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Abstract

The present paper is devoted to study the space identification problem for the elliptic-
telegraph differential equation in Hilbert spaces with the self-adjoint positive definite
operator.
The main theorem on the stability of the space identification problem for the elliptic-
telegraph differential equation is proved. In applications, theorems on the stability
of three source identification problems for one dimensional with nonlocal conditions
and multidimensional elliptic-telegraph differential equations are established.
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1 INTRODUCTION

Source identification problems for partial differential equations are used to model of biological, physical, system engineering
and sociological processes and have been studied by many authors (see1− 12 and the references given therein).
Adavani and Biros1 studied the fast algorithms for the solution of the source identification problem with linear elliptic par-

tial differential equations constraints. The numerical techniques and the numerical experiments for the source identification
problem with elliptic partial differential equations were constructed. Ashyralyev and Ashyralyyev2 investigated the boundary
value problem of determining the parameter of an elliptic equation in Banach space. Theorems of coercive stability estimates for
the solution of boundary value problems for multi-dimensional elliptic equations were proved. Ashyralyev and Cekic3 investi-
gated the source identification problem for a telegraph equation with unknown parameter in a Hilbert space with the self-adjoint
positive definite operator. Theorems of stability estimates for the solution of the telegraph equation were proved. In applica-
tions, three source identification problems for telegraph equations were obtained. The well-posedness of Neumann-type elliptic
overdetermined problem with integral condition has been well established.6 The author7 proved the various estimates for the
solution of the identification problem of inverse problem for the elliptic type equation. The stability, almost coercive stability,
and coercive stability inequalities for its solution have been obtained. Katzourakis10 investigated new methods of calculus of
variations in L∞ to study the ill-posed inverse problem of identifying the source of a non-homogeneous linear elliptic equation
for Dirichlet conditions. Sabitov and Martem’yanova11 studied the inverse problem for an equation of elliptic-hyperbolic type
with a nonlocal boundary condition. Theorems of the uniqueness criterion and the stability of solutions with respect to the
boundary value problem were proved. Avdonin and Nicaise8 studied the source identification problems for the wave equation
on graphs and the resolution of linear integral Volterra equations of the second kind for an interval. Theorems of the uniqueness
and the existence of solutions were proved. Siskova and Slodicka12 studied the inverse source problem in time-fractional wave
differential equation with dynamical boundary condition for Neumann boundary conditions. Theorems of the uniqueness and
existence of this solution were proved. The results of the numerical experiments were obtained.

†This research was funded by “Russian Foundation for Basic Research (RFBR) grant number 16–01–00450”.



2 ASHYRALYEV AND AL-HAMMOURI

Various local and nonlocal boundary value problems for elliptic, hyperbolic, telegraph, hyperbolic- telegraph and elliptic-
hyperbolic differential and difference equations and their applications have been investigated by many scientists (see (see13− 34

and the references given therein).
The nonlocal boundary value problems for hyperbolic-elliptic equation in a Hilbert space were studied, theorems on stability

of this problem and the first and the second order of accuracy difference schemes for approximate solutions of this problem were
proved.14 Direk and Ashyraliyev20 studied the initial-value problem for the integral-differential equation of the hyperbolic type
in a Hilbert space. Theorems of the uniqueness of solvability of this problem were proved. The convergence estimates for the
solutions of difference schemes were obtained. Gushchina22 studied the equation of mixed elliptic-hyperbolic type in rectangular
area with the conditions of periodicity and the nonlocal problem of A. A. Desin. Theorems of convergence of the constructed
series in the class of regular solutions and the stability of the solution were proved. Ivanauskas, Novitski and Sapagovas23
studied the stability of an explicit difference scheme for a linear hyperbolic equations with nonlocal integral boundary conditions.
Theorem of the stability for a linear hyperbolic equations with nonlocal integral boundary conditions was proved. Mansour26
studied the existence of traveling wave solutions for a hyperbolic-elliptic system of partial differential equations. Applied the
geometric theory of singular perturbations. Theorem of the existence of the wave solution was proved. Sapagovas, Griskoniene
and Stikoniene28 applied the standardmethod of finite difference schemes for nonlinear elliptic equations with integral condition.
Theorems of the convergence of all methods for this solution were proved. In application, the results of convergence between
iterative methods were applied for the first time to nonlinear system. Sapagovas and Stikoniene29 analyzed the generalization of
the alternating-direction implicit method for the two-dimensional nonlinear elliptic equation with integral boundary condition
in one coordinate direction. Theorem of the convergence of the iterative method was proved. Furthermore, the computational
experiments results were obtained. Stikoniene, Sapagovas and Ciupaila30 applied the iterative methods for the solution of the
system of the difference equations derived from the elliptic equation with nonlocal conditions. Theorems on the convergence
of faster iterative methods were proven. Novickij and Stikonas31 studied the stability of a weighted finite difference scheme for
wave equation with nonlocal boundary conditions. The linear hyperbolic equation with nonlocal integral boundary condition
was investigated. The stability conditions in a special matrix norm were obtained.
However, source identification problems for elliptic-telegraph equations have not been well-investigated so far. Therefore, the

main aim of this paper is to investigate the space identification problem for the elliptic-telegraph equation with parameter p .
Several identification problems for elliptic-telegraph equations can be reduced to the space source identification problem for

the elliptic-telegraph equation
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

d2u(t)
dt2

+ � du(t)
dt
+ Au(t) = p + f (t), 0 < t < 1,

− d2u(t)
dt2

+ Au(t) = p + g(t),−1 < t < 0,

u(0) = ', ut(0+) = ut(0−), u(−1) =  , u(1) = �

(1)

in a Hilbert spaceH with the self-adjoint positive definite operatorA ≥ �I, � > 0.Here p is the unknown parameter. The rest of
the paper is organized as follows: In section 2, the main theorem on stability of problem (1) is established. In section 3, theorems
on stability of three source identification problems for elliptic-telegraph equations are proved. Finally, section 4 is conclusion.

2 THE MAIN THEOREM ON STABILITY

Denote that
u(t) = u(t; f (t), g(t), ',  , �), p = p(f (t), g(t), ',  , �).

By a solution of inverse problem (1) we mean a pair (u(t), p) satisfying the following conditions:

1. The element u(t) belong toD for all t ∈ [−1, 1], and the function Av(t) is continuous on [−1, 1], p ∈ H . Here,D = D(A)
is the domain of an operator A.

2. u(t) is twisly continuously differentiable on the interval [−1, 1]. The derivative at the endpoints of the interval are
understood as the appropriate unilateral derivatives.

3. (u(t), p) satisfies the evolution equation and local boundary conditions (1).
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A solution of problem (1) defined in this manner will from now on be referred to as a solution of problem (1) in the space
C(H) ×H. Here C(H) = C([−1, 1],H) is the space of continuousH-valued functions u(t) defined on [−1, 1], equipped with
the norm

||u||C(H) = max
−1≤t≤1

||u(t)||H . (2)

In the present section, we will prove the main theorem on the stability of problem (1) in the space C(H) ×H.
To formulate our results we introduce the operator G = A − �2

4
I . It is easy to see that for � > �2

4
G is the positive definite

self-adjoint operator in the spaceH. Throughout, {c(t), t ≥ 0} is a strongly continuous cosine operator-function defined by the
formula

c(t) = eitG1∕2 + e−itG1∕2

2
.

Then from the definition of the sine operator-function s(t)

s(t)u =

t

∫
0

c(y)udy

it follows that
s(t) = G−1∕2 e

itG1∕2 − e−itG1∕2

2i
.

Now, let us give four lemmas that will be needed in the sequel.
Lemma 2.1. Assume that

� > �2

4
, � > 0. (3)

Then for any t ≥ 0, the estimates
‖c(t)‖H→H ≤ 1, ‖‖

‖

G1∕2s(t)‖‖
‖H→H

≤ 1, (4)
‖

‖

‖

B� exp {−Bt}‖‖
‖H→H

≤ 1, 0 ≤ � ≤ 1, ‖(I − exp {−2B})‖−1H→H ≤M(�)

are satisfied. Here B = A1∕2.
Proofs of these estimates are based on the spectral representation of the self-adjoint positive definite operator in a Hilbert

space.
Lemma 2.2. Assume that

� ≥
(�
2

)2
+ 1, � > 0.

Then, the operator
(

I − e−
�
2

(

c(1) + �
2
s(1)

))

has an inverse
E =

(

I − e−
�
2

(

c(1) + �
2
s(1)

))−1

and the following estimate holds
‖E‖H→H ≤ 1

1 −
(

1 + �
2

)

e−
�
2

. (5)

Proof. The proof of the estimate (5) is based on the estimate
‖

‖

‖

‖

c(1) + �
2
s(1)

‖

‖

‖

‖H→H
≤ 1 + �

2
. (6)

Using the definitions of c(t) and s(t) and positivity and self-adjointness property of A, we obtain
‖

‖

‖

‖

c(1) + �
2
s(1)

‖

‖

‖

‖H→H
≤ 1 + �

2
sup
�≤�<∞

1
(

� − �2

4

)1∕2

≤ 1 + �
2

1
(

� − �2

4

)1∕2
≤ 1 + �

2
.

The proof of estimate (6) is completed. Lemma 2.2 is proved.
Lemma 2.3. Assume that

(�
2
+ 1

)2
≥ � ≥

(�
2

)2
+ 1, � ≥ 4. (7)
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Then, the operator
I − B

(

I + e−B
)−1 (I − e−B

)

Ee−
�
2 s(1)

has an inverse
Q =

(

I − B
(

I + e−B
)−1 (I − e−B

)

Ee−
�
2 s(1)

)−1

and the following estimate holds
||Q||H→H ≤M(�, �), (8)

whereM(�, �) > 0.
Proof.We have that

Q =
(

I − e−
�
2

(

c(1) + �
2
s(1)

))

×
{

I − e−
�
2

(

c(1) + �
2
s(1)

)

− B
(

I + e−B
)−1 (I − e−B

)

e−
�
2 s(1)

}−1
.

First, we will proof the estimate
‖

‖

‖

‖

c(1) + �
2
s(1) + B

(

I − e−B
) (

I + e−B
)−1 s(1)

‖

‖

‖

‖H→H
≤ 1 + �

2
+ �1∕2. (9)

Using the definition of s(t) and positivity and self-adjointness property of A and the triangle inequality, we obtain

‖

‖

‖

A1∕2G−1∕2‖‖
‖H→H

≤ sup
�≤�<∞

⎛

⎜

⎜

⎝

�

� − �2

4

⎞

⎟

⎟

⎠

1∕2

≤ �1∕2 (10)

and

‖

‖

‖

B
(

I + e−B
)−1 s(1)‖‖

‖H→H
≤ sup

�≤�<∞

⎛

⎜

⎜

⎝

�

� − �2

4

⎞

⎟

⎟

⎠

1∕2
(

1 − e−�1∕2

1 + e−�1∕2

)

≤ �1∕2.

From that and from the estimate (6), it follows estimate (9). Using � ≤
(

�
2
+ 1

)2
, we get

(

1 + �
2
+ �1∕2

)

e−
�
2 ≤ 2

(

1 + �
2

)

e−
�
2 .

The proof of the estimate (8) is based on the estimate

2 sup
4≤�<∞

(

1 + �
2

)

e−
�
2 < 1.

Denote
g(�) =

(

1 + �
2

)

e−
�
2 .

It is clear to see that
g′(�) = −�

4
e−

�
2 < 0

for � > 0. Therefore,
2 sup
4≤�<∞

(

1 + �
2

)

e−
�
2 ≤ 2

(

1 + 4
2

)

e−2 = 6
e2
< 1.

Lemma 2.3 is proved.
Lemma 2.4. For the solution of problem (1) we have the following formula

u(t) = v(t) + A−1p, (11)

p = A� − Av(1), (12)
where

v(t) =
(

I − e−2B
)−1 [(etB − e−(2+t)B

)

v0 +
(

e−(1+t)B − e−(1−t)B
)

v−1

−
(

e−(1+t)B − e−(1−t)B
)

(2B)−1
0

∫
−1

(

e−(1+y)B − e−(1−y)B
)

g(y)dy
⎤

⎥

⎥

⎦



ASHYRALYEV AND AL-HAMMOURI 5

+ (2B)−1
0

∫
−1

(

e−|−t+y|B − e(t+y)B
)

g(y)dy,−1 ≤ t ≤ 0 (13)

and
v(t) = e−

�
2
t
(

c(t) + �
2
s(t)

)

v0 + e
− �
2
ts(t)v′0 (14)

+

t

∫
0

e−
�
2
(t−y)s(t − y)f (y)dy, 0 ≤ t ≤ 1,

v−1 = v0 − ' +  , (15)

v0 = E

⎧

⎪

⎨

⎪

⎩

e−
�
2 s(1)v′0 +

1

∫
0

e−
�
2
(1−y)s(1 − y)f (y)dy + ' − �

⎫

⎪

⎬

⎪

⎭

, (16)

v′0 = Q
(

I − e−2B
)−1

[

B
(

I − e−B
)2
(

I − e−
�
2

(

c(1) + �
2
s(1)

))−1

×

⎧

⎪

⎨

⎪

⎩

1

∫
0

e−
�
2
(1−y)s(1 − y)f (y)dy + ' − �

⎫

⎪

⎬

⎪

⎭

−2Be−B (−' +  ) +

0

∫
−1

(

e−(2+y)B − eyB
)

g(y)dy
⎤

⎥

⎥

⎦

. (17)

Proof.We seek the solution of problem (1) by formula (11), where v(t) is the solution of the following nonlocal boundary value
problem

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

d2v(t)
dt2

+ � dv(t)
dt
+ Av(t) = f (t), 0 < t < 1,

− d2v(t)
dt2

+ Av(t) = g(t),−1 < t < 0,

v(0) − v(−1) = ' −  , v(0) − v(1) = ' − �, vt(0+) = vt(0−)

(18)

for the differential equation in a Hilbert spaceH with self-adjoint positive definite operator A. Now, we will obtain the formula
for the solution of nonlocal boundary value problem (18). It is known (see [4-5]) that for smooth data of the boundary value
problems

⎧

⎪

⎨

⎪

⎩

v′′(t) + �v′(t) + Av(t) = f (t), 0 < t < 1,

v(0) = v0, v′(0) = v′0,
(19)

⎧

⎪

⎨

⎪

⎩

−v′′(t) + Av(t) = g(t),−1 < t < 0,

v(0) = v0, v(−1) = v−1

(20)

there are a unique solutions of the problems (19), (20) and formulas (13) and (14) hold. From nonlocal bondary condition v0−
v−1 = ' −  it follows (15). Now, we obtain v0. Applying (14) and condition v0 − v(1) = ' − �, we can write

e−
�
2

(

c(1) + �
2
s(1)

)

v0 + e
− �
2 s(1)v′0 +

1

∫
0

e−
�
2
(1−y)s(1 − y)f (y)dy = v0 − ' + �.
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By Lemma 2, there exists the operator E =
(

I − e−
�
2

(

c(1) + �
2
s(1)

))−1
and the formula ( 16) holds. Now, we will obtain v′0.

Applying (13 ) and taking derivative at t = 0 and using the condition vt(0+) = vt(0−), we get

v′0 =
(

I − e−2B
)−1 [B

(

I + e−2B
)

v0 − 2Be−Bv−1

+

0

∫
−1

(

e−(2+y)B − eyB
)

g(y)dy
⎤

⎥

⎥

⎦

. (21)

From that and formulas (15), (16) and (21), it follows that

v′0 =
(

I − e−2B
)−1

[

B
(

I + e−2B − 2e−B
)

(

I − e−
�
2

(

c(1) + �
2
s(1)

))−1

×

⎧

⎪

⎨

⎪

⎩

e−
�
2 s(1)v′0 +

1

∫
0

e−
�
2
(1−y)s(1 − y)f (y)dy + ' − �

⎫

⎪

⎬

⎪

⎭

−2Be−B (−' +  ) +

0

∫
−1

(

e−(2+y)B − eyB
)

g(y)dy
⎤

⎥

⎥

⎦

.

By Lemma 3, there exists the inverse operator

Q =
(

I − B
(

I + e−B
)−1 (I − e−B

)

Ee−
�
2 s(1)

)−1

and the formula (17) holds. Therefore, for the formal solution of the problem (18) we have the formulas (13), (14), (15 ), (16)
and (17). Formula for p follows from (11) and condition u(1) = �. Lemma 2.4 is proved.

Theorem 2.5. Suppose that ', , � ∈ D(A), and � ≥ 4,
(

�
2
+ 1

)2
≥ � ≥

(

�
2

)2
+ 1. Let f (t) be continuously differentiable

on [0, 1] and g(t) be continuously differentiable on [−1, 0] functions. Then there is a unique solution of the problem (1) and the
stability inequalities

max
−1≤t≤1

‖u(t)‖H +
‖

‖

‖

A−1p‖‖
‖H

≤M(�, �)
[

‖'‖H + ‖ ‖H + ‖�‖H (22)

+ max
−1≤t≤0

‖

‖

‖

A−1∕2g(t)‖‖
‖H

+ max
0≤t≤1

‖

‖

‖

A−1∕2f (t)‖‖
‖

]

H
,

max
−1≤t≤1

‖

‖

‖

‖

‖

d2u(t)
dt2

‖

‖

‖

‖

‖H

+ max
−1≤t≤1

‖Au(t)‖H + ‖p‖H

≤M(�, �)
[

‖A'‖H + ‖A ‖H + ‖A�‖H + ‖g(0)‖H (23)

+ max
−1≤t≤0

‖

‖

g′(t)‖
‖H + ‖f (0)‖H + max0≤t≤1

‖

‖

f ′(t)‖
‖H

]

holds, whereM(�, �) does not depend on f (t), t ∈ [0, 1], g(t), t ∈ [−1, 0] and ', , �.
Proof. Applying formula (12), we can obtain estimates

‖

‖

‖

A−1p‖‖
‖H

≤ ‖�‖H + ‖v(1)‖H , ‖p‖H ≤ ‖A�‖H + ‖Av(1)‖H . (24)

Therefore, by (11) we need to establish estimates for max
−1≤t≤1

‖v(t)‖H , max−1≤t≤1
‖Av(t)‖H and max

−1≤t≤1
‖

‖

‖

d2v(t)
dt2

‖

‖

‖H
. First, we obtain the

estimate ‖v(t)‖H for −1 ≤ t ≤ 1 and the triangle inequality and estimates (3), (4), (5) and (8), we obtain (see15)

max
−1≤t≤0

‖v(t)‖H ≤M1(�, �)
[

‖

‖

v0‖‖H + ‖

‖

v−1‖‖H + max
−1≤t≤0

‖

‖

‖

A−1∕2g(t)‖‖
‖H

]

(25)

Similarly, by (14) and the triangle inequality and estimates (3 ), (4), (5) and (8), we obtain (see15)

max
0≤t≤1

‖v(t)‖H ≤M2(�, �)
[

‖

‖

v0‖‖H +
‖

‖

‖

A−1∕2v′0
‖

‖

‖H
+ max
0≤t≤1

‖

‖

‖

A−1∕2f (t)‖‖
‖H

]

. (26)
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To end it we need estimates for ‖
‖

v0‖‖H , ‖‖v−1‖‖H and ‖‖
‖

A−1∕2v′0
‖

‖

‖H
. Using the triangle inequality and estimates (5), (8), ( 25) and

(26), we get
‖

‖

v0‖‖H ≤ ‖E‖H→H

{

e−
�
2
‖

‖

‖

A1∕2G−1∕2‖‖
‖H→H

‖

‖

‖

G1∕2s(1)‖‖
‖H→H

‖

‖

‖

A−1∕2v′0
‖

‖

‖H

+

1

∫
0

e−
�
2
(1−y) ‖

‖

‖

A1∕2G−1∕2‖‖
‖H→H

‖

‖

‖

G1∕2s(1 − y)‖‖
‖H→H

‖

‖

‖

A−1∕2f (y)‖‖
‖H

dy

+ ‖'‖H + ‖�‖H
}

≤M3(�, �)
[

‖'‖H + ‖ ‖H + ‖�‖H

+ max
−1≤t≤0

‖

‖

‖

A−1∕2g(t)‖‖
‖H

+ max
0≤t≤1

‖

‖

‖

A−1∕2f (t)‖‖
‖H

]

,

‖

‖

v−1‖‖H ≤ ‖

‖

v0‖‖H + ‖'‖H + ‖ ‖H
≤M4(�, �)

[

‖'‖H + ‖ ‖H + ‖�‖H

+ max
−1≤t≤0

‖

‖

‖

A−1∕2g(t)‖‖
‖H

+ max
0≤t≤1

‖

‖

‖

A−1∕2f (t)‖‖
‖H

]

and
‖

‖

‖

A−1∕2v′0
‖

‖

‖H
≤ ‖Q‖H→H

‖

‖

‖

(

I − e−2B
)−1

‖

‖

‖H→H

[

‖

‖

‖

(

I − e−B
)2
‖

‖

‖H→H
‖E‖H→H

×

⎧

⎪

⎨

⎪

⎩

1

∫
0

e−
�
2
(1−y) ‖

‖

‖

A1∕2G−1∕2‖‖
‖H→H

‖

‖

‖

G1∕2s(1 − y)‖‖
‖H→H

‖

‖

‖

A−1∕2f (y)‖‖
‖H

dy

+ ‖'‖H + ‖�‖H
}

+ 2 ‖‖
‖

e−B‖‖
‖H→H

(

‖'‖H + ‖ ‖H
)

+

0

∫
−1

(

‖

‖

‖

e−(2+y)B‖‖
‖H→H

+ ‖

‖

‖

eyB‖‖
‖H→H

)

‖

‖

‖

A−1∕2g(y)‖‖
‖H

dy
⎤

⎥

⎥

⎦

≤M5(�, �)
[

‖'‖H + ‖ ‖H + ‖�‖H

+ max
−1≤t≤0

‖

‖

‖

A−1∕2g(t)‖‖
‖H

+ max
0≤t≤1

‖

‖

‖

A−1∕2f (t)‖‖
‖

]

H
.

Therefore
max
−1≤t≤1

‖v(t)‖H ≤M6(�, �)
[

‖'‖H + ‖ ‖H + ‖�‖H

+ max
−1≤t≤0

‖

‖

‖

A−1∕2g(t)‖‖
‖H

+ max
0≤t≤1

‖

‖

‖

A−1∕2f (t)‖‖
‖

]

H
. (27)

Applying formula (11) and estimates (24) and (27) and the triangle inequality, we obtain estimate (22).
Second, we obtain the estimate ‖Av(t)‖H , for −1 ≤ t ≤ 1. Using formulas (13) and (14) and integrating by parts, we can get

formulas
Av(t) =

(

I − e−2B
)−1 [(etB − e−(2+t)B

)

Av0

+
(

e−(1+t)B − e−(1−t)B
)

Av−1 −
e−(1+t)B − e−(1−t)B

2

×

⎧

⎪

⎨

⎪

⎩

−2e−Bg(0) +
(

I + e−2B
)

g(−1) +

0

∫
−1

(

e−(1+y)B + e−(1−y)B
)

g′(y)dy

⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎥

⎥

⎦

+(I + e2tB)g(t) − 1
2
(e−(1+t)B − e−(1−t)B)g(−1) (28)

−etBg(0) −

0

∫
−1

(e−(|y−t|B + e(t+y)B)g′(y)dy,−1 ≤ t ≤ 0,

and
Av(t) = e−

�
2
t
(

c(t) + �
2
s(t)

)

Av0 + e
− �
2
ts(t)Av′0 + AG

−1
{

f (t) − e−
�
2
tc(t)f (0)
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+

t

∫
0

e−
�
2
(t−y)c(t − y)

(�
2
f (y) + f ′(y)

)

dy

⎫

⎪

⎬

⎪

⎭

, 0 ≤ t ≤ 1. (29)

Then, using (28) and estimates (3), (4), (5) and (8), we obtain (see15)

max
−1≤t≤0

‖Av(t)‖H ≤M7(�, �)
[

‖

‖

Av0‖‖H + ‖

‖

Av−1‖‖H (30)

+ max
−1≤t≤0

‖

‖

g′(t)‖
‖H + ‖g(0)‖H

]

.

Similarly, using (29) and estimates (3), (4), (5 ) and (8), we obtain (see15)

max
0≤t≤1

‖Av(t)‖H ≤M8(�, �)
[

‖

‖

Av0‖‖H +
‖

‖

‖

A1∕2v′0
‖

‖

‖H
(31)

+ ‖f (0)‖H + max0≤t≤1
‖

‖

f ′(t)‖
‖H

]

.

To end it we need estimates for ‖
‖

Av0‖‖H , ‖‖Av−1‖‖H and ‖‖
‖

A1∕2v′0
‖

‖

‖H
. Using formulas (16) and (17) and integrating by parts, we

can write the formulas
Av0 = E

{

e−
�
2 s(1)Av′0 + A' − A� + AG

−1

×
⎛

⎜

⎜

⎝

c(1)f (1) − c(1)f (0) −

1

∫
0

e−
�
2
(1−y)c(1 − y)

[�
2
f (y) + f ′(y)

]

dy
⎞

⎟

⎟

⎠

⎫

⎪

⎬

⎪

⎭

and
A1∕2v′0 = Q

(

I − e−2B
)−1

[

AG−1
(

I − e−B
)2 E

×
⎛

⎜

⎜

⎝

c(1)f (1) − c(1)f (0) −

1

∫
0

e−
�
2
(1−y)c(1 − y)

[�
2
f (y) + f ′(y)

]

dy
⎞

⎟

⎟

⎠

+A' − A�} − 2Be−B (−A' + A )

×

⎧

⎪

⎨

⎪

⎩

2e−Bg(0) +
(

I + e−2B
)

g(−1) +

0

∫
−1

(

e−(2+y)B − eyB
)

g′(y)dy

⎫

⎪

⎬

⎪

⎭

⎤

⎥

⎥

⎥

⎦

.

Then, using the estimate (5), (8), (30) and (31 ), we obtain

‖

‖

Av0‖‖H ≤ ‖AE‖H→H

{

e−
�
2
‖

‖

‖

A3∕2G−1∕2‖‖
‖H→H

‖

‖

‖

AG1∕2s(1)‖‖
‖H→H

‖

‖

‖

A1∕2v′0
‖

‖

‖H

+
{

‖f (1)‖H + ‖f (0)‖H +
(

‖f (1)‖H + max0≤t≤1
‖

‖

f ′(t)‖
‖H

)}

+ ‖A'‖H + ‖A�‖H
}

≤M9(�, �)
[

‖A'‖H + ‖A ‖H + ‖A�‖H

+ max
−1≤t≤0

‖

‖

g′(t)‖
‖H + ‖g(0)‖H + max0≤t≤1

‖

‖

f ′(t)‖
‖H + ‖f (0)‖H

]

,

‖

‖

Av−1‖‖H ≤ ‖

‖

Av0‖‖H + ‖A'‖H + ‖A ‖H

≤M10(�, �)
[

‖A'‖H + ‖A ‖H + ‖A�‖H + max
−1≤t≤0

‖

‖

g′(t)‖
‖H

+ ‖g(0)‖H + max0≤t≤1
‖

‖

f ′(t)‖
‖H + ‖f (0)‖H

]

and
‖

‖

‖

A1∕2v′0
‖

‖

‖H
≤ ‖Q‖H→H

‖

‖

‖

(

I − e−2B
)−1

‖

‖

‖H→H

×
[

‖

‖

‖

(

I − e−B
)2
‖

‖

‖H→H
‖E‖H→H
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×
{

‖f (t)‖H + ‖f (0)‖H +
(

‖c(1)f (t)‖H + ‖c(1)‖H max0≤t≤1
‖

‖

f ′(t)‖
‖H

)

+ ‖A'‖H + ‖A�‖H
}

+ 2 ‖‖
‖

e−B‖‖
‖H→H

(

‖A'‖H + ‖A ‖H
)

+
{

‖

‖

‖

2e−B‖‖
‖H→H

+ ‖

‖

‖

A
(

I − e−2B
)−1

‖

‖

‖H→H
‖g(−1)‖H + max

−1≤t≤0
‖

‖

g′(t)‖
‖H

}]

≤M11(�, �)
[

‖A'‖H + ‖A ‖H + ‖A�‖H + max
−1≤t≤0

‖

‖

g′(t)‖
‖H

+ ‖g(0)‖H + max0≤t≤1
‖

‖

f ′(t)‖
‖H + ‖f (0)‖H

]

.

From these estimates and formulas (30) and (31) it follows

max
−1≤t≤1

‖Av(t)‖H ≤M12(�, �)
[

‖A'‖H + ‖A ‖H + ‖A�‖H + max
−1≤t≤0

‖

‖

g′(t)‖
‖H

+ ‖g(0)‖H + max0≤t≤1
‖

‖

f ′(t)‖
‖H + ‖f (0)‖H

]

. (32)

Using estimates (24), (32), we obtain
‖p‖H ≤ ‖A�‖H + ‖

‖

Av1‖‖H

≤M13(�, �)
[

‖A'‖H + ‖A ‖H + ‖A�‖H + max
−1≤t≤0

‖

‖

g′(t)‖
‖H (33)

+ ‖g(0)‖H + max0≤t≤1
‖

‖

f ′(t)‖
‖H + ‖f (0)‖H

]

.

Finally, applying the triangle inequality and equations (19) and (20) and estimate (32), we get

max
−1≤t≤1

‖

‖

‖

‖

‖

d2v(t)
dt2

‖

‖

‖

‖

‖H

≤M14(�, �)
[

‖A'‖H + ‖A ‖H + ‖A�‖H + max
−1≤t≤0

‖

‖

g′(t)‖
‖H

+ ‖g(0)‖H + max0≤t≤1
‖

‖

f ′(t)‖
‖H + ‖f (0)‖H

]

. (34)

Estimate (23) follows from estimates (32), (33) and ( 34). Theorem 2.5 is proved.

3 APPLICATIONS

In this section, we consider the applications of the Theorem 2.5.
First, we consider the equation

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

utt(t, x) + �ut(t, x) −
(

a(x)ux(t, x)
)

x + �u(t, x)

= p(x) + f (t, x), 0 < t < 1, 0 < x < 1,

−utt(t, x) −
(

a(x)ux(t, x)
)

x + �u(t, x)

= p(x) + g(t, x), − 1 < t < 0, 0 < x < 1.

(35)

Let D = (−1, 1) × (0, 1), D1 = D
⋂

(t > 0), D2 = D
⋂

(t < 0),ℑ = {(t, x) ∶ t = 0, 0 ≤ x ≤ 1}.

Problem. Find a pair of functions (u(t, x), p(x)) with the following properties:
1) u(t, x) ∈ C(D)

⋂

C1
(

D1
⋃

D2
⋃

ℑ
)
⋂

C2
(

D1
⋃

D2
)

,
2) u(t, x) satisfies the equation (35) and the boundary conditions

⎧

⎪

⎨

⎪

⎩

u(t, 0) = u(t, 1), ux(t, 0) = ux(t, 1),−1 ≤ t ≤ 1,
u(0, x) = '(x), ut(0+, x) = ut(0−, x),
u(−1, x) =  (x), u(1, x) = �(x), 0 ≤ x ≤ 1.

(36)
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Problem (35) and (36) has a unique solution (u(t, x), p(x)) for the smooth functions a(x) ≥ a > 0, a(1) = a(0), t ∈ (−1, 1),
�, � > 0, '(x),  (x), �(x), x ∈ [0, 1]. This allows us to reduce the boundary value problem ( 35) and (36) to the identification
problem (1) in a Hilbert spaceH = L2[0, 1] with a self-adjoint positive definite operator Ax defined by formula

Axu(x) = −(a(x)ux)x + �u(x) (37)

with domain
D(Ax) =

{

u(x) ∶ u(x), ux(x), (a(x)ux)x ∈ L2[0, 1], u(1) = u(0), ux(1) = ux(0)
}

.
Applying the symmetry property of the space operator Ax with the domain D(Ax) ⊂ W 2

2 [0, 1] and estimates (22) and (23) in
H = L2[0, 1], we can obtain the following theorem on stability of problem (35) and (36).
Theorem 3.1. Suppose that ', , � ∈ W 2

2 [0, 1], and � ≥ 4,
(

�
2
+ 1

)2
≥ � ≥

(

�
2

)2
+ 1. Let f (t, x) be continuously differ-

entiable in t on [0, 1] and g(t, x) be continuously differentiable in t on [−1, 0] functions. Then the solutions of the identification
problem (35) and (36) satisfy the stability estimates

‖u‖C([−1,1],L2[0,1]) +
‖

‖

‖

(Ax)−1p‖‖
‖L2[0,1]

≤M1(�, �)
[

‖'‖L2[0,1] + ‖ ‖L2[0,1] (38)

+ ‖�‖L2[0,1] + ∥ f ∥C([0,1],L2[0,1]) + ∥ g ∥C([−1,0],L2[0,1])
]

,
‖u‖C (2)([−1,1],L2[0,1]) + ‖u‖C([−1,1],W 2

2 [0,1]) + ‖p‖L2[0,1]

≤M2(�, �)
[

‖'‖W 2
2 [0,1]

+ ‖ ‖W 2
2 [0,1]

+ ‖�‖W 2
2 [0,1]

(39)

+ ∥ f ∥C (1)([0,1],L2[0,1]) + ‖g‖C (1)([−1,0],L2[0,1])
]

.
HereM1(�, �) andM2(�, �) do not depend on '(x),  (x), �(x), f (t, x) and g(t, x).
Here, the Sobolev space W 2

2 [0, 1] is defined as the set of all functions u(x) defined on [0, 1] such that u(x) and the second
order derivative function u′′(x) are both locally integrable in L2[0, 1], equipped the norm

‖u(x)‖W 2
2 [0,1]

=
⎛

⎜

⎜

⎝

1

∫
0

|u(x)|2 dx
⎞

⎟

⎟

⎠

1
2

+
⎛

⎜

⎜

⎝

1

∫
0

|

|

uxx(x)||
2 dx

⎞

⎟

⎟

⎠

1
2

.

Proof. Problem (35) and (36) can be written as abstract problem (1) in a Hilbert spaceH = L2[0, 1] with self-adjoint positive
definite operator A = Ax defined by the formula (37). Here f (t) = f (t, x), g(t) = g(t, x) and u(t) = u(t, x) are known and
unknown abstract functions with values in H and p = p(x) is the unknown element of L2[0, 1]. Therefore, estimates (38) and
(39 ) follow from estimates of Theorem 2.5. Theorem 3.1 is proved.
Second, letΩ ⊂ Rn be a bounded open domain with smooth boundary S,Ω = Ω∪S. In [−1, 1]×Ω,we consider the boundary

value problem for elliptic-telegraph equations

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

utt(t, x) + �ut(t, x) −
n
∑

r=1

(

a(xr)uxr(t, xr)
)

xr

= p(x) + f (t, x), 0 < t < 1, x = (x1, ..., xn) ∈ Ω,

−utt(t, x) −
n
∑

r=1

(

a(xr)uxr(t, xr)
)

xr

= p(x) + g(t, x), − 1 < t < 0, x = (x1, ..., xn) ∈ Ω,

u(0, x) = '(x), ut(0+, x) = ut(0−, x),

u(−1, x) =  (x), u(1, x) = �(x), x ∈ Ω,

u(t, x) = 0, x ∈ S,−1 ≤ t ≤ 1

(40)

is considered. Here ar(x) ≥ a > 0, (x ∈ Ω), '(x),  (x), �(x)(x ∈ Ω) and f (t, x), (t ∈ (0, 1)), g(t, x), (t ∈ (−1, 0))(x ∈ Ω) and
(� > 0) are given smooth functions.
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We consider the Hilbert space L2(Ω) of the all square integrable functions u(x) defined on Ω, equipped with the norm

‖u(x)‖L2(Ω) =
(

∫ ⋯∫ x∈Ω
|u(x)|2dx1⋯ dxn

)
1
2

.

Problem (40) has a unique solution (u(t, x), p(x)) for the smooth functions '(x),  (x), �(x) and ar(x). This allows us to reduce
the problem (40) to the boundary value problem ( 1) in the Hilbert spaceH = L2(Ω)with a self-adjoint positive definite operator
Ax defined by formula

Axu(x) = −
n
∑

r=1
(ar(x)uxr)xr (41)

with domain
D(Ax) =

{

u(x) ∶ u(x), uxr(x), (ar(x)uxr)xr ∈ L2(Ω), 1 ≤ r ≤ n, u(x) = 0, x ∈ S
}

.

Theorem 3.2. Suppose that ', , � ∈ L2(Ω), and � ≥ 4,
(

�
2
+ 1

)2
≥ � ≥

(

�
2

)2
+ 1. Let f (t, x) be continuously differentiable

in t on [0, 1] and g(t, x) be continuously differentiable in t on [−1, 0] functions. Then the solutions of the identification problem
(40) satisfy the stability estimates

‖u‖
C
(

L2(Ω)
) + ‖

‖

‖

(Ax)−1p‖‖
‖L2(Ω)

≤M3(�, �)
[

‖'‖L2(Ω) + ‖ ‖L2(Ω) + ‖�‖L2(Ω) (42)

+ ∥ f ∥C([0,1],L2(Ω)) + ∥ g ∥C([−1,0],L2(Ω))
]

,

‖u‖C (2)([−1,1],L2[0,1]) + ‖u‖C([−1,1],W 2
2 [0,1]) +

‖

‖

‖

(Ax)−1p‖‖
‖L2(Ω)

≤M4(�, �)
[

‖'‖L2(Ω) + ‖ ‖L2(Ω) + ‖�‖L2(Ω) (43)

+ ∥ f ∥C (1)([0,1],L2(Ω)) + ‖g‖C (1)([−1,0],L2(Ω)) + ‖f (0)‖L2(Ω) + ‖g(0)‖L2(Ω)
]

,

whereM3(�, �) andM4(�, �) do not depend on '(x),  (x), �(x), f (t, x)and g(t, x).
Here and in the future, the Sobolev spaceW 2

2 (Ω) is defined as the set of all functions u defined onΩ such that u and all second
order partial differential derivative functions uxrxr , r = 1, , ..., n are both integrable in L2(Ω) , equipped with the norm

‖u‖W 2
2 (Ω)

= ‖u‖L2(Ω) +

(

∫ ⋯∫ x∈Ω

n
∑

r=1

|

|

|

uxrxr
|

|

|

2
dx1⋯ dxn

)
1
2

.

Proof. Problem (40) can be written as abstract problem (1) in a Hilbert space H = L2(Ω) with self-adjoint positive definite
operator A = Ax defined by the formula (41). Here f (t) = f (t, x), g(t) = g(t, x) and u(t) = u(t, x) are known and unknown
abstract functions defined on Ω with values inH = L2(Ω) and p = p(x) is the unknown element of L2(Ω). Therefore, estimates
(42) and (43) follow from estimates of Theorem 2.5. Theorem 3.2 is proved.
Theorem 3.3. For the solution of the elliptic differential problem35

Axu(x) = �(x), x ∈ Ω, u(x) = 0, x ∈ S,

the following coercivity inequality holds
n
∑

r=1

‖

‖

‖

uxrxr
‖

‖

‖L2(Ω)
≤M5||�||L2(Ω).

HereM5 does not depend on �(x).
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Third, in [−1, 1] × Ω, the boundary value problem for the elliptic-telegraph equation
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

utt(t, x) + �ut(t, x) −
n
∑

r=1

(

a(xr)uxr(t, xr)
)

xr
+ �u

= p(x) + f (t, x), 0 < t < 1,

−utt(t, x) −
n
∑

r=1

(

a(xr)uxr(t, xr)
)

xr
+ �u

= p(x) + g(t, x), − 1 < t < 0,

x = (x1, ..., xn) ∈ Ω,

u(0, x) = '(x), ut(0+, x) = ut(0−, x),

u(−1, x) =  (x), u(1, x) = �(x), x ∈ Ω,

du(t,x)
d ⃖⃗m = 0, x ∈ S,−1 ≤ t ≤ 1.

(44)

is considered. Here, ⃖⃖⃗m is the normal vector to S, ar(x) ≥ a > 0, (x ∈ Ω), '(x),  (x), �(x)(x ∈ Ω) and f (t, x), (t ∈
(0, 1)), g(t, x), (t ∈ (−1, 0))(x ∈ Ω) and (� > 0) are given smooth functions.
Problem (44) has a unique solution (u(t, x), p(x)) for the smooth functions '(x),  (x), �(x) and ar(x). This allows us to reduce

the problem (40) to the boundary value problem (1) in the Hilbert spaceH = L2(Ω)with a self-adjoint positive definite operator
Ax defined by formula

Axu(x) = −
n
∑

r=1
(ar(x)uxr)xr + �u (45)

with domain
D(Ax) =

{

u(x) ∶ u(x), uxr(x), (ar(x)uxr)xr ∈ L2(Ω), 1 ≤ r ≤ n,
)u (x)
)⃖⃖⃗m

= 0, x ∈ S
}

.

Theorem 3.4. For the solutions of problem (40), we have following stability estimates

‖u‖
C
(

L2(Ω)
) + ‖

‖

‖

(Ax)−1p‖‖
‖L2(Ω)

≤M6(�, �)
[

‖'‖L2(Ω) + ‖ ‖L2(Ω) + ‖�‖L2(Ω) (46)

+ ∥ f ∥C([0,1],L2(Ω)) + ∥ g ∥C([−1,0],L2(Ω))
]

,

‖u‖C (2)([−1,1],L2[0,1]) + ‖u‖C([−1,1],W 2
2 [0,1]) +

‖

‖

‖

(Ax)−1p‖‖
‖L2(Ω)

≤M7(�, �)
[

‖'‖L2(Ω) + ‖ ‖L2(Ω) + ‖�‖L2(Ω) (47)

+ ∥ f ∥C (1)([0,1],L2(Ω)) + ‖g‖C (1)([−1,0],L2(Ω)) + ‖f (0)‖L2(Ω) + ‖g(0)‖L2(Ω)
]

.

whereM6(�, �) andM7(�, �) do not depend on '(x),  (x), �(x), f (t, x)and g(t, x).
Proof. Problem (44) can be written in abstract form (1) in a Hilbert space L2(Ω) with self-adjoint positive definite operator

A = Ax defined by the formula (45). Here f (t) = f (t, x), g(t) = g(t, x) and u(t) = u(t, x) are known and unknown abstract
function defined on Ω with values of H = L2(Ω) and p = p(x) is the element of L2(Ω). Therefore, estimates (46) and (47)
follow from estimates of Theorem 2.5. Furthermore, Theorem 3.4 is proved.
Theorem 3.5. For the solution of the elliptic differential problem35

{

Axu(x) = �(x), x ∈ Ω,
)u(x)
) ⃖⃗m = 0, x ∈ S,
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the following coercivity inequality holds
n
∑

r=1

‖

‖

‖

uxrxr
‖

‖

‖L2(Ω)
≤M8||�||L2(Ω).

HereM8 does not depend on �(x).

4 CONCLUSIONS

In the present paper, the stability of the space identification problem for the elliptic-telegraph differential equation is discussed.
Themain theorem on the stability of the space identification problem for the elliptic-telegraph differential equation is established.
In applications, the stability of three problems of the space identification problem for the elliptic-telegraph differential equations
are obtained.
Two-step difference schemes for the numerical solutions of the identification problem for the elliptic-telegraph differential

equation can be presented.36 Of course, the stability estimates for the solution of this difference schemes can be obtained.
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