References:
Aguilera, T., et al. (2012). Electronic nose based on independent
component analysis combined with partial least squares and artificial
neural networks for wine prediction. Sensors, 12(6): 8055-8072. doi:
org/10.3390/s120608055.
AS, C. P. (2006). ”The Unscrambler Tutorials. On line at: http://www.
camo. com/downloads U 9.
Bachinger, T. and C.-F. Mandenius (2000). Searching for process
information in the aroma of cell cultures. Trends in biotechnology,
18(12): 494-500.
doi:
org/10.1016/s0167-7799(00)01512-2.
Bachinger, T. and C. F. Mandenius (2001). Physiologically motivated
monitoring of fermentation processes by means of an electronic nose.
Engineering in life sciences, 1(1): 33-42. doi:
org/10.1002/1618-2863(200107)1:13.0.CO;2-9.
De Deken, R. (1966). The Crabtree effect: a regulatory system in yeast.
Microbiology 44(2): 149-156. doi:
org/10.1099/00221287-44-2-149.
Buratti, S. and S. Benedetti (2016). Alcoholic Fermentation Using
Electronic Nose and Electronic Tongue. Electronic noses and tongues in
food science, Elsevier: 291-299.
Ghosh, S., B. Tudu, N. Bhattacharyya and R. Bandyopadhyay (2017). A
recurrent Elman network in conjunction with an electronic nose for fast
prediction of optimum fermentation time of black tea. Neural Computing
and Applications 31(2): 1165-1171.
doi: org/10.1007/s00521-017-3072-y.
Hidayat, S. N., T. R. Nuringtyas and K. Triyana (2018). Electronic Nose
Coupled with Chemometrics for Monitoring of Tempeh Fermentation Process.
2018 4th International Conference on Science and Technology (ICST),
IEEE.
doi: org/10.1109/ICSTC.2018.8528580.
Jiang, H., H. Zhang, Q. Chen, C. Mei and G. Liu (2015). Recent advances
in electronic nose techniques for monitoring of fermentation process.
World Journal of Microbiology and Biotechnology 31(12): 1845-1852. doi:
org/10.1007/s11274-015-1940-0.
Kiani, S., et al. (2016). A portable electronic nose as an expert system
for aroma-based classification of saffron. Chemometrics and Intelligent
Laboratory Systems 156: 148-156. doi:
org/10.1016/j.chemolab.2016.05.013.
Lidén, H., C.-F. Mandenius, L. Gorton, N. Q. Meinander, I. Lundström and
F. Winquist (1998). On-line monitoring of a cultivation using an
electronic nose. Analytica chimica, acta 361(3): 223-231. doi:
org/10.1016/S0003-2670(98)00035-X.
Li, G., L. Yuan, X. Wang, Y. Meng, J. Li, Y. Zhao and Y. Peng (2019).
Rapid Quantification Analysis of Alcohol During the Green Jujube Wine
Fermentation by Electronic Nose. IOP Conference Series: Earth and
Environmental Science, IOP Publishing. doi:
org/10.1088/1755-1315/330/5/052046.
Lin, B., Recke, B., Knudsen, J. K., & Jørgensen, S. B. (2007). A
systematic approach for soft sensor development. Computers and Chemical
Engineering 31: 419-425.
doi:
org/10.1016/j.compchemeng.2006.05.030.
Madigan, M., K. Bender, D. Buckley, W. Sattley and D. Stahl (2017).
Brock Biology of Microorganisms (15 ed.). Pearson, Essex, England.
Mandenius, C. F., et al. (1997). Sensor fusion with on‐line gas emission
multisensor arrays and standard process measuring devices in baker’s
yeast manufacturing process. Biotechnology and bioengineering, 55(2):
427-438.
doi:
org/10.1002/(SICI)1097-0290(19970720)55:2<427::AID-BIT20>3.0.CO;2-C
Omatu, S. and M. Yano (2016). E-nose system by using neural networks.
Neurocomputing 172: 394-398. doi:
org/10.1016/j.neucom.2015.03.101
Otto. M (1999), Chemometrics: Statistics and Computer Application in
Analytical
Chemistry.
Ödman, P., C. L. Johansen, L. Olsson, K. V. Gernaey and A. E. Lantz
(2009). On-line estimation of biomass, glucose and ethanol in
Saccharomyces cerevisiae cultivations using in-situ multi-wavelength
fluorescence and software sensors. Journal of biotechnology, 144(2):
102-112. doi: org/10.1016/j.jbiotec.2009.08.018.
Paquet‐Durand, O., S. Assawarajuwan and B. Hitzmann (2017). Artificial
neural network for bioprocess monitoring based on fluorescence
measurements: Training without offline measurements. Engineering in Life
Sciences 17(8): 874-880.
doi:
org/10.1002/elsc.201700044
Paquet-Durand, O., T. Ladner, J. Büchs, B. Hitzmann (2017 a).
Calibration of a chemometric model by using a mathematical process model
instead of offline measurements in case of a H. polymorpha cultivation.
Chemometrics and Intelligent Laboratory System 171: 74-79. doi:
org/10.1016/j.chemolab.2017.10.003
Solle, D., D. Geissler, E. Stärk, T. Scheper and B. Hitzmann (2003).
Chemometric modelling based on 2D-fluorescence spectra without a
calibration measurement. Bioinformatics 19(2): 173-177. doi:
10.1093/bioinformatics/19.2.173.
Spinelle, L., M. Gerboles, G. Kok, S. Persijn and T. Sauerwald (2017).
Review of portable and low-cost sensors for the ambient air monitoring
of benzene and other volatile organic compounds. Sensors 17(7): 1520.
doi: org/10.3390/s17071520.
Tan, C., D. Xie, Y. Liu, W. Peng, X. Li, L. Ai, C. Wu, C. Wen, X. Huang
and J. Guo (2018). Identification of different bile species and
fermentation times of bile arisaema based on an intelligent electronic
nose and least squares support vector machine. Analytical chemistry
90(5): 3460-3466.
doi:
org/10.1021/acs.analchem.7b05189.
Tan, J., B. Balasubramanian, D. Sukha, S. Ramkissoon and P. Umaharan
(2019). Sensing fermentation degree of cocoa (Theobroma cacao L.) beans
by machine learning classification models based electronic nose system.
Journal of Food Process Engineering 42(6): e13175.
doi: org/10.1111/jfpe.13175.
Wang, G.-G., A. H. Gandomi, X.-S. Yang and A. H. Alavi (2014). A novel
improved accelerated particle swarm optimization algorithm for global
numerical optimization. Engineering Computations.
doi:
org/10.1108/EC-10-2012-0232.
Wild, R., D. Citterio, J. Spichiger and U. E. Spichiger (1996).
Continuous monitoring of ethanol for bioprocess control by a chemical
sensor. Journal of biotechnology 50(1): 37-46.
doi.org/10.1016/0168-1656(96)01547-7.