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Modeling and analysis of thematerials universe is an emerg-
ing area of research with many important applications in
materials science. The main goal is to create a map of ma-
terials which allows not only to visualize and navigate the
materials space, but also reveal complex relationships and
“connections” amongmaterials and potentially find clusters
of materials with similar properties. In this paper, we con-
sider the problem of mapping and exploring the materials
universe using network science tools and concepts. The net-
works are based on the open-sourcematerials data repos-
itory AFLOW.org where each material is represented as a
node, and each pair of nodes is connected by a link if the
respective materials exhibit a high level of similarity be-
tween their Density of States (DOS) functions. We discuss
the importance of similarity measure selection, investigate
basic structural properties of the resulting networks, and
demonstrate advantages and limitations of the proposed
approaches.
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1 | INTRODUCTION

Over the past several years, research in computational materials science has generated enormous amounts of data.
Extracting meaningful and non-trivial insights from this data, which would reveal materials processing-structure-
property-performance (PSPP) relations, is one of themain challenges in the emerging field of materials informatics, also
referred to as data-driven materials science [1, 2, 3, 4, 5, 6]. In this domain it is not only important to find a material
with specific properties desired in a certain application, but also to reveal relationships and “connections” between
electronic structure features and to potentially identify multiple materials that have the same or similar properties of
interest or are otherwise “related” according to some criteria.

The objective of this study is to contribute to research in material informatics methods by developing an approach
which takes advantage of network-basedmodeling, analysis, and visualization techniques. Similarly to social networks,
gene interaction networks and other well-known real-world complex networks, the dataset of materials can be treated
as a network structure, where each individual material is represented by a node in a network, and a pair of nodes is
connected by a link if twomaterials exhibit a certain level of similarity according to a specified quantitativemeasure.
For example, suchmeasures can be based on the comparison of density of states (DOS) functions, although different
practical questions of interest may require the use of different similarity measures. In this approach, conceptual
similarities betweenmaterials networks and social networks are clear, individual nodes are connected if they share a
certain property or characteristic (i.e., materials are connected according to shared physical properties, and people are
connected according to their acquaintances, collaborations, common interests, etc.).

Once amaterials similarity metric is established, different approaches can be used to construct a network repre-
sentation of the considered set. In an edge-weighted representation, the space of materials is treated as a complete
graph (that is, all possible edges are present), and the weights of edges are given by the corresponding values of the
considered similarity metrics. Alternatively, in an unweightedmodel, a threshold θ is selected, and only the edges of
weight at least θ are assumed to be significant. Thus, in this case only pairs of materials that are considered “sufficiently
similar” are linked by edges (unweighted) in the networkmodel. This procedure is sometimes called network “slicing”
[7]. Clearly, the weightedmodel carries more information about thematerials than an unweighted one. However, there
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are certain advantages of the threshold-based approachwhichmakes it popular in network-based datamining. The
main benefit is that keeping only edges indicating high level of similarity between nodes allows to apply algorithms from
network analysis (specifically designed for unweighted networks) to explore its structural properties and uncover some
hidden patterns and organizing principles. Another benefit is the in reduced storage requirements (which is significant
given the size of the data base), which can be adjusted by selecting appropriate weight threshold values. In this paper,
we focus on the threshold-based approach. Clearly, different properties of interest can determinewhether a pair of
nodes is connected; therefore, multiple alternative network descriptions, with different connectivity patterns, can be
generated for the same set of nodes (materials).

To the best of our knowledge, the first published attempt to construct a materials network using some level of
similarity between materials (fingerprints) has been presented in [8]. Specifically, the authors have introduced the
notion of “material cartography” to represent AFLOW library of materials [9] as a network. They transformed the data
describing band structures and density of states for eachmaterial in AFLOW into B-fingerprints and D-fingerprints, and
used Tanimoto score [10] to quantify pairwise similarities amongmaterials based on the similarity scores between the
obtained fingerprints. The proposed framework was tested onmore than 20,000 Inorganic Crystal Structure Database
(ICSD) materials in AFLOW library and its advantages have been demonstrated for (1) searching the duplicates in
AFLOW library by identifyingmaterials with identical fingerprints and (2) identifying new compounds with interesting
properties based on their similarity to known compounds (gallium arsenide, for example). However, the authors
considered only similarities above 0.7 cutoff and did not report any detailed statistics of similarity score distributions or
global characteristics of the correspondingmaterials network.

In this paperwe take a further step in exploring this promising direction of research by developing a new, systematic
network-based framework for mapping and structural analysis of thematerials universe. Many complex systems can
be analyzed via network representations, which provide a nontrivial yet intuitivemathematical tool to explore these
systems. To construct network representations of materials, we examine various similarity measures commonly used in
datamining applications that may capture complementary aspects of similarity between data elements. To quantify
pairwise similarity betweenmaterials, we apply the selected similarity measures to density of states (DOS) functions
of the respectivematerials (complete or partial DOS function data can be used). In particular, we compute similarity
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measures for all pairs of materials in the dataset of around 27,000 ICSDmaterials with their DOS functions computed
and stored in the AFLOWdata repository. We analyze the distributions of the obtained similarity metrics, discuss some
advantages and disadvantages of the consideredmeasures, and develop new, enhancedmetrics, based onweighted
Pearson correlation coefficient with some extra adjustments. Furthermore, we show that the constructed networks
exhibit pronounced “small-world” properties, which are strikingly similar tomany other real-world networks.

As it was mentioned in [8], the similarity concept can be used as an effective tool for searching materials with
similar properties in large databases. However, in addition to exploring pairwise similarities of materials, onemay be
interested in identifying large groups of materials sharing similarity according to some property. If the objective is to
have a high similarity score for any pair of materials within the group, this group would correspond to a clique in the
network constructed based on the considered similarity criterion. A clique is defined as a subset of nodes that are all
adjacent to each other [11]. The clique concept is used in numerous application areas due to its elegance and inherent
ability to logically represent cohesive subgroups of “tightly knit” elements (i.e., nodes) in complex systems modeled
as graphs [12]. For example, in social networks, where the vertices correspond to “actors” and an edge indicates a
relationship between two actors [13], a clique represents a group of people any two of which have a certain kind of
relationship (friendship, acquaintance, etc.) with each other [14]. In fact, some of the earliest work on cliques and
methods of their detection wasmotivated by applications in sociometry [11, 15, 16]. Hence, in this paper we are also
interested in computing cliques in the constructedmaterials networks. In particular, wewill findmaximum cliques in
materials networks based on various similarity cutoffs, which provide a “global” cohesiveness characterization for the
whole network. In addition, we will compute the largest cliques containing certain materials selected for our “local”
analysis. Finally, we demonstrate a prototype network-based navigation tool we developed for the AFLOW library.

The remainder of this paper is organized as follows. Sec. 2 describes the proposedmethodology for constructing
materials networks according to DOS-based similarity metrics. Sec. 3 presents the obtained results, including the
similarity score distributions, global and local characteristics of the constructedmaterials networks, aswell as prototype
network-based navigation tool for AFLOW library. Sec. 4 concludes the paper with a discussion of future research
directions.
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2 | METHODOLOGY

2.1 | Dataset and Preprocessing

The experiments are performed on the dataset containing DOS values of 27,007 ICSDmaterials obtained fromAFLOW
library available at AFLOW.org [9]. AFLOW is one of the largest electronic structure data repositories (>1,100,000
entries) in the world, designed specifically withmaterials informatics in mind.

Each material in our dataset is represented by its DOS function consisting of a list of 668 values. The first half
(334 values) corresponds to the DOS function values calculated at evenly distributed points (0.015eV apart) over the
energy from -5.0 eV toEv , whereEv is the top of the valence band of the Fermi energy. The remaining half (334 values)
corresponds to the DOS function values above the energy forEc (the bottom of the conduction band) or the Fermi
energy over to 5 eV range. DOS functions of both spin polarized and non spin polarized calculations are considered. In
the case of spin polarized calculations spin up and spin downDOS are added together.

The DOS function values over energy regions below and above Fermi energy are referred to as negative and
positive energy regions, respectively. This representation was chosen (1) to deal with functional properties influenced
by features of the valence band or of the conduction band separately, and (2) to avoid uncertainties associated with the
calculated energy gap (Ec − Ev) that is recorded but not used in the metric. In the following we compute similarity
scores between their DOS functions over negative and positive energy regions. The values of DOS functions are scaled
in such a way that their sums over negative and positive energy regions are equal to 100. This choice biases toward the
presence of feature in theDOS over themagnitude of such features, but allows to distill some of themain characteristics
of the band structure of a material into a single descriptor and build meaningful relations, to learn regarding a variety of
physical properties, such as transport, optical response, etc.

As an example, the material Si (ICSD 150530) has the band structure and the DOS function illustrated on Fig. 1
(obtained fromAFLOW library 1). The corresponding vectors of scaled DOS values over positive and negative energy
regions considered in this paper for similarity computations are depicted on Fig. 2. pdf Note that this material has a
theoretical band gap 0.675 eV. Hence, the i-th component value of DOS vector over negative energy region corresponds
1http://aflowlib.org/material.php?id=150530
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F IGURE 1 Band structure andDOS of Si (ICSD 150530) obtained fromAFLOW library.
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F IGURE 2 Vectors of DOS values over (a) negative [-5,0] and (b) positive [0,5] energy regions.

to the DOS function value at−0.015× (334− i) eV and the i-th component of DOS vector over positive energy region
corresponds to the DOS function value at 0.675 + 0.015× (i− 1) eV.
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In total, for a given similarity metric, the corresponding similarity score has been calculated for 364,657,521 pairs
of materials. Moreover, our dataset contains information about the band gap for eachmaterial (since the band gap is not
used in the similarity score computation), whichwe use to separatematerials into three classes (metals, semiconductors,
insulators).

2.2 | SimilarityMeasures

In this section, we first review themost common (symmetric) similarity measures used in various data-mining applica-
tions (primarily for comparing probability distributions as DOS is essentially a distribution function) to quantify the
proximity/similarity among data points represented by vectors. We discuss their advantages and disadvantages in terms
of capturing certain aspects of physical similarity amongmaterials encoded in their DOS functions. Intuitively, themore
similar the DOS values of twomaterials, themore similar properties the respective materials should have. However, as
it will be discussed later, the shape of DOS function and its behavior in a certain energy region (around Fermi level) plays
a key role in determining physical properties of the correspondingmaterial. Therefore, for the network construction
and analysis, we develop a similarity measure which takes this consideration into account and is able to better reflect
the similarity amongmaterials properties.

For a pair ofmaterials, let vectorsx = (x1, . . . , xn) andy = (y1, . . . , yn)be theirDOS function values, respectively,
over the positive or negative energy region (n = 334 in our experiments). We consider six similarity metrics: two
intersection-based (Jaccard similarity and average ratio), two distance-based (Euclidean distance and Manhattan
distance), and two inner product-based (cosine similarity and Pearson correlation coefficient). These similarity metrics
are chosen due to their frequent use in data-mining applications (see, e.g., [17] for a survey of various similarity metrics
among probability distributions and their practical usage). A brief description of each of the consideredmeasures is
given next. Note that four of the considered similarity measures (Jaccard, average ratio, cosine, and Pearson correlation
coefficient) are “score”-based, that is, the larger the computed value of the respective similarity measure between a
pair materials, themore similar thesematerials are. On the contrary, the remaining two similarity measures (Euclidean
andManhattan distances) are “distance”-based, with smaller values of the similarity measure implying that materials
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are “close” to each other in thematerials space or have high levels of similarity. To distinguish between these types of
similarity measures, score-basedmeasures are denoted byS, whereas distance-basedmeasures are denoted byD.

Jaccard similarity

This is essentially a measure of relative overlap of areas under the DOS functions of materials represented by vectors x
and y. The Jaccard similarity scoreSJ (x, y) is given by

SJ (x, y) =

n∑
i=1

min(xi, yi)

n∑
i=1

max(xi, yi)

. (1)

In [17] it is also referred to as Ruzicka similarity, or oneminus Tanimoto (a.k.a Jaccard) or Soergel distance. It has been
used in [8] to construct andmap networks of materials based on similarity among their fingerprints.

Average ratio

This measure provides the average ratio between minimum andmaximum values of DOS functions at n considered
energy levels:

Sa(x, y) =
1

n

n∑
i=1

min(xi, yi)

max(xi, yi)
. (2)

It corresponds to oneminusWaveHedges distance, mentioned in [17].
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Euclidean distance (L2)

This measure treats x and y as points inn-dimensional spaceRn and computes a (scaled)L2 distance between these
two points:

DE(x, y) =

√√√√ 1

n

n∑
i=1

(xi − yi)2. (3)

We scale it because one can use DOS functions represented by various number of points andwewould like to ensure
that this measure is not sensitive to the density of the selected grid (points per unit of energy).

Manhattan distance (L1)

This metric also treats x and y as points inn-dimensional spaceRn and computes a (scaled)L1 distance between these
two points, which is less sensitive to outliers (points with larger difference in DOS function values):

DM (x, y) =
1

n

n∑
i=1

|xi − yi|. (4)

Cosine similarity

This measure considers x and y as vectors inn-dimensional spaceRn and computes a cosine value of an angle between
these two vectors:

Sc(x, y) =

n∑
i=1

xiyi√
n∑

i=1
x2i

√
n∑

i=1
y2i

. (5)

Page 10 of 30

AIChE Journal

AIChE Journal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

10 ALEXANDER VEREMYEV ET AL.

Cosine similarity is a popular vector based similarity measure in text analytics and information retrieval applications
(see e.g., [18]).

Pearson correlation coefficient
This measure quantifies the linear correlation between two vectors x and y:

Sp(x, y) =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1
(xi − x̄)2

√
n∑

i=1
(yi − ȳ)2

. (6)

Pearson correlation coefficient is essentially a cosine value of an angle between centered versions of these two vectors
x and y, i.e., vectors with subtractedmean values. Pearson correlation coefficient along with cosine similarity aremost
widely used and popular similarity measures.

The results of preliminary experiments we conducted have shown that none of the six standard similarity measures
described above yielded satisfactory results from a physical perspective. More specifically, we observed that for
some pairs of materials that significantly differed in terms of physical properties of interest, their similarity score was
unexpectedly high. Only Pearson correlation coefficient seemed to have promising results andwas better in capturing
the similarity amongDOS tipping points and surrounding areaswhich are important in determiningmaterials properties.

Themain reason these similarity measures amongDOS function valuesmight not be able to adequately capture the
similarity of materials properties is that thematerials properties are primarily encoded not only in the DOS function
values over all possible energy values, but also in the shape and the behavior of respective DOS function values around
zero (Fermi) energy values (or right after the band gap region). Specifically, the density of states values and the rate at
which these values change are a direct consequence of the details of the band structure of thematerial, and thus the
important factors determiningmaterials properties, such as electronic transport and optical response. Moreover, for all
practical applications, the farther the considered energy level from Fermi energy, the less important are the density of
states values in defining thematerials properties.
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F IGURE 3 Vectors of DOS values of Si (ICSD 150530) and Sb2Sr1 (ICSD 52307) over (a) 334 points and (b) 10
points near zero in negative energy region.

For example, according to Jaccard similarity measure over negative energy region, one of themost similar materials
to Si (ICSD 150530) is Sb2Sr1 (ICSD 52307) with similarity score 0.85, which essentially means that the DOS functions
have roughly 85% overlap (Fig. 3a). However, one can see that DOS close to zero energy have different behavior (Fig.
3b). Not surprisingly, thematerial Sb2Sr1 (ICSD 52307) is substantially different from Si (ICSD 150530); it appears to
be ametal and has amore complex band structure.

Taking these considerations into account, we develop a similarity measure which is based on Pearson correlation
coefficient and introduce some adjustments tomake it more suitable for capturingmaterials similarity.

Weighted Pearson correlation coefficient

Since density of states values become less important (for determiningmaterials properties) as they get farther away
from the Fermi energy, we introduceweight functions that put higher weights on the values close to the Fermi energy.
Based on our preliminary numerical experiments, the following weight functions, depicted on Fig. 4 appear to be
reasonable to address this concern. Specifically, the considered energy region is divided into five approximately equal
point sets, and theweightwi is set to 1 for the points near zero energy (for negative energy region) or right after the
band gap (for positive energy region), and then it drops by 0.2 each time we move farther from that set. Then the
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F IGURE 4 Weight functions over positive and negative energy regions for Pearson coefficient computations.

weighted Pearson correlation coefficient for vectors x and y is expressed by the following formula:

Swp(x, y) =

n∑
i=1

wi(xi − x̄w)(yi − ȳw)√
n∑

i=1
wi(xi − x̄w)2

√
n∑

i=1
wi(yi − ȳw)2

, (7)

where x̄w =

n∑
i=1

wixi

n∑
i=1

wi

and ȳw =

n∑
i=1

wiyi

n∑
i=1

wi

.

Furthermore, to capture the similarity of DOS behavior near zero energy (or right after the band gap region), we
introduce two adjustments. Specifically, they are based on the last (for negative energy region) or the first (for positive
energy region) k components of the DOS vector where k is a small integer.

Adjustment 1
The first onemeasures the similarity between the averages of DOS function values over these k components. It is equal
to the ratio of the lowest average to the highest one among these two. It is similar in spirit to two ratio-based similarity
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measures mentioned above, i.e., Jaccard similarity or average ratio. The explicit equations for this adjustment over
negative and positive energy region are given next.

For the negative energy region we have the following formula:

Aneg(x, y, k) =

min

(
n∑

i=n−k+1
xi,

n∑
i=n−k+1

yi

)

max

(
n∑

i=n−k+1
xi,

n∑
i=n−k+1

yi

) . (8)

For the positive energy region we obtain:

Apos(x, y, k) =

min

(
k∑

i=1
xi,

k∑
i=1

yi

)

max

(
k∑

i=1
xi,

k∑
i=1

yi

) . (9)

Adjustment 2

The second adjustmentmeasures the similarity between the changes of respective DOS functions. Specifically, for a
pair of DOS functions represented by vectors x and y, it is based on differences among angles of DOS value changes
from point 1 to point k. It is computed using the following equations.

For the negative energy region we have:

αneg = arctan

(
xn−k+1 − xn

(k − 1)e0

)
, (10)

βneg = arctan

(
yn−k+1 − yn

(k − 1)e0

)
, (11)

Bneg(x, y, k) = 1−
|αneg − βneg |

π/2
, (12)
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where e0 = 5/(n− 1) is the energy range between two consecutive data points (i.e., 0.015eV in our experiments).

Similarly, for the positive energy region, we have:

αpos = arctan

(
xk − x1

(k − 1)e0

)
, (13)

βpos = arctan

(
yk − y1

(k − 1)e0

)
, (14)

Bpos(x, y, k) = 1−
|αpos − βpos|

π/2
. (15)

Weighted Pearson correlation coefficient with (0.5,0.5) adjustments
Our final proposed similarity measure is comprised of weighted Pearson correlation coefficient multiplied by the
weighted sum of the two adjustments. Our findings indicate that equally weighted adjustments provide satisfactory
results:

Sadj
wp (x, y) = Swp(x, y)× (0.5A+ 0.5B), (16)

where A = Aneg(x, y, k) and B = Bneg(x, y, k) for the negative energy region, and A = Apos(x, y, k) and B =

Bpos(x, y, k) for a positive energy region. Based on our preliminary computational experiments, we set k = 3 for
Adjustment 1 and k = 5 for Adjustment 2. Note that if x = y, thenSadj

wp (x, y) = 1, hence close to 1 similarity scores
should indicate high level of similarity. We use this measure for the construction and analysis of materials network in
the experiments reported in this paper.

To illustrate that this measure provides reasonable results, consider themost similar material to Si (ICSD 150530)
according to this measure, which is C1Sn1 (ICSD 182365) with 0.89 similarity scoreSadj

wp over negative energy region
(Table 3, discussed inmore detail below). It is based on0.982weightedPearson correlation coefficient, 0.874 adjustment
1 and 0.944 adjustment 2 scores. One can clearly see that not only overall behaviors of DOS functions are similar (Fig.
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5a), but also DOS close to zero energy have similar behaviors as well (Fig. 5b). These two materials can indeed be
considered as similar since they belong to same group in the periodic table and have the same crystal structure.
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F IGURE 5 Vectors of DOS values of Si (ICSD 150530) and C1Sn1 (ICSD 52307) over (a) 334 points and (b) 10
points near zero in negative energy region.

We also note that thematerial Sb2Sr1 (ICSD 52307) wementioned before (to illustrate the drawbacks of using
Jaccard similarity score), has only 0.28 similarity score according to Sadj

wp , which is primarily due to the difference in the
DOS behavior near zero energy (adjustment 1 is equal to 0.331 and adjustment 2 is equal to 0.271).

2.3 | Constructing Networks ofMaterials

Similarly to social, biological, technological and other well-known real-world complex networks, the dataset of materials
can be treated as a network, where each individual material is represented by a node, and a pair of nodes is connected
by an edge (link) if the respective twomaterials exhibit a certain level of similarity according to a specified quantitative
measure. Using a similaritymeasure, such as thosementioned above, one can construct amaterials networkG = (V,E),
where V denotes the set of nodes andE ⊆ (V

2

) is the set of edges, as follows. For each pair of materials x and y in V ,
given a similaritymeasureS(x, y) (orD(x, y)) and a threshold valueC , we create a link{x, y} ∈ E betweennodesx and
y ifS(x, y) ≥ C (orD(x, y) ≤ C). Clearly, each distinct choice of a similarity measure and the corresponding threshold
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value would produce a distinct instance of a network of materials. In the next section, we analyze the constructed
network instances and present the obtained results.

3 | RESULTS

In this section, we present the results of experiments concerning network representations of the AFLOW library data
using the introducedweighted Pearson correlation similarity measure (7) with adjustment (16).

3.1 | Similarity Score Distributions

(a) (b)

F IGURE 6 Heatmaps of similarity scores computed over positive and negative energy regions based on (a)
weighted Pearson correlation coefficientSwp and (b) weighted Pearson correlation coefficient with adjustmentSadj

wp

First, we provide the plots illustrating similarity score distributions computed for all pairs of materials. Specifically,
since for each pair of materials the corresponding similarity scores over negative and positive energy regions are
computed separately, Fig. 6 shows the heat maps of similarity scores (weighted Pearson correlation coefficient without
and with adjustment) between DOS functions over negative (horizontal axis) and positive (vertical axis) energy regions,
as well as correlation coefficients for all pairs of materials in our dataset. Our findings indicate that there is no clear
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correlation between similarity scores over positive and negative energy regions, whichmeans that the similarity score
of twomaterials over one region does not correlate with the similarity score over the other region. It also supports our
motivation for considering similarity over positive and negative energy regions separately as the behavior of DOS over
these two regions reflects different materials properties. However, as one can observe on the top right corner of Fig. 6b,
if the similarity score over negative energy region is close to 1, it is more likely that the similarity score over positive
energy region is also close to 1, i.e., if twomaterials DOS are very similar in one energy region, it is more likely that their
DOS are very similar over the other energy region as well.

Figures 7 and 8 illustrate the distributions of similarity scores (weighted Pearson correlation coefficient without
andwith adjustment) over positive and negative energy regions. In addition, we plot the distribution of minimum among
the scores over negative and positive energy regions. One can observe a slight variation within the distribution in
the sense that the number of pairs of materials with high similarity scores (e.g.,> 0.5) over positive energy region is
greater than that over negative energy region. The peak is observed near the zero similarity score, whichmeans that
themajority of pairs of materials do not have similar DOS functions. From the networks perspective, our cutoff region
of interest is where the number of pairs of materials is not very large (somewhere around 106, which corresponds
to cutoff above 0.6), such that the constructed networks are not very dense, meaningful, and reflect some structural
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F IGURE 7 Number of materials with given similarity scores: (a) weighted Pearson correlation coefficient Swp and
(b) weighted Pearson correlation coefficient with adjustmentSadj

wp . The number of materials is taken over 0.01 region.
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F IGURE 8 Cumulative distribution of similarity scores: (a) weighted Pearson correlation coefficientSwp and (b)
weighted Pearson correlation coefficient with adjustmentSadj

wp .

aspects of the correspondingmaterials space. Note that the authors of [8] use 0.7 cutoff for network construction and
visualization, although they do not provide any details on the choice of such threshold, and the similarity score they are
using is somewhat different.

3.2 | “Global” Characteristics of Networks ofMaterials

In this set of experiments we construct materials networks using various threshold levels and investigate their basic
structural properties. Fig. 9 illustrates the distributions of the degrees in materials networks in their largest connected
components for four threshold levels (0.8, 0.75, 0.7, 0.65) constructed using the adjusted weighted Pearson correlation
coefficient (16) as the similaritymetric. Specifically, eachmarker on aplot represents the number ofmaterials (horizontal
axis) with a certain degree (vertical axis) in log-log scale. Wewould like to emphasize that similarly tomany real-life
networks, the degree distribution of materials networks (for any threshold) resembles a straight line, which indicates
that the degree distributions are somewhat similar to those described by a power law. Note that the degree distribution
for the largest connected component has low-degree saturation, meaning that low-degree nodes are less frequent than
what is predicted by the power law. There is also a high-degree cutoff, indicating that there are fewer high-degree nodes
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F IGURE 9 Distributions of the degrees in the largest connected components of materials networks constructed
using adjusted weighted Pearson coefficientSadj

wp over (a) Negative energy region and (b) Positive energy region

than what is expected in a pure power law. These observations are common deviations from power law behavior in real
networks [19].

Tables 1 and 2 report the basic statistics of the materials networks constructed over the negative and positive

TABLE 1 Basic characteristics of thematerials networks constructed based on the weighted Pearson coefficient
with adjustments over the negative energy region.
Threshold |E| |V1| %|Vm

1 | %|V s
1 | %|V ins

1 | |V2| #isol #comp Deg Diam AvgDist C1 C2 DegCorr MaxCl

0.9 1578 16 100 0 0 15 25219 662 3.875 5 2.275 0.622 0.411 0.254 6
0.85 3690 71 98.6 0 1.4 48 23523 1103 4.648 15 5.49 0.639 0.396 0.646 10
0.84 4394 131 99.2 0.8 0 120 23116 1149 3.389 26 10.146 0.47 0.356 0.181 7
0.83 5279 306 98.4 1.6 0 299 22620 1192 4.275 24 8.218 0.506 0.413 0.324 11
0.82 6467 610 98.7 1.1 0.2 480 22071 1197 4.659 27 9.811 0.462 0.38 0.367 11
0.81 7931 1130 92.4 6.4 1.2 561 21507 1221 5.166 39 12.546 0.484 0.414 0.379 13
0.8 9871 1692 91.9 6.1 2 713 20928 1214 5.457 41 11.97 0.436 0.389 0.373 13
0.79 12357 3061 90 5 5 90 20284 1180 5.823 56 17.473 0.427 0.401 0.409 15
0.78 15363 3755 88.3 6.7 5 164 19661 1120 6.351 63 16.175 0.411 0.394 0.423 15
0.77 19248 4783 83.2 8.4 8.4 64 18973 1095 6.799 55 14.79 0.396 0.392 0.458 16
0.76 24268 5593 81 9.7 9.3 78 18278 1053 7.638 53 12.961 0.383 0.392 0.466 18
0.75 30381 6467 79.6 10.5 9.9 32 17592 1017 8.584 47 12.147 0.376 0.401 0.475 19
0.74 37921 7306 77.6 11 11.3 36 16871 992 9.694 42 11.415 0.37 0.401 0.476 21
0.73 47268 8193 76.7 11.3 12.1 32 16144 960 10.962 44 10.972 0.366 0.402 0.483 23
0.72 58467 9016 75.2 11.7 13.1 33 15409 920 12.464 39 10.201 0.365 0.401 0.485 26
0.71 72144 9959 73.9 12.2 13.9 29 14674 872 14.074 43 9.721 0.363 0.4 0.482 28
0.7 88495 10797 72.7 12.5 14.7 16 13948 836 16.04 34 9.105 0.363 0.411 0.479 31
0.69 107778 11661 71.8 12.7 15.5 14 13245 789 18.185 36 8.673 0.363 0.413 0.48 33
0.68 130960 12485 70.7 13 16.3 13 12541 749 20.719 34 8.194 0.364 0.421 0.479 39
0.67 158403 13245 69.7 13.2 17.1 20 11890 702 23.688 31 7.807 0.364 0.426 0.476 44
0.66 190692 14084 68.8 13.4 17.7 20 11247 635 26.885 30 7.542 0.366 0.427 0.473 49
0.65 228035 14853 67.9 13.7 18.3 20 10603 602 30.539 29 7.267 0.367 0.432 0.469 52
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TABLE 2 Basic characteristics of thematerials networks constructed based on the weighted Pearson coefficient
with adjustments over the positive energy region.
Threshold |E| |V1| %|Vm

1 | %|V s
1 | %|V ins

1 | |V2| #isol #comp Deg Diam AvgDist C1 C2 DegCorr MaxCl

0.9 1871 46 0 19.6 80.4 45 25026 644 2.565 10 4.196 0.195 0.203 -0.235 3
0.85 6810 704 1.1 29.4 69.5 458 22564 1034 6.33 29 8.462 0.357 0.363 0.223 9
0.84 8994 1337 2.8 32 65.2 600 21893 1079 6.402 40 11.465 0.377 0.342 0.315 11
0.83 11880 1614 3 33.3 63.6 754 21218 1119 7.502 36 10.497 0.385 0.372 0.344 12
0.82 15469 1869 3.4 34.1 62.5 1097 20542 1129 8.748 33 9.666 0.393 0.383 0.364 13
0.81 20070 2117 3.4 34.8 61.8 1418 19859 1143 10.334 31 9.079 0.401 0.404 0.375 14
0.8 25642 4045 43.6 21.3 35.1 216 19137 1163 10.536 60 17.436 0.401 0.411 0.417 18
0.79 32688 4833 47.3 19.8 32.8 270 18456 1139 11.935 61 15.984 0.404 0.419 0.423 21
0.78 41381 5684 51.2 18.2 30.7 300 17670 1141 13.213 73 16.858 0.406 0.42 0.43 23
0.77 52014 6415 53 17.6 29.4 518 16875 1119 14.954 54 14.814 0.407 0.426 0.43 26
0.76 64261 7762 53.1 17.2 29.7 34 16074 1112 15.861 56 16.139 0.408 0.421 0.445 30
0.75 79503 8766 54 17 29 20 15257 1066 17.559 58 15.154 0.409 0.416 0.443 32
0.74 97698 9715 54.5 16.7 28.8 32 14523 994 19.629 53 14.136 0.411 0.423 0.441 35
0.73 118658 10659 55.4 16.5 28.1 25 13676 965 21.849 48 13.169 0.414 0.424 0.442 42
0.72 143579 11652 55.6 16.4 28 16 12971 891 24.323 54 12.628 0.416 0.43 0.44 46
0.71 172937 12517 56.1 16.6 27.4 12 12245 837 27.349 43 11.773 0.418 0.43 0.439 53
0.7 206139 13333 56.2 16.4 27.4 19 11519 793 30.664 38 10.995 0.42 0.432 0.44 58
0.69 244849 14198 56.3 16.3 27.4 12 10812 735 34.264 34 10.359 0.423 0.431 0.438 61
0.68 289260 14976 56.1 16.2 27.7 12 10130 696 38.423 32 9.814 0.425 0.436 0.436 67
0.67 339650 15777 55.9 16.2 27.9 12 9516 636 42.879 30 9.281 0.427 0.442 0.433 75
0.66 397184 16516 55.8 16.2 28 12 8802 627 47.93 28 8.727 0.43 0.445 0.432 83
0.65 462140 17263 55.9 16 28 12 8204 568 53.396 28 8.342 0.433 0.446 0.431 88

energy regions, respectively. Each of the networks has |V |=27,007 nodes. Out of 27,007 corresponding materials,
14,262 (53%) are metals, 4,156 (15%) are semiconductors, and 8,588 (32%) are insulators. We treat a material as a
metal if it has 0 band gap, as a semiconductor if it has a positive band gap less than 1.5 eV, and as an insulator, if its
band gap is above 1.5 eV. The notations used to describe the columns in these tables are as follows: |E| – the number of
edges; |V1| – the number of nodes in the largest connected component;%|Vm

1 |,%|V s
1 |,%|V ins

1 |) – the percentages
of ’metals’, ’semiconductors’ and ’insulators’ in the largest connected component, respectively; |V2| – the number of
nodes in the second largest connected component;#isol – the number of isolated nodes; and#comp – the number
of connected components (disregarding the isolated nodes). The remaining columns contain characteristics of the
largest connected component:Deg – the average degree;Diam – the diameter;AvgDist – the average distance;C1 –
the global clustering coefficient;C2 – the average local clustering coefficient;DegCorr – the degree correlation; and
MaxClique – the size of themaximum clique.

Based on these tables, it is interesting to observe that materials networks appear to be small world networks [20],
whichmeans that they have high clustering coefficients, small diameters and small average distances. Moreover, average
distance, clustering coefficients and degree correlation of thematerials network constructedwith, e.g., 0.7 cutoff, are
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surprisingly similar to the corresponding parameters of collaboration network among physicists (two physicists are
connected by an edge if they co-authored at least one paper) presented in Table II in [21]. Namely, thematerials network
has average distance 6, clustering coefficients 0.37 and 0.51, and degree correlation 0.27, whereas the same parameters
for the physicists’ collaboration network are equal 6.19, 0.45, 0.56 and 0.363, respectively. Note that other networks
studied in the aforementioned paper have somewhat different values of such parameters.

Another interesting observation is that the second largest connected component is usually very small in compar-
ison to the largest one. It means that as the threshold level decreases from 0.8 to 0.65, only one giant component
emerges (containingmostly metals), and the rest of the network is mostly comprised of isolated nodes and very few
connected components of small sizes. However, as the largest connected component grows, it contains more andmore
semiconductors and insulators. For example, for a threshold level 0.65, out of 27,007materials there is one connected
component with 14,673 nodes (70.9%metals, 14.4% semiconductors and 14.6% insulators), 10,214 isolated nodes, and
827 connected component of small sizes, with the total of 2,120 nodes (average size< 3).

This observation about uneven distribution of metals, semiconductors and insulators in the connected components
indicates that different types of materials (metals, semiconductors or insulators) should be treated differently when
choosing a similarity threshold for any particular application. The results presented in the next section will further
support this conclusion.

Note that in Tables 1 and 2we also report the results on cardinality of maximum cliques in the largest connected
components of the correspondingmaterials network. For example, the largest clique of size 10 for the 0.85 cutoff (Table
1) contains the following set of materials: Na1 (ICSD 426957), Li1 (ICSD 642102), Ca10·6758 (ICSD 163535), S1Tl1
(ICSD 52201), Li1 (ICSD 642105), Ba1Li4 (ICSD 615944), Ho1 (ICSD 639322), O1Ta1 (ICSD 647483), Ca10·7184
(ICSD 163531), and Na1 (ICSD 53753). All materials in this set aremetals with occupied states bands that are largely
parabolic.
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F IGURE 10 Largest connected component of materials network that includes Si (ICSD 150530) containing 82
materials and 116 edges obtained for 0.82 cutoff of weighted Pearson coefficient with adjustment computed over
negative energy region. The nodes are colored according to the band gap: red - metals (0 eV), green - semiconductors
(0-1.5 eV), blue - insulators (>1.5 eV).

3.3 | “Local” Characteristics of Networks ofMaterials

While global structural properties of a materials network may reveal some basic collective characteristics of the
materials universe emerging from the information about pairwise similarities of thematerials, in practice one is often
interested in a “local neighborhood” of a particular material, that is, a group ofmaterials that are similar to the given
material. In this section we present sample results on local analysis for the constructedmaterials networks. Specifically,
to illustrate the approach, we analyze the local neighborhoods of the following 4 prototypical materials: Si (ICSD
150530), themost common semiconductor; Al (ICSD 43492), a typical metal; Ba1O3Ti1 (ICSD 183932), a wide band-
gap insulator of technological interest; and Co1Sb3 (ICSD 164980), a well known thermoelectric of a particularly
complex band structure. Fig. 10 illustrates the largest connected component of thematerials network that includes
Si (ICSD 150530) constructed for the adjustedweighted Pearson coefficient similarity score betweenDOS function
values over all energy regions combined, with 0.82 cutoff.
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TABLE 3 Top 20 similar materials according to our similarity score to Si (ICSD 150530) and Al (ICSD 43492) over
negative and positive energy regions.

Si (ICSD 150530) Al (ICSD 43492)
Negative Positive Negative Positive

Rank Material ICSD Score Material ICSD Score Material ICSD Score Material ICSD Score
1 C1Sn1 182365 0.893 Ag1Mg1Sb1 187151 0.861 Dy1Zn5 630386 0.728 Ga1 12174 0.919
2 Cr5Cs1S8 2566 0.842 Cu3N1 53313 0.777 C1Ta1 185986 0.705 P1 98121 0.839
3 Ge1Li2Zn1 171498 0.825 Ag1Bi1Ca1 659377 0.742 Ga1 12174 0.691 Hg1Mg1 639081 0.838
4 Cr2Se4Zn1 626758 0.825 Sb4Sn3Sr1 165617 0.73 Y1Zn5 106228 0.69 Si1 109025 0.814
5 Cr3S5Tl1 23632 0.825 As2Ba2Mn1O2Zn2 85659 0.709 Cd1Ge1P2 52804 0.673 Si1 41392 0.811
6 Cr5Se8Tl1 37123 0.812 As2Nb1 18143 0.695 La1Zn5 104736 0.671 Ni1Si2Tb1 54298 0.81
7 Cr5Rb1S8 2567 0.802 As4Ba3Zn2 424760 0.689 Ag2Ba1Sn2 25332 0.668 Sb1 52227 0.801
8 C1Ge1 182363 0.802 Na1Sb1Zn1 645023 0.681 N2Os1 185513 0.666 P1 169539 0.8
9 Si1Sn1 184676 0.786 B1Sb1 184571 0.679 Cd3In1 109285 0.657 In1Mg1 51972 0.799
10 P2Ta1 648187 0.782 Ba1Bi2Zn1 58638 0.679 In1Sb1 659843 0.647 In1 53091 0.798
11 Ge1P1 637492 0.773 Ag1Pb1S3Sb1 24257 0.677 La3Zn22 642095 0.645 In1 57392 0.797
12 Na1O5P1V1 33944 0.766 Ge1Na2Zn1 240728 0.675 Hf1 426944 0.644 Co1Er1Si2 622852 0.796
13 Cd2O7Os2 155761 0.757 Pb1Se2 174577 0.665 Lu1Pb2 104811 0.641 Cu2Eu1Si2 627287 0.796
14 Bi1Te1 617181 0.752 As4Ba3Cd2 424761 0.653 Ag1Er1 58234 0.631 Co1Si2Y1 625129 0.796
15 Ga1Sb1 635312 0.75 As1Br3Ca3 426 0.647 H2Nb1 164606 0.629 Ca5P6Pd6 79096 0.786
16 Ba1Dy2Ni1O5 85046 0.75 Br5C2Ce4 418408 0.644 Al2Ca1Zn2 57550 0.628 Ho1Ni1Si2 639505 0.785
17 As2Mn2O7 69003 0.75 Ca2Sb1 154 0.644 La1Mg3 657966 0.625 Ba1Ga1Ge1 615870 0.784
18 Cr2Hg1Se4 626182 0.747 Al4Na4P12Sr8 409319 0.637 Gd1Zn5 104150 0.624 Eu1Ge1Zn1 246865 0.78
19 B2Be1C2 418618 0.747 Al2Ge2Sr1 608014 0.632 Sn1 52487 0.617 Mg5Tl2 150631 0.777
20 Sn1Te1Zr1 80190 0.746 C7Lu4 83382 0.628 Fe1Sb1Zn1 90397 0.613 Dy1Ni1Si2 658585 0.775

TABLE 4 Top 20 similar materials according to our similarity score to Ba1O3Ti1 (ICSD 183932) and Co1Sb3 (ICSD
164980) over negative and positive energy regions.

Ba1O3Ti1 (ICSD 183932) Co1Sb3 (ICSD 164980)
Negative Positive Negative Positive

Rank Material ICSD Score Material ICSD Score Material ICSD Score Material ICSD Score
1 Ba1O3Ti1 100804 0.989 Ba1O3Ti1 100804 0.936 Fe4P12Th1 200827 0.538 B1H4Li1 95208 0.392
2 Ba1O3Ti1 186462 0.974 Ba1O3Ti1 73639 0.833 As3Co1 610045 0.458 P2Pd3S8 35361 0.376
3 Ba1O3Ti1 73639 0.886 O3Sr1Tc1 183451 0.766 As12Os4Th1 611145 0.443 Ba1Ga2P2 380479 0.357
4 Ba1Mg0.333O3Ta0.667 95495 0.667 B1F3 24783 0.752 Ga2Os1 103785 0.436 F1Lu1O3Se1 417449 0.349
5 Ba3Mg1O9Ta2 240279 0.655 Ba1O3Ti1 186462 0.742 As3Ir1 610737 0.425 Er6I10Ni1 424429 0.344
6 Hf1O3Sr1 89386 0.611 Br1Ce3S8Si2 88691 0.714 Ga2Ru1 635228 0.424 O6Se2Ti1 200203 0.339
7 Ba1Mg0.333Nb0.667O3 95406 0.583 Ag1Hg2O4P1 2208 0.713 Ni3Ta1 105390 0.405 O9Re2V1 92317 0.338
8 Ba3Mg1Nb2O9 240277 0.579 F1O3P1Sn1 2039 0.664 In2Ni3S2 640135 0.404 Pt3Rb2S4 26267 0.335
9 Hf1O3Sr1 161594 0.573 H4Hg2O9P2 413085 0.654 H1Ho1Se1 78957 0.403 Cl6Hg3Te2U1 419437 0.332
10 Bi1In1S3 290195 0.571 O7Sr3Ti2 20294 0.654 La1S2 641808 0.402 B1H4Na1 165835 0.326
11 Br1Cl1 424850 0.559 C1O2 188891 0.651 Ga3Ta1 103976 0.401 Ge4Se10Tl4 26415 0.324
12 Be4N4Sr2 413356 0.549 Bi1Cl2Cu1S1 413289 0.645 In2P2Sr1 260563 0.4 Al2Ru1 609234 0.318
13 Bi2Se3 171571 0.544 C1O2 188893 0.635 H1Se1Y1 72008 0.399 Ba1C1Cl1N1S1 94400 0.312
14 As2Te3 54097 0.526 Br2Ge1 100088 0.635 Nb1Ni3 105175 0.398 Ca2Fe1O6W1 81204 0.308
15 Bi1I1Te1 74501 0.522 Mo1O3 80577 0.634 Ho1Te2Tl1 639771 0.396 C2I1K1N2 40370 0.306
16 Na1O3Ta1 280101 0.518 C1F3H5O5S1 2007 0.629 Sb2Zr1 651784 0.391 F1O3Se1Y1 418898 0.303
17 Al1F3 202681 0.518 Cs3Ni1O2 424578 0.627 Te2Tl1Y1 653098 0.391 Mn1O5Se2 73936 0.303
18 I5In1Sn2 151996 0.515 Ag1Bi1Cl2S1 413290 0.626 Ni3V1 105443 0.391 P1Ru1S1 648023 0.302
19 Mg1Te1 642883 0.505 O3Sr1Ti1 65089 0.615 Hf1Ni3 2415 0.39 Mn1Mo1O4 15615 0.3
20 Ba3Ni1O9Ta2 240281 0.498 Hg2Mo1O4 90084 0.609 Co2Hf1Si2 623793 0.39 Cl2O6Pb1 40286 0.299

Tables 3 and 4 report top 20 similar materials, according to theweighted Pearson coefficient similarity score, for
each of the aforementioned four materials over negative and positive energy regions. A close inspection of the density
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of states of thesematerials leads to the following observations.

i. The behavior of the DOS of all thesematerials is indeed very similar to that of the prototype in both the negative
and positive energy region, mostly close to the top of the valence or bottom of conduction band (this is indeed
enforced by the choice of the weighted Pearsonmetric).

ii. The set contains entries that indeed belong to the same class ofmaterials of the prototype (CSn, CGe, etc.); however,
iii. A close look at the overall electronic properties of the materials set shows that the behavior of the DOS is not

sufficient to properly predict the behavior of a given system in an actual application.

As an example of Observation iii, although Si and Cr5Cs1S8 do show a high degree of similarity in the top of the valence
bands in terms of the shape of the DOS, they are very dissimilar materials otherwise. This indicates that a predictive
descriptor of materials properties based on electronic structure has to take into account the topological characteristics
of the band structure beyond the “mean field” picture of the density of states. Observation ii on the other hand, indicates
that if one restricts the search space to systems that have, for instance, the same geometry, then the classification
becomes extremely accurate and the systems share basically the same (or similar) physical properties. Table 5 illustrates
this point by providing the list of 10materials most similar (according to our similarity score) to Si (ICSD 150530) and Al
(ICSD 43492) over negative and positive energy regions with the same number of atoms per cell and geometry. Table 6
gives a similar list for Ba1O3Ti1 (ICSD 183932) and Co1Sb3 (ICSD 164980).

TABLE 5 Top 10 similar materials according to our similarity score to Si (ICSD 150530) and Al (ICSD 43492) over
negative and positive energy regions with the same number of atoms per cell and geometry (FCC for bothmaterials).

Si (ICSD 150530) Al (ICSD 43492)
Negative Positive Negative Positive

Rank Material ICSD Score Material ICSD Score Material ICSD Score Material ICSD Score
1 C1Sn1 182365 0.893 B1Sb1 184571 0.679 Ta1 41520 0.482 Tl1 104199 0.64
2 C1Ge1 182363 0.802 As1Sc1 44057 0.589 Nb1 41512 0.461 Ne1 65897 0.492
3 Si1Sn1 184676 0.786 B1P1 181291 0.543 Pa1 77862 0.445 C1 28859 0.471
4 Ga1Sb1 635312 0.75 Be1Te1 290008 0.535 Mg1 180453 0.426 Ar1 53814 0.458
5 As1Ga1 184923 0.73 As1B1 181292 0.532 Br1 168177 0.419 Kr1 43726 0.431
6 B1P1 181291 0.706 Sb1Y1 651741 0.532 V1 41504 0.414 U1 181306 0.416
7 Ga1P1 53963 0.679 Bi1Tb1 617162 0.527 Mo1 41513 0.409 Th1 76039 0.408
8 Be1Te1 290008 0.675 Bi1Dy1 58778 0.514 Ti1 168322 0.403 Xe1 426985 0.4
9 B1Sb1 184571 0.641 Bi1Ho1 43545 0.503 U1 181306 0.398 K1 44669 0.392
10 B1Bi1 184569 0.639 P1Sc1 180831 0.495 Th1 76039 0.363 Au1 426925 0.372
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TABLE 6 Top 10 similar materials according to our similarity score to Ba1O3Ti1 (ICSD 183932) and Co1Sb3 (ICSD
164980) over negative and positive energy regions with the same number of atoms per cell and geometry (TET for
Ba1O3Ti1 and BCC for Co1Sb3).

Ba1O3Ti1 (ICSD 183932) Co1Sb3 (ICSD 164980)
Negative Positive Negative Positive

Rank Material ICSD Score Material ICSD Score Material ICSD Score Material ICSD Score
1 Hf1O3Sr1 161594 0.573 Nb1Te4 601217 0.373 As3Co1 610045 0.458 As3Co1 610045 0.177
2 Na1O3Ta1 280101 0.518 O3Pb1V1 152278 0.337 As3Ir1 610737 0.425 Ni2Zn11 105475 0.094
3 Bi2O3 168807 0.462 O3Pb1Ti1 61169 0.278 Ir1Sb3 640958 0.389 Ir1P3 23713 0.086
4 Na1Nb1O3 280100 0.417 Ga2Mg1Sc2 260213 0.269 Rh1Sb3 650248 0.346 P3Rh1 43724 0.066
5 F4Zr1 35100 0.276 Li1Nd2Si2 642206 0.268 Ni2Zn11 105475 0.316 As3Rh1 611268 0.045
6 Bi2Se3 617096 0.272 Co2P2U1 67932 0.244 As3Rh1 611268 0.278 Rh1Sb3 650248 0.023
7 K1Nb1O3 9535 0.205 C2Mo1Nd2 417666 0.24 Ir1P3 23713 0.221 As3Ir1 610737 0.019
8 I3O1W1 65183 0.195 Si2W3 652552 0.229 O3Re1 55465 0.214 Al12Mo1 58003 0.018
9 Be2Nb3 58722 0.19 Cd1Nd2Ni2 414597 0.226 Co1P3 92393 0.192 Si1V3 52472 0.018
10 B2Ta3 107320 0.189 B2Mo3 614800 0.217 P3Rh1 43724 0.124 Ir1Sb3 640958 0.015

Thematerials in the neighborhood of a givenmaterial (e.g., Si) are all similar to Si, but theymay not be similar to each
other. To find the largest group of materials in the neighborhood of Si that all share pairwise similarities, we compute a
maximum clique in the subgraph induced by the neighborhood of Si. Themaximum clique in the network of 20 neighbors
of Si with 0.75 cutoff is the following set of 5materials:

• C1Sn1 (ICSD 182365) - metal,
• Cr5Cs1S8 (ICSD 2566) - insulator,
• Cr3S5Tl1 (ICSD 23632) - insulator,
• Cr5Se8Tl1 (ICSD 37123), and
• P2Ta1 (ICSD 648187) - metal.

The DOS functions are very similar for all thesematerials, although they differ largely in terms of the band gap.

Themaximum clique in the neighborhood of Si with 0.7 cutoff with the same geometry (FCC) and number of atoms
per cell (two) consists of the following four materials:

• As1Ga1 (ICSD 184923)
• C1Sn1 (ICSD 182365)
• Ga1Sb1 (ICSD 635312)
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F IGURE 11 Two-hop neighbourhood of Si in a prototype AFLOW library navigation tool based on the developed
network representation.

• Si1Sn1 (ICSD 184676)

All these belong to the larger family of FCC semiconductors and indeed share same physical characteristics overall.

3.4 | Network-basedNavigation Tool

Finally, Figure 11 provides an illustration of a prototype of a navigation system for AFLOW library based on the network
representation developed in this paper. The interactive visualization was implemented as HTML document using
JavaScript D3 library [22] and allows to conveniently navigate thematerials in the data base in a web browser. In this
illustration, the nodes of the network are limited to the two-hop neighborhood of Si. Pointing the cursor to any node
in the network highlights its incident edges that connect it to other nodes. Clicking on an any node in the network
will open a web page in AFLOW library of the correspondingmaterial for further inspection. We believe that such a
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natural and intuitive navigation tool will significantly enhance users’ ability to explore the complexmaterials data base
by visualizing the similarity relationships between thematerials using the proposed network representation.

4 | CONCLUSION

This paper develops amethodological framework for construction and analysis of materials maps, based on network
representations of amaterials database. The proposed network-based approachmay provide a valuable tool not only
for visualization and navigation of largematerials database, but also for carrying out application-specific tasks, such
as determining groups of candidatematerials for substituting a givenmaterial used in amanufacturing process. The
work reported in this paper can be viewed as the first step in this direction, opening upmany possibilities for future
investigations, including the following. (i) Further refining the proposed similarity measures, as well as developing
alternative quantification of pairwise relations betweenmaterials that could be used to build a network of materials.
(ii) Exploring various combinatorial objects representing groups of similar materials in the constructed unweighted
materials networks as well as their edge-weighted counterparts, with the edgeweights given by the computed similarity
scores. Edge-weighted cliques [23, 24, 25] and clique relaxationmodels [26, 27] are of particular interest in this regard.
(iii) Utilizing the proposedmethodology in a context of specific applications, such as determining suitable materials for
manufacturing composites with desired properties.
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