Producing recombinant proteins in transgenic plant cell suspension cultures in bioreactors provides controllability, reproducibility, scalability, and low-cost production, although low yields remain the major challenge. The studies on scaling-up to pilot-scale bioreactors, especially in conventional stainless-steel stirred tank bioreactors (STB), to produce recombinant proteins in plant cell suspension cultures are very limited. In this study, we scaled-up the production of rice recombinant butyrylcholinesterase (rrBChE), a complex hydrolase enzyme that can be used to prophylactically and therapeutically treat against organophosphorus nerve agents and pesticide exposure, from metabolically-regulated transgenic rice cell suspension cultures in a 40-L pilot-scale STB. Employing cyclical operation together with a simplified-process operation (controlling gas sparging rate rather than dissolved oxygen and allowing natural sugar depletion) identified in lab-scale (5-L) bioreactor studies, we found consistent maximum total active rrBChE production level of 46-58 µg/g fresh weight in four cycles over 82 days of continuous operation. Additionally, maintaining the overall volumetric oxygen mass transfer coefficient (kLa) in the pilot-scale STB to be equivalent to the lab-scale STB improves the maximum total active rrBChE production level and the maximum volumetric productivity to 85 µg/g fresh weight and 387 µg L-1 day-1, respectively, which are comparable to the lab-scale culture. Here, we demonstrate pilot scale bioreactor performance using a metabolically-regulated transgenic rice cell culture for long-term, reproducible, and sustained production of rrBChE.

Jasmine Corbin

and 4 more