1(x)
will represent an approximation of the distribution function F (x),

F̂1(x) = 1 − � eTxem − �m+1�eSxen − (9)
(

en
′ ⊗ �

)

(

Im×n +
p
∑

k=1

xk

(k + 1)!

k
∑

j=0
(S′)k−j ⊗ T j

)

vec
(

T 0�x
)

and consequently an approximation of the Survival function would be

Ŝ1(x) = � eTxem + �m+1�eSxen + (10)
(

en
′ ⊗ �

)

(

Im×n +
p
∑

k=1

xk

(k + 1)!

k
∑

j=0
(S′)k−j ⊗ T j

)

vec
(

T 0�x
)

Now we are interested in obtaining an error bound for this first approach. For this, ifM = max{‖S‖2, ‖T ‖2} it follows that

‖

‖

‖

I(x) − �p(x)
‖

‖

‖2
=

‖

‖

‖

‖

∑

k≥p+1

xk

(k + 1)!

k
∑

j=0
(S′)k−j ⊗ T j

‖

‖

‖

‖2

≤
∑

k≥p+1

xk

(k + 1)!

k
∑

j=0

‖

‖

‖

S ′
‖

‖

‖

k−j

2
‖

‖

‖

T ‖‖
‖

j

2

≤
∑

k≥p+1

xk

(k + 1)!
(k + 1)Mk

=
∑

k≥p+1

xk

k!
Mk =

(Mx)p+1

(p + 1)!
eM�x (11)
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where 0 < � < 1, and so

‖S(x) − Ŝ1(x)‖2 ≤ ‖en
′
‖2 ‖�‖2

Mp+1 xp+1

(p + 1)!
eM�x

‖ vec
(

T 0�x
)

‖2

≤
√

n ‖�‖2
Mp+1 xp+2

(p + 1)!
eMx

‖ T 0�‖F (12)

Therefore the following result has been proved:

Theorem 2. Let X1 and X2 be nonnegative random independent variables representing the absorption times in two homoge-
neous Markov processes with state space {1, 2, … , m, m + 1} and {1, 2, … , n, n + 1} respectively where {1, 2, … , m} and
{1, 2, … , n} are the transient states in each process and m+1 and n+1 are the absorbing ones. Assume that both variables are
PH-distributed with representation (�, T ) and (�, S) respectively. Then an approximation of the Suvival function for the sum
X1+X2 is given by (10), where �m+1 is the initial probability of entering the absorbing statem+1, ek = (1, 1,… , 1)′ ∈ ℝk×1 and
T 0 = −T em. Moreover, an error bound of the approximation error is given in expression (12), whereM = max{‖S‖2, ‖T ‖2}
and ‖ ⋅ ‖F is the Frobenius Norm.

Notice that the error bound increases exponentially with time x, and consequently for predictions would not be accurate. Thus,
in the following section we propose a second approximation method for the distribution function to improve this last obtained
result.

3.2 Improving the approximation to the Survival function
The aim of this section is to improve F̂1(x) in order to get a closer approximation to F (x). For this, we use the expression of
F (x) obtained in our previous paper (see (15) in13) given by the expression

F (x) = 1 − � eTxem (13)

−
⎛

⎜

⎜

⎝

�m+1�e
Sx + �

1

∫
0

e(1−s)Tx T 0�x esSx ds
⎞

⎟

⎟

⎠

en

In13 it is demonstrated, step by step, that (13) is equivalent to 1 − S(x) in (1) at the begining of this paper (see result (17)
in13). For our purpose we start working with the last term of (13), specifically with

�

1

∫
0

e(1−s)Tx T 0�x esSx ds en (14)

We are going to reduce the previous bound (12). For this let us consider the following expression with k ≥ 0 positive integer
1

∫
0

e(1−s)
Tx
2k

T 0�x
2k

es
Sx
2k ds, (15)

and taking into account the Schur Frechet derivative and its function composition14 we have the following expression

1

∫
0

e(1−s)
Tx
2j−1

T 0�x
2j−1

es
Sx
2j−1 ds =

1

∫
0

e(1−s)
Tx
2j
T 0�x
2j

es
Sx
2j ds e

Sx
2j + e

Tx
2j

1

∫
0

e(1−s)
Tx
2j
T 0�x
2j

es
Sx
2j ds (16)

for j = 1, 2,… , k. See the demonstration of the expression (16) in the Appendix B.
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Now applying the function vec for both terms of this last expression we have for the first term and using the property 1 of the
Appendix A

vec
[

1

∫
0

e(1−s)
Tx
2j−1

T 0�x
2j−1

es
Sx
2j−1 ds

]

=
(

1

∫
0

es
S
′
x

2j−1 ⊗ e(1−s)
Tx
2j−1 ds

)

vec
(

T 0�x
2j−1

)

(17)

Now, in the second term of (16) we have

vec
⎡

⎢

⎢

⎣

1

∫
0

e(1−s)
Tx
2j
T 0�x
2j

es
Sx
2j ds e

Sx
2j + e

Tx
2j

1

∫
0

e(1−s)
Tx
2j
T 0�x
2j

es
Sx
2j ds

⎤

⎥

⎥

⎦

= vec
⎡

⎢

⎢

⎣

1

∫
0

e(1−s)
Tx
2j
T 0�x
2j

e(1+s)
Sx
2j ds +

1

∫
0

e(2−s)
Tx
2j
T 0�x
2j

es
Sx
2j ds

⎤

⎥

⎥

⎦

=
⎛

⎜

⎜

⎝

1

∫
0

e(1+s)
S
′
x

2j ⊗ e(1−s)
Tx
2j ds +

1

∫
0

es
S
′
x

2j ⊗ e(2−s)
Tx
2j ds

⎞

⎟

⎟

⎠

vec
(

T 0�x
2j

)

(18)

Notice that in (18) it is used again the property 1 of the Appendix A and in the first and second steps of (19) the properties 2
and 3 respectively. In the last two steps of (19) the properties 3 and 4 of the Appendix A are used.

⎡

⎢

⎢

⎣

(

e
S
′
x

2j ⊗ Im

)

1

∫
0

es
S
′
x

2j ⊗ e(1−s)
Tx
2j ds +

1

∫
0

es
S
′
x

2j ⊗ e(1−s)
Tx
2j ds

(

In ⊗ e
Tx
2j

)
⎤

⎥

⎥

⎦

vec
(

T 0�x
2j

)

=
⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

e
S
′
x

2j ⊗ Im

)

1

∫
0

es
S
′
x

2j
⨁

(1−s) Tx
2j ds +

1

∫
0

es
S
′
x

2j
⨁

(1−s) Tx
2j ds

(

In ⊗ e
Tx
2j

⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

vec
(

T 0�x
2j

)

=
[(

e
S
′
x

2j ⊗ Im

)

1

∫
0

es
S
′
x

2j
⨁

(1−s) Tx
2j ds +

(

In ⊗ e
Tx
2j

)

1

∫
0

es
S
′
x

2j
⨁

(1−s) Tx
2j ds

]

vec
(

T 0�x
2j

)

=
(

e
S
′
x

2j ⊗ Im + In ⊗ e
Tx
2j

)

1

∫
0

es
S
′
x

2j
⨁

(1−s) Tx
2j ds vec

(

T 0�x
2j

)

=
(

e
S
′
x

2j ⊗ Im + In ⊗ e
Tx
2j

)

⎛

⎜

⎜

⎝

1

∫
0

es
S
′
x

2j ⊗ Im + In ⊗ e(1−s)
Tx
2j ds

⎞

⎟

⎟

⎠

vec
(

T 0�x
2j

)

(19)

Now, taking the equality (17) and (19) into the above expression and commuting the integral ∫ 1
0 e

s S
′
x

2j ⊗ I + I ⊗ e(1−s)
Tx
2j ds

we have for j = 1, 2… , k

⎛

⎜

⎜

⎝

1

∫
0

es
S
′
x

2j−1 ⊗ e(1−s)
Tx
2j−1 ds

⎞

⎟

⎟

⎠

vec
(

T 0�x
2j−1

)

= (20)

(

e
S
′
x

2j ⊗ Im + In ⊗ e
Tx
2j

)

⎛

⎜

⎜

⎝

1

∫
0

es
S
′
x

2j ⊗ Im + In ⊗ e(1−s)
Tx
2j ds

⎞

⎟

⎟

⎠

vec
(

T 0�x
2j

)
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Let us call Ij = ∫ 1
0 e

s S
′
x

2j ⊗ Im + In ⊗ e(1−s)
Tx
2j ds, j = 0, 1,… k, thus the expression (20) is

Ij−1 vec
(

T 0�x
2j−1

)

=
(

e
S
′
x

2j ⊗ Im + In ⊗ e
Tx
2j

)

Ij vec
(

T 0�x
2j

)

for j = 1, 2,… , k (21)

If now we denote �k,p the approximated function (8) for the integral

Ik =

1

∫
0

es
S
′
x

2k ⊗ Im + In ⊗ e(1−s)
Tx
2k ds

it follows that
�k,p vec

(

T 0�x
2k

)

≃ Ik vec
(

T 0�x
2k

)

Now we define

�j−1, p =
e
S
′
x

2j ⊗ Im + In ⊗ e
Tx
2j

2
�j, p for j = k, k − 1,… , 1

Then for j = k and taking into account (21) we have

�k−1,p vec
(

T 0�x
2k−1

)

=
e
S
′
x

2k ⊗ Im + In ⊗ e
Tx
2k

2
�k,p vec

(

T 0�x
2k−1

)

≃
(

e
S
′
x

2k ⊗ Im + In ⊗ e
Tx
2k

)

Ik vec
(

T 0�x
2k

)

= Ik−1 vec
(

T 0�x
2k−1

)

(22)

Similarly for j = k − 1 one gets

�k−2,p vec
(

T 0�x
2k−2

)

=
e

S
′
x

2k−1 ⊗ Im + In ⊗ e
Tx
2k−1

2
�k−1,p vec

(

T 0�x
2k−2

)

≃
(

e
S
′
x

2k−1 ⊗ Im + In ⊗ e
Tx
2k−1

)

Ik−1 vec
(

T 0�x
2k−1

)

= Ik−2 vec
(

T 0�x
2k−2

)

(23)

and finally for j = 1 we have

�0,p vec
(

T 0�x
)

=
e
S
′
x
2 ⊗ Im + In ⊗ e

Tx
2

2
�1,p vec

(

T 0�x
)

≃
(

e
S
′
x
2 ⊗ Im + In ⊗ e

Tx
2

)

I1 vec
(

T 0�x
2

)

= I0 vec
(

T 0�x
)

(24)

and so
�0,p vec

(

T 0�x
)

≈ I0 vec
(

T 0�x
)

(25)

where I0 = ∫ 1
0 e

sS′x ⊗ Im + In ⊗ e(1−s)Tx ds = ∫ 1
0 e

s S′x ⊕ e(1−s) Tx ds. Thus the approximation for I0 vec
(

T 0�x
)

is

�0, p vec
(

T 0�x
)

=
(

e
S
′
x
2 ⊗ Im + In ⊗ e

Tx
2

)

�1,p vec
(

T 0�x
2

)

(26)

=
(

e
S
′
x
2 ⊗ Im + In ⊗ e

Tx
2

) (

e
S
′
x

22 ⊗ Im + In ⊗ e
Tx
22

)

�2,p vec
(

T 0�x
22

)

⋮

=
(

e
S
′
x
2 ⊗ Im + In ⊗ e

Tx
2

) (

e
S
′
x

22 ⊗ Im + In ⊗ e
Tx
22

)

…

…
(

e
S
′
x

2k ⊗ Im + In ⊗ e
Tx
2k

)

�k,p vec
(

T 0�x
2k

)

=
k
∏

j=1

(

e
S
′
x

2j ⊕ e
Tx
2j

)

�k,p vec
(

T 0�x
2k

)

(27)
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In this way the second approximation for F (x) is

F̂2(x) = 1 − � eTxem − �m+1�eSxen −
(

en
′ ⊗ �

)

k
∏

j=1

(

e
S
′
x

2j ⊕ e
Tx
2j

)

�k,p vec
(

T 0�x
2k

)

(28)

and consequently the Survival function is

Ŝ2(x) = � eTxem + �m+1�eSxen +
(

en
′ ⊗ �

)

k
∏

j=1

(

e
S
′
x

2j ⊕ e
Tx
2j

)

�k,p vec
(

T 0�x
2k

)

(29)

Finally we construct an error bound for the difference between F (x) and this second appproximation F̂2(x). As by (21) we
have

I0 vec
(

T 0�x
)

=
(

e
S
′
x
2 ⊗ Im + In ⊗ e

Tx
2

)

I1 vec
(

T 0�x
2

)

(30)

and given thatM = max{‖S′‖2, ‖T ‖2} we establish

‖I0 vec
(

T 0�x
)

− �0,p vec
(

T 0�x
)

‖2 ≤ (31)

≤ 2 e
Mx
2

‖

‖

‖

‖

‖

I1 vec
(

T 0�x
2

)

− �1,p vec
(

T 0�x
2

)

‖

‖

‖

‖

‖2

≤ 22 e
(

Mx
2
+Mx

4

)

‖

‖

‖

‖

‖

I2 vec
(

T 0�x
22

)

− �2,p vec
(

T 0�x
22

)

‖

‖

‖

‖

‖2
⋮

≤ 2k e
Mx
2

(

1
2
+ 1
22
+…+ 1

2k

)

‖

‖

‖

‖

‖

Ik vec
(

T 0�x
2k

)

− �k,p vec
(

T 0�x
2k

)

‖

‖

‖

‖

‖2

= eMx
(

1− 1
2k

)

‖

‖

‖

Ik − �k,p‖2 ‖T 0�x
‖

‖

‖F

≤ eMx
(

1− 1
2k

)

xp+2
(M
2k

)p+1 1
(p + 1)!

‖T 0�‖F (32)

where the difference ‖‖
‖

Ik − �k,p
‖

‖

‖2
has been calculated previously (11). Thus, the error bound for the Survival function and this

second approximation is

‖

‖

‖

S(x) − Ŝ2(x)
‖

‖

‖2
≤
√

n ‖�‖2 e
Mx

(

1− 1
2k

)

xp+2
(M
2k

)p+1 1
(p + 1)!

‖

‖

‖

T 0�‖‖
‖F

(33)

We illustrate the result in the following theorem

Theorem 3. Let X1 and X2 be nonnegative random independent variables representing the absorption times in two homoge-
neous Markov processes with state space {1, 2, … , m, m + 1} and {1, 2, … , n, n + 1} respectively where {1, 2, … , m} and
{1, 2, … , n} are the transient states in each process and m+1 and n+1 are the absorbing ones. Assume that both variables are
PH-distributed with representation (�, T ) and (�, S) respectively. Then an approximation of the Survival function for the sum
X1 +X2 is given in (29), where �m+1 is the initial probability of entering the absorbing state m + 1, ek = (1, 1,… , 1)′ ∈ ℝk×1,
T 0 = −T em and �k,p is given by (8). Moreover, an error bound of the approximation error is given in expression (33), where
M = max{‖

‖

S‖2, ‖‖ T ‖2} and ‖ ⋅ ‖F is the Frobenius Norm.

Comparing expressions (12) and (33) it is clear that this last one is more accurate given that M
2k
< M and eMx

(

1− 1
2k

)

<
eMk where k is big. Moreover this second error bound doesn’t increase with time as fast as the previous one (12) and so the
convergence is assured, a subject that it is interesting in Survival or Reliability analysis for long–term predictions. This suggests
that (29) is better than (10), however (29) requires the computation of more matrix exponentials. Thus, both approximations
may be useful in applications and we apply them to a numerical example of simulated data and real bladder cancer data in the
next sections.
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FIGURE 1 Two concatenatedMarkov processes. The resultingMarkov chain with the final statem+n+1 from any transitional
state.

4 NUMERICAL APPLICATIONWITH SIMULATED DATA

In this section we compute the two approximations obtained above with simulated data. In order to clarify the two proposed
approaches, firstly we considered two homogeneous Markov processes and the corresponding concatenated process (Figure 1 ).
We have considered the T and S transition matrices withm = 10 and n = 11 states respectively, where each entry different from
zero, has been uniformly distributed in the range [0.01, 0.05]. We have chosen that range for the rates between transitional states
by similarity with our real data and then, the absorbing rate is much greater (see expression T 0 = −T em in13). All simulated
rates (N = 100) of the uniform distribution for each transition have been generated randomly with the MathematicaⓇ software
in the above range. 90% of the simulations according to this Uniform distribution led to badly conditioned matrices for the
Survival function S(x), which corroborates the need to apply the two developed approximations, Ŝ1(x) and Ŝ2(x) of this study.
The first approximated Survival function (10) has been compared with the theoretical model (1) previously developed in13. In

the Figure 2 we present the results of this fit between both functions, S(x) and Ŝ1(x), for k = 5 and p = 7 (8). We can observe
a slight mismatch between both Survival functions from 60 units of time onwards and in 80 units of time the probability is over
60% and 50%. This is because the rates between the transitional states are very small while these rates have more weight from
each transitional state to the absorbing state.
In the Table 1 , the error bound (12), calculated for the difference between Ŝ1(x) and S(x), increases from x = 30 until

x = 80 reaching a large difference and leading to poor predictions in our calculations. In these cases, to get a lower bound of this
difference, about 10−15 for example, leads to an increase in the number of p terms in (8), at least up to p = 20 in x = 30 units of
time. Notice that the obtained error bound for this first approximation (8) increases exponentially with time x, giving inaccurate
predictions and a high error level.
In order to improve this first approximated distribution function, we proposed a second approximation to get a better con-

vergence (29). In Figure 3 we can check the accuracy between both Survival functions, S(x) and Ŝ2(x), where absence of
mismatches between them can be observed for high units of time. We can observe that the lines for both functions are super-
posed. In this case, the error bound (33) is low enough (about 10−14) with only p = 7 and k = 5 as in (8). The fit between both
functions is almost perfect even after one hundred units of time (error bound about 10−8).
In order to evaluate both functions, Ŝ1(x) and Ŝ2(x), we can conclude that the second approach is more accurate than the

first one compared to the exact model (1) and with the same computational cost. Also that Ŝ1(x) is always calculated with more
terms (higher p) and Ŝ2(x) with p′ and k where p′ < p and with a error bound much smaller than with Ŝ1(x). For this reason,
we will only consider the second approximation in our application with the real bladder cancer data of the next section, given
that we want assure an error bound by 10−10 with only k = 5 and p = 7 terms.
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FIGURE 2 Survival function, S(x), and the first approximation, Ŝ1(x), in the concatenated Markov process for p = 7 with
simulated data from a Uniform distribution.

Error bound Error bound
‖

‖

‖

S(x) − Ŝ1(x)
‖

‖

‖2
‖

‖

‖

S(x) − Ŝ2(x)
‖

‖

‖2

time unit p=7 p=10 p=20 p=7, k=5

x = 30 0.0143 42.07 × 10−6 1.154 × 10−15 1.2459 × 10−14

x = 50 3.6811 0.05006 2.270 × 10−10 3.1081 × 10−12

x = 80 1054.3 58.7284 29.29 × 10−6 8.5134 × 10−10

x = 100 20343.3 2213.28 0.01028 1.5945 × 10−8

TABLE 1 Error bound calculated for both approximations, Ŝ1(x) and Ŝ2(x), compared to the exact model S(x) in the
concatenated Markov process with simulated data from a Uniform distribution for the transition rates.

5 ILLUSTRATIONWITH A REAL DATA SET IN BLADDER CANCER

TheBladder cancer can be classified into twowell differentiated types: non-muscle-invasive bladder cancer (NMIBC) andmuscle
invasive tumor (MIT). Each type of tumor has a different follow-up protocol and treatment. Between 30-80% of the patients with
a non-muscle invasive primary tumor (the first tumor) have a recurrence of the disease (same type of tumor) and between 1-45%
of these patients progress to muscle invasive tumor (more aggressive). Patients with a muscle invasive primary tumor may have
a progression of the disease (with the possibility of the extirpation of the bladder) after some recurrences or directly. The first
aim of the present work is to model both processes of the disease and after the concatenated process from the first NMBIC to
the bladder extirpation (absorbing state m + n + 1).
For this, we have considered two Markov chains of an absorbing state, each one of them: (1) a first process, from a NMIBC

primary tumor to a muscle invasive tumor (first absorbing state), and (2) a second process starting in a muscle invasive primary
tumor until the arrival to a progression with the final of the bladder (extirpation, the second absorbing state). In this context, we
have worked with two continuous variables,X1 andX2, where each one of them represented the two absorbing times mentioned
above, each one of them PH-distributed. Two independent databases (with a different follow-up protocol and treatment) have
been collected in this application, both from the Urology Department of at La Fe University Hospital in Valencia (Spain), each
one with for a Markov process. Both databases cover between January 1995 and January 2010.
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FIGURE 3 Survival function, S(x), and the second approximation, Ŝ2(x), in the concatenated Markov process for k = 5 and
p = 7 with simulated data from a Uniform distribution.

In the first stage of the disease, five transient states and one absorbing state were considered: the primary non-muscle invasive
tumor (NMIBC), a first recurrence and until a fourth recurrence (reappearance of a new NMIBC with similar characteristics to
the first initial tumor). The absorbing state is the appearance of a progression to a muscle invasive tumor (MIT), a much more
aggressive tumor. The first database collected the information of 800 patients with mean follow-up period of 22.74 months.
The second stage showed three transient states and the absorbing state: three muscle invasive tumors (MIT) and the end of the

bladder (extirpation). This database consisted of 160 patients with aMIT and 14.53months of mean follow-up. The progression
in a MIT is much faster than when the patient presents a NMIBC.
We have concatenated both independent processes to study the Survival function of a patient who had a primary non-muscle

invasive tumor NMIBC (start of the illness) until the extirpation of its bladder (the worst episode in this disease) going through
all the states (transient and absorbent ones) in each process (see Figure 1 ) with m = 5 and n = 3. For this, we have obtained
the distribution function of the sum of the two variables (also PH-distributed) for each absorption state with the aim to obtain
the survival function, S(x), and the two approaches, Ŝ1(x) and Ŝ2(x) developed in this work.
The squared matrices T and S from each real database, referred to the rates between the transient states in each process,

were estimated using the maximum-likelihood method by the msm() function in the multi-state modelling with R software and
the msm package? . This function msm models transition rates with hidden Markov chains and data with observations with
censored states. The dimensions of both matrices are five and three respectively corresponding to the number of transient states
considered in the real data of each process as it has been mentioned above. The transient rates for T and S resulted in a range
of [0.001, 0.0001], smaller quantities than in the simulated data of the previous section.
We have also calculated the Mean Absolute Percentage Error (MAPE) for both approximations, Ŝ1(x) and Ŝ2(x), compared

to the exact function S(x): 0.0200759 and 1.1701 × 10−13 respectively. The value of the MAPE for Ŝ1(x) and Ŝ(x) shows the
obvious mismatch between both functions mentioned in simulated data. We have also calculated the difference between both
functions with S(x) to conclude the same result that with simulated data: more precision with the second approach (Tabla 2 ).
Finally, we have represented in the Figure 4 the exact function S(x) and the second approximation, Ŝ2(x), where we can see
the good match between these two functions developed for the Survival function of the concatenated process.

6 CONCLUDING REMARKS

In this study, we developed two approaches to a distribution function, proposed in a previous paper, to avoid the calculation of
the inverse of a matrix (due to the possibility of a badly conditioned matrix) in the expression of that distribution function. Of
the two developed approaches, we find the second one much more accurate for performing predictions, corroborated with the
calculation of the error bound for both approaches.
Regarding the computations of both approaches, small values of p and k terms in the expressions have been used to get the

desired accuracy. There is no problem in increasing the number of terms p and the parameter k to improve the precision with
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Error bound Error bound
‖

‖

‖

S(x) − Ŝ1(x)
‖

‖

‖2
‖

‖

‖

S(x) − Ŝ2(x)
‖

‖

‖2

time p=7 p=10 p=20 p=7, k=5

x = 30 1.917 × 10−22 9.252 × 10−29 6.160 × 10−52 1.739 × 10−34

x = 50 2.004 × 10−20 4.477 × 10−26 4.931 × 10−47 1.815 × 10−32

x = 80 1.489 × 10−18 1.362 × 10−23 1.650 × 10−42 1.345 × 10−30

x = 100 1.169 × 10−17 2.089 × 10−22 2.356 × 10−40 1.054 × 10−29

TABLE 2 Error bound calculated for both approximations, Ŝ1(x) and Ŝ2(x), compared to the exact model S(x) in the
concatenated Markov process with simulated real bladder cancer data.
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FIGURE 4 Survival function, S(x), and the second approximation, Ŝ2(x), for k = 5 and p = 7 of the concatenated Markov
process for real bladder cancer data.

the second approximation. The mathematical expressions and the calculations have been presented in a closed form that has
allowed algebraic treatment and the corresponding computational implementation. Moreover, this is easily interpretable and
has a relatively low computational cost. Calculations have been performed with the MathematicaⓇ software, and all codes are
available from the authors on request.
The aim of this work arose from the need to develop an approximation to the survival function for the disease when a database

from the start of the illness to the bladder extirpation is not available, but two disconnected bases are. The two real databases
in this work and the previous paper were from different units at the La Fe University Hospital (hence independent of each
other), and we were interested in examining the process until bladder extirpation from the beginning of the disease (the primary
NMIBC). However, the presented approach is general, and this analysis can be applied to other similar data in chronic diseases
or in a Reliability context.
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APPENDIX

A KRONECKER SUM AND KRONECKER PRODUCT

We are going to describe the most relevant properties to operate the PH-distributions.

Definition 1. Let A ∈ ℝm×n and B ∈ ℝp×q be matrices, then the Kronecker product A⊗ B is the mp × nq block matrix (aijB)
with aij the ijth element in the matrix A.

Definition 2. Let A ∈ ℝm×m and B ∈ ℝn×n be matrices and Ik denotes the identity matrix of order k, then the Kronecker sum
is given by the following expression A⊕ B = A⊗ In + Im ⊗B.

These properties are used through the paper. Let A ∈ ℝm×n, B ∈ ℝp×q , C ∈ ℝn×o and D ∈ ℝq×r be matrices, then

1. vec(ADC) = (C ′ ⊗ A) vec(D) where C ′ denotes the transpose of the C matrix. The function vec(⋅) stacks the columns
of a matrix into a column vector.

2. (A⊗ B)(C ⊗D) = (AC)⊗ (BD)

3. eA ⊗ eB = eA⊕B

4. �(A⊗ B) = {�� | � ∈ �(A), � ∈ �(B)} where �(A) and �(B) are the spectrums of the A and B matrices respectively.

5. f (A⊗ I) = f (A)⊗ I; f (I⊗B) = I⊗ f (B) where f is an analytic function.

6. �(A⊕ B) = {� + � | � ∈ �(A), � ∈ �(B)}

For more details of these properties see15.
As S′ ⊗ In and Im ⊗ T commute,

(

S′ ⊗ In
) (

Im ⊗ T
)

= S′ ⊗ T =
(

Im ⊗ T
) (

S′ ⊗ In
)

, it can be developed the following
expression

(

S′s ⊕ (1 − s) T
)2 =

(

S′s ⊗ In + Im ⊗ (1 − s) T
)2

=
(

S′
)2 s2 ⊗ In + Im ⊗ (1 − s)2 T 2 + 2

(

S′s ⊗ (1 − s) T
)

=
2
∑

j=0

(

2
j

)

(S′)2−j ⊗ T js2−j(1 − s)j (A1)

B THE FRÉCHET DERIVATIVE

Definition 3 (The Fréchet derivative). The Fréchet derivative LF (Z, A) of F at A in the matrix direction Z is the limit of the
Newton quotient for F

LF (Z, A) ≡ lim�→0
F (A + �Z) − F (A)

�
(B2)

If F (x) = x2 the Newton quotient for the squaring function is

LF (Z, X) ≡ lim�→0
F (X + �Z) −X2

�
= lim

�→0

(

XZ +ZX + �Z2) = XZ +ZX (B3)

This result is rewieved in the following definition

Definition 4. The Fréchet derivative LF (Z, A) of F at A in the matrix direction Z is the limit of the Newton quotient for F

LF (Z, A) ≡ lim�→0
F (A + �Z) − F (A)

�
(B4)

Definition 5. The standard integral formula of the Fréchet derivative of the exponential map at X in the direction L is

LF (L, X) =

1

∫
0

e(1−s)XLesX ds (B5)
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Definition 6. The Fréchet derivative of the composition of functions is the composition of the Fréchet derivatives

L(GoF )(x)(N, X) = LG(F (x))(N, X) = LG[LF (N,X), F (x)] (B6)

This last result is used in the composition of functions X → X
2k

followed by exponentiation and then squaring eX =
(

e
X
2k
)2k

Firstly, it is applied the standard integral formula of the Fréchet derivative of the exponential map at X in the directionN to
the function e

x
2k−1 (B5)

L
e

x
2k−1
(N, X) = Lex

( N
2k−1

, X
2k−1

)

=

1

∫
0

e(1−s)
X

2k−1
N
2k−1

es
X

2k−1 ds (B7)

On the other hand, as L
e

x
2k−1
(N, X) = L

e

(

x
2k

)2 , it is applied the composition of functions (B6) to the last expression

L
e

(

x
2k

)2 = L2
(

L
e
x
2k
(N,X) , e

x
2k

)

(B8)

By means of the definitions (B3) and (B5) the expression (B8) follows as

L2
(

L
e
x
2k
(N, X) , e

x
2k

)

= e
X
2k L

e
x
2k
(N,X) + L

e
x
2k
(N,X) e

X
2k (B9)

= Lex
(N
2k
, X
2k

)

e
X
2k + e

X
2k Lex

(N
2k
, X
2k

)

=

1

∫
0

e(1−s)
X
2k
N
2k
es

X
2k ds e

X
2k + e

X
2k

1

∫
0

e(1−s)
X
2k
N
2k
es

X
2k ds

Then the expressions (B7) and (B9) are equal
1

∫
0

e(1−s)
X

2k−1
N
2k−1

es
X

2k−1 ds =

1

∫
0

e(1−s)
X
2k
N
2k
es

X
2k ds e

X
2k + e

X
2k

1

∫
0

e(1−s)
X
2k
N
2k
es

X
2k ds (B10)

Now the result (B10) is applied to the following upper triangular matrices by blocks
X =

(

Tx 0
0 Sx

)

N =

(

0 T 0�x
0 0

)

(B11)

where T and S are non-singular matrices of order m and n respectively. T0 is a m × 1 matrix13.
L
e

x
2k−1

[(

0 T 0�x
0 0

)

,

(

Tx 0
0 Sx

)]

= (B12)

L
e

x
2k−1

[(

0 T 0�x
0 0

)

,

(

Tx 0
0 Sx

)]

e
X
2k + e

X
2k L

e
x

2k−1

[(

0 T 0�x
0 0

)

,

(

Tx 0
0 Sx

)]

and after operating the standard integral formula of the Fréchet derivative of the exponential map at X in the directionN (B7)
the expression (B12) will result

1

∫
0

e(1−s)
Tx
2j−1

T 0�x
2j−1

es
Sx
2j−1 ds =

1

∫
0

e(1−s)
Tx
2j
T 0�x
2j

es
Sx
2j ds e

Sx
2j + e

Tx
2j

1

∫
0

e(1−s)
Tx
2j
T 0�x
2j

es
Sx
2j ds (B13)
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