Reference
[1] Perumal, V. and U. Hashim, Advances in biosensors: Principle, architecture and applications. Journal of Applied Biomedicine, 2014. 12(1): p. 1-15.
[2] Misawa, N., T. Osaki, and S. Takeuchi, Membrane protein-based biosensors. Journal of The Royal Society Interface, 2018. 15(141): p. 20170952.
[3] Borisov, S.M. and O.S. Wolfbeis, Optical biosensors.Chemical reviews, 2008. 108(2): p. 423-461.
[4] Castillo, J., S. Gáspár, S. Leth, M. Niculescu, et al.,Biosensors for life quality: Design, development and applications. Sensors and Actuators B: Chemical, 2004. 102(2): p. 179-194.
[5] Khalil, A.S. and J.J. Collins, Synthetic biology: applications come of age. Nature Reviews Genetics, 2010. 11(5): p. 367-379.
[6] Kim, H.J., H. Jeong, and S.J. Lee, Synthetic biology for microbial heavy metal biosensors. Analytical and bioanalytical chemistry, 2018. 410(4): p. 1191-1203.
[7] Konig, H., D. Frank, R. Heil, and C. Coenen, Synthetic genomics and synthetic biology applications between hopes and concerns.Current genomics, 2013. 14(1): p. 11-24.
[8] Audrey, S., P.-S. Beatriz, and M. Jean-Louis, Biosensors for pesticide detection: new trends. American Journal of Analytical Chemistry, 2012. 2012.
[9] Hou, Q., A. Ma, T. Wang, J. Lin, et al., Detection of bioavailable cadmium, lead, and arsenic in polluted soil by tailored multiple Escherichia coli whole-cell sensor set. Analytical and bioanalytical chemistry, 2015. 407(22): p. 6865-6871.
[10] Kviatkovski, I., S. Shushan, Y. Oron, I. Frumin, et al.,Smelling Pseudomonas aeruginosa infections using a whole-cell biosensor–An alternative for the gold-standard culturing assay.Journal of biotechnology, 2018. 267: p. 45-49.
[11] Schirmer, C., J. Posseckardt, A. Kick, K. Rebatschek, et al.,Encapsulating genetically modified Saccharomyces cerevisiae cells in a flow-through device towards the detection of diclofenac in wastewater. Journal of biotechnology, 2018. 284: p. 75-83.
[12] Voyvodic, P.L. and J. Bonnet, Cell-free biosensors for biomedical applications. Current Opinion in Biomedical Engineering, 2019.
[13] Pandi, A., I. Grigoras, O. Borkowski, and J.-L. Faulon,Optimizing Cell-Free Biosensors to Monitor Enzymatic Production.ACS Synthetic Biology, 2019. 8(8): p. 1952-1957.
[14] Carlson, E.D., R. Gan, C.E. Hodgman, and M.C. Jewett,Cell-free protein synthesis: applications come of age.Biotechnology advances, 2012. 30(5): p. 1185-1194.
[15] Taylor, N.D., A.S. Garruss, R. Moretti, S. Chan, et al.,Engineering an allosteric transcription factor to respond to new ligands. Nature methods, 2016. 13(2): p. 177.
[16] Pfeiffer, F. and G. Mayer, Selection and biosensor application of aptamers for small molecules. Frontiers in chemistry, 2016. 4: p. 25.
[17] Voyvodic, P.L., A. Pandi, M. Koch, I. Conejero, et al.,Plug-and-play metabolic transducers expand the chemical detection space of cell-free biosensors. Nature communications, 2019. 10(1): p. 1-8.
[18] Kim, D.-M. and K.-H. Lee, In vitro use of cellular synthetic machinery for biosensing applications. Frontiers in pharmacology, 2019. 10: p. 1166.
[19] Snoek, T., E. Chaberski, F. Ambri, S. Kol, et al.,Evolution-guided engineering of small-molecule biosensors. Biorxiv. 2019 .
[20] Zhang, J., M.K. Jensen, and J.D. Keasling, Development of biosensors and their application in metabolic engineering. Current opinion in chemical biology, 2015. 28: p. 1-8.
[21] Cheng, F., X.L. Tang, and T. Kardashliev, Transcription factor‐based biosensors in high‐throughput screening: advances and applications. Biotechnology journal, 2018. 13(7): p. 1700648.
[22] D’ambrosio, V. and M.K. Jensen, Lighting up yeast cell factories by transcription factor-based biosensors. FEMS yeast research, 2017. 17(7).
[23] Fernandez-López, R., R. Ruiz, F. de la Cruz, and G. Moncalián,Transcription factor-based biosensors enlightened by the analyte.Frontiers in microbiology, 2015. 6: p. 648.
[24] Mahr, R. and J. Frunzke, Transcription factor-based biosensors in biotechnology: current state and future prospects.Applied microbiology and biotechnology, 2016. 100(1): p. 79-90.
[25] Green, A.A., P.A. Silver, J.J. Collins, and P. Yin,Toehold switches: de-novo-designed regulators of gene expression.Cell, 2014. 159(4): p. 925-939.
[26] Pardee, K., A.A. Green, T. Ferrante, D.E. Cameron, et al.,based synthetic gene networks. Cell, 2014. 159(4): p. 940-954.
[27] Marshall, R., C.S. Maxwell, S.P. Collins, T. Jacobsen, et al.,Rapid and scalable characterization of CRISPR technologies using an E. coli cell-free transcription-translation system. Molecular cell, 2018. 69(1): p. 146-157. e3.
[28] Li, Y., S. Li, J. Wang, and G. Liu, CRISPR/Cas systems towards next-generation biosensing. Trends in biotechnology, 2019. 37(7): p. 730-743.
[29] Myhrvold, C., C.A. Freije, J.S. Gootenberg, O.O. Abudayyeh, et al., Field-deployable viral diagnostics using CRISPR-Cas13.Science, 2018. 360(6387): p. 444-448.
[30] Pardee, K., A.A. Green, M.K. Takahashi, D. Braff, et al.,Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell, 2016. 165(5): p. 1255-1266.
[31] Casper, E.T., S.S. Patterson, P. Bhanushali, A. Farmer, et al.,A handheld NASBA analyzer for the field detection and quantification of Karenia brevis. Harmful Algae, 2007. 6(1): p. 112-118.
[32] Chen, J.S., E. Ma, L.B. Harrington, M. Da Costa, et al.,CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018. 360(6387): p. 436-439.
[33] Cordray, M.S. and R.R. Richards-Kortum, Emerging nucleic acid–based tests for point-of-care detection of malaria. The American journal of tropical medicine and hygiene, 2012. 87(2): p. 223-230.
[34] Bruch, R., G.A. Urban, and C. Dincer, CRISPR/Cas Powered Multiplexed Biosensing. Trends in biotechnology, 2019. 37(8): p. 791-792.
[35] Li, Y., L. Liu, and G. Liu, CRISPR/Cas multiplexed biosensing: a challenge or an insurmountable obstacle? Trends in biotechnology, 2019. 37(8): p. 792-795.
[36] Song, S., L. Wang, J. Li, C. Fan, et al., Aptamer-based biosensors. TrAC Trends in Analytical Chemistry, 2008. 27(2): p. 108-117.
[37] Zhou, W., P.-J.J. Huang, J. Ding, and J. Liu,Aptamer-based biosensors for biomedical diagnostics. Analyst, 2014. 139(11): p. 2627-2640.
[38] Iyer, S. and M.J. Doktycz, Thrombin-mediated transcriptional regulation using DNA aptamers in DNA-based cell-free protein synthesis. ACS synthetic biology, 2014. 3(6): p. 340-346.
[39] Wang, J., L. Yang, X. Cui, Z. Zhang, et al., A DNA bubble-mediated gene regulation system based on thrombin-bound DNA aptamers. ACS synthetic biology, 2017. 6(5): p. 758-765.
[40] Catherine, C., S.J. Oh, K.H. Lee, S.E. Min, et al.,Engineering Thermal Properties of Elastin-like Polypeptides by Incorporation of Unnatural Amino Acids in a Cell-free Protein Synthesis System. Biotechnology & Bioprocess Engineering. 20(3): p. 417-422.
[41] Jang, Y.-J., K.-H. Lee, T.H. Yoo, and D.-M. Kim,Complementary cell-free translational assay for quantification of amino acids. Analytical chemistry, 2017. 89(18): p. 9638-9642.
[42] Gui, Q., T. Lawson, S. Shan, L. Yan, et al., The application of whole cell-based biosensors for use in environmental analysis and in medical diagnostics. Sensors, 2017. 17(7): p. 1623.
[43] Bronder, T.S., A. Poghossian, S. Scheja, C. Wu, et al.,DNA immobilization and hybridization detection by the intrinsic molecular charge using capacitive field-effect sensors modified with a charged weak polyelectrolyte layer. ACS applied materials & interfaces, 2015. 7(36): p. 20068-20075.
[44] Mousavi, P.S., S.J. Smith, J.B. Chen, M. Karlikow, et al.,A multiplexed, electrochemical interface for gene-circuit-based sensors. Nature chemistry, 2020. 12(1): p. 48-55.
[45] Biran, I., R. Babai, K. Levcov, J. Rishpon, et al.,Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. Environmental Microbiology, 2000. 2(3): p. 285-290.
[46] Karig, D.K., S. Bessling, P. Thielen, S. Zhang, et al.,Preservation of protein expression systems at elevated temperatures for portable therapeutic production. Journal of The Royal Society Interface, 2017. 14(129): p. 20161039.
[47] Schwarz-Schilling, M., L. Aufinger, A. Mückl, and F. Simmel,Chemical communication between bacteria and cell-free gene expression systems within linear chains of emulsion droplets.Integrative Biology, 2016. 8(4): p. 564-570.
[48] Lim, S.Y., K.-O. Kim, D.-M. Kim, and C.B. Park,Silica-coated alginate beads for in vitro protein synthesis via transcription/translation machinery encapsulation. Journal of biotechnology, 2009. 143(3): p. 183-189.
[49] Whittaker, J.W., Cell-free protein synthesis: the state of the art. Biotechnology letters, 2013. 35(2): p. 143-152.
[50] Gräwe, A., A. Dreyer, T. Vornholt, U. Barteczko, et al.,A paper-based, cell-free biosensor system for the detection of heavy metals and date rape drugs. PloS one, 2019. 14(3).
[51] Zhang, P., H. Feng, J. Yang, H. Jiang, et al., Detection of inorganic ions and organic molecules with cell-free biosensing systems. Journal of biotechnology, 2019. 300: p. 78-86.
[52] Liu, X., A.D. Silverman, K.K. Alam, E. Iverson, et al.,Design of a transcriptional biosensor for the portable, on-demand detection of cyanuric acid. ACS Synthetic Biology, 2019.
[53] Alam, K.K., J.K. Jung, M.S. Verosloff, P.R. Clauer, et al.,Rapid, low-cost detection of water contaminants using regulated in vitro transcription. BioRxiv, 2019: p. 619296.
[54] Duyen, T.T.M., H. Matsuura, K. Ujiie, M. Muraoka, et al.,Paper-based colorimetric biosensor for antibiotics inhibiting bacterial protein synthesis. Journal of Bioscience & Bioengineering, 2016. 123(1): p. 96-100.
[55] Pellinen, T., T. Huovinen, and M. Karp, A cell-free biosensor for the detection of transcriptional inducers using firefly luciferase as a reporter. Analytical biochemistry, 2004. 330(1): p. 52-57.
[56] Kawaguchi, T., Y.P. Chen, R.S. Norman, and A.W. Decho,Rapid screening of quorum-sensing signal N-acyl homoserine lactones by an in vitro cell-free assay. Appl. Environ. Microbiol., 2008. 74(12): p. 3667-3671.
[57] Miller, M.B. and B.L. Bassler, Quorum sensing in bacteria. Annual Reviews in Microbiology, 2001. 55(1): p. 165-199.
[58] Wen, K.Y., L. Cameron, J. Chappell, K. Jensen, et al., A cell-free biosensor for detecting quorum sensing molecules in P. aeruginosa-infected respiratory samples. ACS synthetic biology, 2017. 6(12): p. 2293-2301.
[59] Titus‐Ernstoff, L., R. Troisi, E.E. Hatch, J.R. Palmer, et al.,Birth defects in the sons and daughters of women who were exposed in utero to diethylstilbestrol (DES). International journal of andrology, 2010. 33(2): p. 377-384.
[60] Salehi, A.S., M.J. Shakalli Tang, M.T. Smith, J.M. Hunt, et al., Cell-free protein synthesis approach to biosensing hTRβ-specific endocrine disruptors. Analytical chemistry, 2017. 89(6): p. 3395-3401.
[61] Salehi, A.S., S.O. Yang, C.C. Earl, M.J.S. Tang, et al.,Biosensing estrogenic endocrine disruptors in human blood and urine: A RAPID cell-free protein synthesis approach. Toxicology and applied pharmacology, 2018. 345: p. 19-25.
[62] Gootenberg, J.S., O.O. Abudayyeh, J.W. Lee, P. Essletzbichler, et al., Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017. 356(6336): p. 438-442.
[63] Ilkhani, H. and S. Farhad, A novel electrochemical DNA biosensor for Ebola virus detection. Analytical biochemistry, 2018. 557: p. 151-155.
[64] Jang, Y.-J., K.-H. Lee, T.H. Yoo, and D.-M. Kim,Interfacing a personal glucose meter with cell-free protein synthesis for rapid analysis of amino acids. Analytical chemistry, 2019. 91(3): p. 2531-2535.
[65] Soltani, M., B.R. Davis, H. Ford, J.A.D. Nelson, et al.,Reengineering cell-free protein synthesis as a biosensor: Biosensing with transcription, translation, and protein-folding.Biochemical Engineering Journal, 2018. 138: p. 165-171.
[66] Perez, J.G., J.C. Stark, and M.C. Jewett, Cell-free synthetic biology: engineering beyond the cell. Cold Spring Harbor perspectives in biology, 2016. 8(12): p. a023853.
[67] Karig, D.K., Cell-free synthetic biology for environmental sensing and remediation. Current opinion in biotechnology, 2017. 45: p. 69-75.
[68] Chen, F., J. Wang, L. Du, X. Zhang, et al., Functional expression of olfactory receptors using cell-free expression system for biomimetic sensors towards odorant detection. Biosensors and Bioelectronics, 2019. 130: p. 382-388.
[69] Daniels, B.C., Y.-J. Chen, J.P. Sethna, R.N. Gutenkunst, et al., Sloppiness, robustness, and evolvability in systems biology.Current opinion in biotechnology, 2008. 19(4): p. 389-395.
Table 1. The advantages of cell-free biosensors