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Abstract: In that paper, firstly we get two additional different non-null space
curve evolutions in Minkowski 3-space by considering Landau-Lifshitz (LL-)
equation where we identify the spin vector with the binormal vector and the
normal vector of these curves, respectively. Then, we obtain some links for con-
structing the moving non-null space curves by using the integrable LL- equation.
Finally, we give as an application, the exact solution of the moving non-null
curve evolutions obtained by taking the spin vector the normal vector of the
curve and we showed graphically that these solutions are wave solutions.
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1 Introduction

The subject of the connections between the integrable equations and the in-
trinsic equations of moving space curves has been a fascinating topic for many
researcher, working in different fields. This shouldn’t be surprising, because
these links represent the nonlinear dynamical systems, such as Da Rios-Betchov
(DB) equations [6], in classical mechanics and they give many important appli-
cations in a variety of physical problems in different areas. This study appeared
in Hasimoto’s pioneering paper [10], also in the later study by Lamb in [13],
in which the intrinsic equations of moving space curve was reduced to an inte-
grable nonlinear Schrodinger (NLS) equation using a complex quantity (called
as Hasimoto function) including both curvature and torsion. Another applica-
tion of these concepts is the nonlinear dynamics of the continuum Heisenberg
spin chains, where the magnetic moment vector at each point on the chain can
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be regarded as identifying the local tangent to some space curve in Euclidean
3-spaces [2, 13, 15], in Minkowski 3-spaces in [17]. Furthermore in [4], authors
gave a unified formalism demonstrating that three different space curve evo-
lutions can be defined with the integrable Landau-Lifshitz (LL) equation [14]
defined by

St = S × Sss, (1)

such that S2 = 1. Moreover, this is a well-known spin (S) evolution equation of
a classical isotropic Heisenberg ferromagnetic chain, being S-integrable system,
[8, 16]. Moreover, many researchers have been studied in this subject in different
aspects [3, 9].

In this paper, we would like to give a unified formalism to present how the in-
trinsic equations arise from associated with three moving space curves with their
natural relation to the integrable Landau-Lifshitz (LL) equation in Minkowski
spaces. As well known that, Minkowskian geometry is closely associated with
Einstein’s principle of relativity, (see for details, [18, 23]). Moreover, since there
exist three kinds of curves (time-like, space-like and null or light-like curves)
depending on their causal characters in Minkowskian space, study in this space
is more complicated than study in Euclidean spaces. In that paper, we focused
on only non-null (space-like and time-like) curves. The first of the integrable
evolution equations obtained from Lamb’s well-known process in [17] starting
with the LL-equation, and identifying S with the normal and binormal to mov-
ing curve in Minkowski space. Here, we obtain the other coupled evolution
equations for the curvature and torsion of each of the two new curves starting
identifying S with the binormal to moving the second curve and identifying S
with the normal to moving the third curve in Minkowski 3-space. Note that for
the second curve, there does not seem to exist a simple differential geometric
model and its equivalent spin system for the defocusing case such as available
for the focusing NLSE. Also, we give the process for relationship between the
curvatures of these three different curves in Minkowski 3-space using the inte-
grable Landau-Lifshitz (LL) equation. The velocities of these curves are also
obtained associated with the evolution equations. Finally, as an application,
we give the exact solution of the coupled Partial differential equation (PDE)
for the curvature and the torsion of a given curve which is obtained with the
LL-equation such that identifying S with the normal vector to moving curve in
Minkowski space. After then, to get the exact solution of one of three coupled
PDE, the exp-function method will be used. The exp-function method was first
developed by He and Wu [11] (see for more examples [1, 5, 22]). This method
successfully applied to many equations of mathematical physics. The main ad-
vantage of this method over the other methods is that it gives more general
solutions with some free parameters.

2 Preliminiaries

In this section, we would like to give a summary of the theory of curves and
surfaces in Minkowski 3-space (see for detail, [18, 23]).
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Let E3
1 denote the Minkowski 3-space with the canonical Lorentzian metric

tensor given by
〈·, ·〉 = −dx21 + dx22 + dx23,

where (x1, x2, x3) are rectangular coordinates of the points of E3
1.

The causality of a vector in a Minkowski space is given as follows. A non-
zero vector v in E3

1 is called space-like, time-like and light-like (null) regarding
to 〈v, v〉 > 0 , 〈v, v〉 < 0 and 〈v, v〉 = 0, respectively. The norm of a vector

v is given by ‖v‖ =
√
|〈v, v〉|. For two non-zero vectors u = (u1, u2, u3) and

v = (v1, v2, v3) in E3
1, we define the (Lorentzian) vector product of u and v as

following:
u× v = (u3v2 − u2v3, u3v1 − u1v3, u1v2 − u2v1) .

A curve γ = γ(s) in E3
1 is called space-like, time-like or null (light-like) if its

tangent vector field γ′(s) is space-like, time-like or null (light-like), respectively,
for all s.

The rotations in Minkowski 3-space can be described with split quaternions,
[16, 20, 21]. Any split quaternion can be written in the form

q = (q1, q2, q3, q4) = q1 + q2i+ q3j + q4k, (2)

such that

i2 = −1, j2 = k2 = 1 = ijk = 1,

ij = −ji = k, jk = −kj = −i, ki = −ik = j

or q = Sq + Vq, where Sq = q1 and Vq = q2i + q3j + q4k represent the scalar
and the vector part of q, respectively. Note that if Sq = 0 then q is said to be a
pure quaternion. Let p = p1 + p2i+ p3j + p4k and q = q1 + q2i+ q3j + q4k be
two split quaternions, then the sum of p and q is defined by

p+ q = Sp + Sq + Vp + Vq.

The product of p and q is defined by

pq = SpSq + 〈Vp, Vq〉+ SpVq + SqVp + Vp × Vq.

The conjugate of q is denoted by

q̄ = Sq − Vq = q1 − q2i− q3j − q4k.

The character of a split quaternion is defined by

Iq = qq̄ = q̄q.

A split quaternion is called a spacelike, a timelike or a lightlike (null) if
Iq < 0, Iq > 0 or Iq = 0, respectively.

The norm of q is given by

|q| =
√
|Iq| =

√
|q21 − q22 − q23 − q24 |.
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Now, let γ be a non-null curve in E3
1 parametrized by arc-length, i.e., |〈γ′, γ′〉| =

1, and we suppose that |〈γ′′, γ′′〉| 6= 0. As well known the Frenet frame [18] of
a non-null curve γ in E3

1 is expressed as;

Ts = ε1κN, (3a)

Ns = −ε0κT + ε0ε1τB, (3b)

Bs = ε1τN. (3c)

Here, we shall call the set {T,N,B} as Frenet trihedra and κ, τ as curva-
tures of γ such that 〈T, T 〉 = ε0 = ±1, 〈N,N〉 = ε1 = ±1, 〈B,B〉 = −ε0ε1
and κ = ε1 〈T ′, N〉, τ = −ε0ε1 〈T ′, B〉, [18]. Note that unless otherwise spec-
ified throughout the paper, the partial derivative according to the associated
parameter will be indicated by the subscript.

Assume that the Frenet frame of γ is positively oriented. Then, the followings
are satisfied

T ×N = −ε0ε1B, N ×B = ε0T, B × T = ε1N. (4)

When the Frenet frame moves along a curve in E3
1, there exist an axis of

instantaneous frame’s rotation (Darboux). The direction of such axis is given
by Darboux vector. If γ is a unit speed non-null curve, then the Darboux vector
[19] of this curve is that

~D = −ε0ε1τT + ε1κB. (5)

Note that by considering the Frenet frame derivative formulas given in (3) and
properties of the vector products in (4) of {T,N,B}, it can be seen that the
equalities

Ts = ~D × T, Ns = ~D ×N, Bs = ~D ×B, (6)

are valid. Here ~D is given (5). On the other hand, the time evolution equations
of the Frenet frame system [7] are given by

Tt = ε1ηN + ε0ε1βB, (7a)

Nt = −ε0ηT − ε0ε1αB, (7b)

Bt = ε0βT − ε1αN. (7c)

Clearly, α, β and η (which are the velocities of the moving frame) detect the
motion of the non-null curve γ. Furthermore, from (3), (7) and the moving-curve
compatibility conditions defined by

Tst = Tts, Nst = Nts and Bst = Bts, (8)

we have the time evolutions of the curvatures of non-null curve γ obtained in
[17] as follows:
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κt = ηs + ε0ε1βτ, (9a)

τt = ε0βκ− αs, (9b)

βs = −ε1
(
ακ+ ητ

)
. (9c)

3 Landau-Lifshitz equation and mapping to non-
null space curves in Minkowski 3-space

A spin vector dynamics in a classical Heisenberg ferromagnetic chain in the
continuum limit is described by the Landau-Lifshitz equation as

St = S × Sss, (10)

where S is the unit spin vector in E3
1 such that −S2

1 +S2
2 +S2

3 = 1, [17]. In that
paper, authors identified the spin vector S with the tangent vector, i.e., S = TI ,
thus they obtained

(TI)t = TI × (TI)ss, (11a)

= −ε0ε1κIτINI − ε0(κI)sBI . (11b)

By considering that, they obtained the time evolution equations of Frenet
curvatures κI , τI of a space curve in Minkowski 3-space as the followings:

(κI)t = ε0ε1

(
2(κI)sτI + κI(τI)s

)
, (12a)

(τI)t = −ε0ε1κI(κI)s +
( (κI)ss

κI
+ ε0τ

2
I

)
s
. (12b)

Also, in the same article, by taking ε0 = −1 and ε1 = 1 into (12), they have
been transformed that into the following NLS equation using the complex trans-
formation

iut + uss − 2 |u|2 u = 0. (13)

In this section, as different from those obtained above, we would like to get
the time evolution equations of Frenet curvatures κ, τ of a non-null space curve
in Minkowski 3-space by using (10) and identifying S = BII and also S = NIII ,
respectively, .

To get these new evolution equations, let first S identifies the unit binormal
vector of a non-null curve xII in E3

1, i.e. S = BII . Then from (10), we have

(BII)t = BII × (BII)ss. (14)

Now, substituting (3c) into (14) and considering (4), we get

(BII)t =
(
κIIτII

2−ε0ε1τIIss−ε1τII3
)
TII−ε0

(
κII(τII)s+(κIIτII)s

)
NII . (15)
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Thus, by considering this into (7), we conclude

(TII)t = ε1ηNII +
(
ε1κIIτII

2 − ε0(τII)ss − τ3
)
BII , (16a)

(NII)t = −ε0ηTII −
(
κII(τII)s + (κIIτII)s

)
BII . (16b)

Finally, by considering (3), (8), (15) and (16) with together, we get the time
evolutions of the Frenet curvatures of the non-null curve xII as follows:

(κII)t = ηs + τII
(
ε1κIIτII

2 − ε0(τII)ss − τII
3
)
, (17a)

(τII)t = κII

(
κIIτII

2 − ε0ε1(τII)ss − ε1τII
3
)
− ε0ε1

(
κII(τII)s + (κIIτII)s

)
s

(17b)

where η satisfies

ηs = −ε0ε1
((
κIIτII

2−ε0ε1(τII)ss−ε1τII3
)
s
+κII

(
κII(τII)s+(κIIτII)s

))
/τII .

(18)
Note that there does not seem to exist a simple differential geometric model

and its equivalent spin system for the defocusing case such as available for the
focusing NLSE.

Secondly, let S identifies the unit normal vector of a non-null curve in E3
1,

i.e., S = NIII . Thus the equation (10) is rewritten as

(NIII)t = NIII × (NIII)ss. (19)

By considering (3b) and (4) in (19), we get

(NIII)t = ε1(τIII)sTIII − ε1(κIII)sBIII . (20)

From this and (7), we conclude

(TIII)t = −ε0(τIII)sNIII + ε0ε1βBIII , (21a)

(BIII)t = ε0βTIII − ε0ε1(κIII)sNIII . (21b)

Similarly to the previous case, from (3), (8) (20) and (21) we get the time
evolutions of the Frenet curvatures of the curve xIII as follows:

(κIII)t = −ε0ε1
(

(τIII)ss − βτIII
)
, (22a)

(τIII)t = −ε0
(

(κIII)ss − βκIII
)
, (22b)

where β satisfies

βs = −ε0ε1κIII(κIII)s + ε0τIII(τIII)s. (23)

Now, we would like to convert these time evolution equations to the NLS equa-
tions using quaternionic transformations. To do this, we set the quaternionic
transformations defined in (2) into the system (22). Thus we get

iqt − qss+
1

2
|q|2 q = 0, if ε0 = 1, ε1 = −1,

jqt + qss+
1

2
|q|2 q = 0, if ε0 = 1, ε1 = −1,

kqt − qss+
1

2
|q|2 q = 0, if ε0 = −1, ε1 = 1.

(24)
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4 Some links between moving space curves and
the Landau-Lifshitz (LL) equations in Minkowski
3-space

In [4], authors gave some links between three distinct curves evolutions and the
NLS equations in Euclidean 3-space. Moreover, in same paper, they showed for
constructing these curves, there is an alternative procedure, by using Landau-
Lifshitz (LL) equations. In this section, we would like to give some links for
constructing the moving non-null space curve in Minkowski 3-space with using
the integrable LL- equations given in (10). To give these links, first, we consider

the construction of the position vector being xi(s, t) =

∫
Tids, i = I, II, III of

three moving space curves in E3
1. Note that throughout the paper, we will use

the subscripts I, II, and III denoting for the corresponding curve and vector
field.

Assume that the tangent TI of moving space curve xI , the binormal BII
of xII and the normal NIII of xIII are satisfied the LL- equation in (10).
Hence, we now proceed to find the relationship between the curvatures κi, τi of
xi, i = I, II, III and also these curves xi for any solution of S(s, t) as follows:

Case I: Let {TI , NI , BI , κI , τI} be the Serret-Frenet apparatus of moving
curve xI in E3

1 and TI satisfies (10), i.e., TI = S. Then, from this assumption
and (3a) we get the curvatures of xI as

κI = ‖(TI)s‖ = ‖Ss‖ , (25)

ε0ε1τI =
〈TI , (TI)s × (TI)ss〉

‖(TI)s‖2
=
〈S, Ss × Sss〉

Ss
2 . (26)

Also, as TI = (xI)s we have

xI(s, t) =

∫ s

TIds =

∫ s

S(s, t)ds. (27)

Now, as well known, the velocity of any space curve can be obtained by directly
differentiating with respect to the time t of its. Indeed, the velocities of corre-
sponding moving curve is defined by νI(s, t) = (xI)t, at each point s. Also, as
the curve is non-stretching, we have (νI)s = (xI)ts = (xI)st = (TI)t. Thus, the
velocity of xI can be defined as

νI(s, t) =

∫
(TI)tds. (28)

On the other hand, by considering (11) into (28) yields

νI(s, t) =

∫ (
− ε0ε1κIτINI − ε0(κI)sBI

)
ds, (29a)

= −ε0κIBI . (29b)
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Case II: Let {TII , NII , BII , κII , τII} be the Serret-Frenet apparatus of mov-
ing curve xII in E3

1 and BII satisfies (10), i.e., BII = S. Then, from (3c) and
the last assumption, we get the curvatures of xII as

ε0κII =
〈BII , (BII)s × (BII)ss〉

‖(BII)s‖2
=
〈S, Ss × Sss〉
‖Ss‖2

, (30)

τII = ‖(BII)s‖ = ‖Ss‖ . (31)

By comparing separately (26), (30) and (25), (31), we conclude

κII = ε1τI , (32)

τII = κI . (33)

Now, from (3c), we can immediately obtain NII = ε1
(BII)s
‖(BII)s‖

. Thus, by con-

sidering this, the last in (4) and BII = S with together into TII = (xII)s we
have

xII(s, t) =

∫ s

TIIds = −ε0ε1
∫ s

S × Ss
τII

ds. (34)

By similar way as the previous case, we have the velocity of the curve xII can
be defined as

νII(s, t) =

∫
(TII)tds. (35)

Thus, by subtituting (16a) into (35) yields

νII(s, t) =

∫ (
ε1ηNII +

(
ε1κIIτII

2 − ε0(τII)ss − τ3
)
BII

)
ds, (36)

where η satisfies (18).
Case III: Let {TIII , NIII , BIII , κIII , τIII} be the Serret-Frenet apparatus of

moving curve xIII in E3
1 and NIII satisfies (10), i.e., NIII = S. Then, from (3c)

and the last assumption, we get

ε0(κIII
2 − ε1τIII2) = ‖(NIII)s‖2 = ‖Ss‖2 . (37)

By comparing this result with (25) and (33), we conclude

ε0(κIII
2 − ε1τIII2) = κI

2 = τII
2. (38)

From (3c) we also have

〈(NIII)s, (NIII)ss × (NIII)〉
‖(NIII)s‖2

=
ε1

(
κIII(τIII)s − τIII(κIII)s

)
ε0(κIII2 − ε1τIII2)

.

As NIII = S, the left-hand side of the above is equal to ε0ε1τI from (26), i.e.,

ε0ε1τI =
ε1

(
κIII(τIII)s − τIII(κIII)s

)
ε0(κIII2 − ε1τIII2)

=
∂

∂s
T−1(

τIII
κIII

), (39)
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where the function T is defined as

T (s, t) =


tanh(

τIII
κIII

) if ε0 = 1, ε1 = 1,

tan(
τIII
κIII

) if ε0 = 1, ε1 = −1,

tanh(
κIII
τIII

) if ε0 = −1, ε1 = 1.

(40)

Now by parameterizing of (38) and by considering (40), we get κIII = coshα, τIII = sinhα, if ε0 = 1, ε1 = 1,
κIII = cosα, τIII = sinα, if ε0 = 1, ε1 = −1,
κIII = sinhα, τIII = coshα, if ε0 = −1, ε1 = 1,

(41)

where α =

∫ s

τIds+ c0(t). On the other hand, from (3b) and (4) we have

NIII × (NIII)s = −ε1
(
κIIIBIII + τIIITIII

)
.

By multiplying this with −ε0τIII and (3b) with κIII and adding them side to
side, we get

TIII =
κIII(NIII)s + ε0τIIINIII × (NIII)s

‖(NIII)s‖2
(42)

Now by considering this, NIII = S and TIII = (xIII)s we have

xIII(s, t) =

∫ s

TIIIds =

∫ s κIIISs + ε0τIIIS × Ss
τII

ds,

Thus, by considering (40), (41) into the last expression we get
xIII(s, t) =

∫ s Ss coshα+ sinhα(S × Ss)
τII

ds, if ε0 = 1, ε1 = −1,

xIII(s, t) =

∫ s Ss cosα− sinα(S × Ss)
κI

ds, if ε0 = 1, ε1 = −1,

xIII(s, t) =

∫ s Ss sinhα+ coshα(S × Ss)
τII

ds, if ε0 = −1, ε1 = 1.

(43)
Finally, the velocity of the curve xIII can be defined as

νIII(s, t) =

∫
(TIII)tds. (44)

Thus, by subtituting (21a) into (44) yields

νIII(s, t) =

∫ (
− ε0(τIII)sNIII + ε0ε1βBIII

)
ds, (45)

where β satisfies (23).
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5 Application

In this section, we would like to give the exact solution of the coupled PDEs
given in (22) for the curvature and the torsion of the given moving space curve
obtained from the LL- equation in where one identifies S with the normal vector
of moving non-null curve in Minkowski space. By choosing ε0 = −1 and ε1 = 1
and replacing κIII and τIII by κ and τ , respectively. These coupled PDEs
become

2κt − 2τss + κ2τ − τ3 = 0, (46a)

2τt − 2κss − κτ2 + κ3 = 0. (46b)

Using the transformations κ(s, t) = κ(η), τ(s, t) = τ(η), η = αs+ωt, (46a) and
(46b) become the ordinary differential equation system, respectively,

−2α2τ ′′ + 2ωκ′ − τ3 + κ2τ = 0 (47a)

−2α2κ′′ + 2ωτ ′ + κ3 − κτ2 = 0. (47b)

According to the exp-function method, the solutions of (47a) and (47b) can be
assumed to have the forms

κ(η) =
a−1e

−η + a0 + a1e
η

b−1e−η + b0 + b1eη
(48)

and

τ(η) =
d−1e

−η + d0 + d1e
η

c−1e−η + c0 + c1eη
(49)

[11]. By substituting (48) and (49) into (47a) and (47b), and also by considering
the following set of solutions

a−1 =
57i
√

27b0a0
2b20 + 22a20

, a0 =
42ib1

59
, a1 =

12i
√

3b21 + 22a−1b−1
5b−1

, b0 =
2a0b1
a1

and

d−1 =
16c−1c0d0

16c20 + 23d20
, d0 =

4

23
,
√

47c0, d1 =
−c0d−1d0 − 23c−1d

2
0

529c−1d−1
, c−1 =

−24c20
529c1

,

so we obtained the following periodic solutions of (47a) and (47b), respectively,

κ(η) =
3b1

295(b−1e−η + b0 + b1eη)
A, (50)

τ(η) =
529c1

529c0c1 − 24e−ηc20 + 529c21e
η
B, (51)

where

A = 70i+
236i
√

3eηb1
b−1

− 416(27 cos(η) + 17 sinh(η))b0
3481b20 − 19404b21
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Figure 1: The wave solutions for Eq. (46a).
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Figure 2: The wave solutions for Eq. (46b).

and

B =
4

23
i
√

47c0 +
4i
√

47e−ηc20
529c1

− 1

6
i
√

47eηc1.

Now, we would like to give the following nice figures, where in Fig 1, the
wave solution obtained from (46a) are presented for α = w = 1, b−1 = 1, b0 =
10, b1 = −1. In Fig 2, the wave solution is obtained from (46b) are presented

for α = w = 1, c0 = 10, c1 = 20, c−1 = − 24c20
529c1

.
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