References
  1. Farrar, C., and Worden, K. (2006). An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851), pp. 303-315.
  2. Ostrovsky, L. & Johnson, P.A. Dynamic nonlinear elasticity in geomaterials. Riv. Nuovo Cim. 24 , 1-46 (2001).
  3. Guyer, R.A & Johnson, P.A. Nonlinear mesoscopic elasticity: the complex behaviour of rocks, soil, concrete. Hoboken, NJ: John Wiley & Sons (2009).
  4. Johnson, P.A. & Sutin, A. Slow dynamics and anomalous nonlinear fast dynamics in diverse solids. J. Acoust. Soc. Am. 117 , 124-130 (2005).
  5. Farrar, C., and Worden, K. (2007). Structural Health Monitoring - Preface. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 365(1851), pp. 299-301.
  6. Van Den Abeele, K.E.-A, Carmeliet, J., Johnson, P.A. & Zinszner, B. Influence of water saturation on the nonlinear elastic mesoscopic response in Earth materials and the implications to the mechanism of nonlinearity. J. Geophys. Res. 107 (B6), 2121 (2002).
  7. Johnson, P.A. & Jia, X. Nonlinear dynamics, granular media and dynamic earthquake triggering. Nature 437 , 871-874 (2005).
  8. Rivière, J., Shokouhi, P., Guyer, R.A., et al. A set of measures for the systematic classification of the nonlinear elastic behavior of disparate rocks. J. Geophys. Res. B: Solid Earth 120 (3), 1587-1604 (2015).
  9. Rivière, J., Shokouhi, P., Guyer, R.A., & Johnson, P.A. Fast and slow nonlinear elastic response of disparate rocks and the influence of moisture. J. Acoust. Soc. Am. 140 , 3326 (2016).
  10. Averbakh, V.S., Lebedev, A.V., Maryshev, A.P., & Talanov, V.I. Observation of slow dynamics effects in nonconsolidated media under in-situ conditions. Acoust. Phys. 55 , 211-217 (2009).
  11. Brenguier, F., Campillo, M., Hadziioannou, C., et al. Postseismic relaxation along the San Andreas fault at Parkfield from continuous seismological observations. Science 321 (5895), 1478-1481 (2008).
  12. Brenguier, F., Campillo, M., Takeda, T., Aoki, Y., Shapiro, N.M., Briand, X., & Miyake, H. Mapping pressurized volcanic fluids from induced crustal seismic velocity drops. Science 345 (6192), 80-82 (2014).
  13. Astorga, A., Guéguen, P. & Kashima, T. Nonlinear elasticity observed in buildings during a long sequence of earthquakes. Bull. Seismol. Soc. Am. 108 (3A), 1185-1198. (2018).
  14. Astorga, A., Guéguen, P., Rivière, J., Kashima, T., & Johnson, P.A. Recovery of the resonance frequency of buildings following strong seismic deformation as a proxy for structural health. Struct. Health Monit. DOI: 10.1177/1475921718820770 (2019).
  15. Clinton, J., Bradford, C., Heaton, T., and Favela, J. (2006). The observed wander of the natural frequencies in a structure. Bulletin of the Seismological Society of America 96(1), pp. 237-257. https://doi.org/10.1785/0120050052
  16. Dunand, F., Guéguen, P., Bard, P-Y., Rodgers, J., and Celebi, M. (2006). Comparison of the dynamic parameters extracted from weak, moderate and strong building motion. Proceedings of the 1st European Conference of Earthquake Engineering and Seismology. Geneva, Switzerland, paper 1021.
  17. Çelebi, M., Kashima, T., Ghahari, F., Koyama, S., and Taciroglu, E. (2016). Before and after retrofit behavior and performance of a 55-story tall building inferred from distant earthquake and ambient vibration data. Earthquake Spectra. 32(1), pp. 463-495. DOI: 10.1193/122216EQS249M
  18. Motosaka, M., Sato, T., Yamamoto, Y. (2004). The amplitude dependent dynamic characteristics of an existing building before and after seismic retrofit. 13th World Conference on Earthquake Engineering, Vancouver. Paper N° 1023.
  19. Motosaka, M., and Mitsuji, K. (2012). Building damage during the 2011 off the Pacific coast of Tohoku Earthquake. Soils and Foundations, 52(5), pp. 929-944.https://doi.org/10.1016/j.sandf.2012.11.012
  20. Okawa, I., Kashima, T., Koyama, S., & Iibaa, M. Recorded responses of building structures during the 2011 Tohoku-Oki earthquake with some implications for design practice. Earthq. Spectra 29 (S1), S245-S264 (2013).
  21. Astorga A., Guéguen P., Ghimire S., Kashima T. (2019). NDE1.0 – a new database of earthquake data recordings from buildings for engineering applications. Bulletin of Earthquake Engineering. DOI:https://doi.org/10.1007/s10518-019-00746-6
  22. Snieder, R., Sens-Schönfelder, C. & Wu, R. The time dependence of rock healing as a universal relaxation process, a tutorial. Geophys. J. Int. 208 , 1-9 (2017).
  23. Shokouhi, P., Rivière, J., Guyer R.A. & Johnson, P.A. Slow dynamics of consolidated granular systems: multi-scale relaxation. Appl. Phys. Lett. 111 , 251604 (2017).
  24. Ostrovsky, L., Lebedev, A.V., Rivière, J., Shokouhi, P., et al. Long-time relaxation induced by dynamic forcing in geomaterials. J. Geophys. Res. B: Solid Earth 124 (5), 5003-5013 (2019).
  25. Daniels, K.E. & Hayman, N.W. Force chains in seismogenic faults visualized with photoelastic granular shear experiments. J. Geophys. Res. 113 , B11411 (2008).
  26. Gao, K., Guyer, R., Rougier, E. Ren, C.X., & Johnson, P.A. From stress chains to acoustic emission. Phys. Rev. Lett. 123 , 048003 (2019).
  27. Peters, J.F., Muthuswamy, M., Wibowo, J. & Tordesillas, A. Characterization of force chains in granular material. Phys. Rev. E.72 , 041307 (2005).
  28. TenCate, J.A., Smith, E. & Guyer, R.A. Universal slow dynamics in granular solids. Phys. Rev. Lett. 85 (5), 1020-1023 (2000).