References
Chodak, I. (2008). Polyhydroxyalkanoates: origin, properties and applications . In Monomers, Polymers and Composites from Renewable Resources, Elsevier, 451-477. doi.org/10.1016/B978-0-08-045316-3.00022-3
Choi, J. E., Kwon, M. A., Na, H. Y., Hahm, D. H., & Song, J. K. (2013). Isolation and characterization of a metagenome-derived thermoalkaliphilic esterase with high stability over a broad pH range.Extremophiles , 17, 1013-1021. doi.org/10.1007/s00792-013-0583-z
Dong, Y., Li, P., Chen, C. B., Wang, Z. H., Ma, P., & Chen, G. Q. (2010). The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD. Biomaterials , 31, 8921-8930. doi.org/10.1016/j.biomaterials.2010.08.001
Gustavsson, M., Lehtiö, J., Denman, S., Teeri, T. T., Hult, K., & Martinelle, M. (2001). Stable linker peptides for a cellulose-binding domain–lipase fusion protein expressed in Pichia pastoris.Protein Engineering , 14, 711-715. doi.org/10.1093/protein/14.9.711
Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme immobilization: an update. Journal of Chemical Biology , 6, 185-205. doi.org/10.1007/s12154-013-0102-9
Houde, A., Kademi, A., & Leblanc, D. (2004). Lipases and their industrial applications. Applied Biochemistry and Biotechnology , 118, 155-170. doi.org/10.1385/ABAB:118:1-3:155
Huang, Z., Li, G., Zhang, C., & Xing, X. H. (2016). A study on the effects of linker flexibility on acid phosphatase PhoC-GFP fusion protein using a novel linker library. Enzyme and Microbial Technology , 83, 1-6. doi.org/10.1016/j.enzmictec.2015.11.002
Jaeger, K. E., & Eggert, T. (2004). Enantioselective biocatalysis optimized by directed evolution. Current Opinion in Biotechnology , 15, 305-313. doi.org/10.1016/j.copbio.2004.06.007
Malunavicius, V., Druteika, G., Sadauskas, M., Veteikyte, A., Matijosyte, I., Lastauskiene, E., … Gudiukaite, R. (2018). Usage of GD-95 and GD-66 lipases as fusion partners leading to improved chimeric enzyme LipGD95-GD66. International Journal of Biological Macromolecules , 118, 1594-1603. doi.org/10.1016/j.ijbiomac.2018.07.002
Moldes, C., García, P., García, J. L., & Prieto, M. A. (2004). In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF.Applied and Environmental Microbiology , 70, 3205-3212. doi.org/10.1128/AEM.70.6.3205-3212.2004
Peters, V., & Rehm, B. H. (2006). In vivo enzyme immobilization by use of engineered polyhydroxyalkanoate synthase. Applied and Environmental Microbiology , 72, 1777-1783. doi.org/10.1128/AEM.72.3.1777–1783.2006
Prieto, A., Escapa, I. F., Martínez, V., Dinjaski, N., Herencias, C., de la Peña, F., … Revelles, O. (2016). A holistic view of polyhydroxyalkanoate metabolism in Pseudomonas putida.Environmental Microbiology , 18, 341-357. doi.org/10.1111/1462-2920.12760
Seo, H. M., Kim, J. H., Jeon, J. M., Song, H. S., Bhatia, S. K., Sathiyanarayanan, G., … Yang, Y. H. (2016). In situ immobilization of lysine decarboxylase on a biopolymer by fusion with phasin: Immobilization of CadA on intracellular PHA. Process Biochemistry , 51, 1413-1419. doi.org/10.1016/j.procbio.2016.07.019
Singh, S., Hinkley, T., Nugen, S. R., & Talbert, J. N. (2018). Fusion of carbohydrate binding module to mutant alkaline phosphatase for immobilization on cellulose. Biocatalysis and Agricultural Biotechnology , 13, 265-271. doi.org/10.1016/j.bcab.2018.01.003
Solovyov, K. V., Polyakov, D. S., Grudinina, N. A., Egorov, V. V., Morozova, I. V., Aleynikova, T. D., & Shavlovsky, M. M. (2011). Expression in E. coli and purification of the fibrillogenic fusion proteins TTR-sfGFP and β2M-sfGFP. Preparative Biochemistry and Biotechnology , 41, 337-349. doi.org/10.1080/10826068.2010.548433
Tarazona, N. A., Machatschek, R., Schulz, B., Prieto, M. A., & Lendlein, A. (2019). Molecular insights into the physical adsorption of amphiphilic protein PhaF onto copolyester surfaces.Biomacromolecules , 20, 3242-3252. doi.org/10.1021/acs.biomac.9b00069
Tischer, W., & Wedekind, F. (1999). Immobilized enzymes: methods and applications. Topics in Current Chemistry , 200, 95-126. doi.org/10.1007/3-540-68116-7_4
Wong, J. X., & Rehm, B. H. (2018). Design of modular polyhydroxyalkanoate scaffolds for protein immobilization by directed ligation. Biomacromolecules , 19, 4098-4112. doi.org/10.1021/acs.biomac.8b01093
Yang, T. H., Kwon, M. A., Lee, J. Y., Choi, J. E., Oh, J. Y., & Song, J. K. (2015). In situ immobilized lipase on the surface of intracellular polyhydroxybutyrate granules: preparation, characterization, and its promising use for the synthesis of fatty acid alkyl esters.Applied Biochemistry and Biotechnology , 177, 1553-1564. doi.org/10.1007/s12010-015-1836-3
You, M., Peng, G., Li, J., Ma, P., Wang, Z., Shu, W., … Chen, G. Q. (2011). Chondrogenic differentiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide.Biomaterials , 32, 2305-2313. doi.org/10.1016/j.biomaterials.2010.12.009
Zhao, H., Wei, H., Liu, X., Yao, Z., Xu, M., Wei, D., … Chen, G. Q. (2016). Structural insights on PHA binding protein PhaP from Aeromonas hydrophila. Scientific Reports , 6, 39424. doi.org/10.1038/srep39424
Zhou, Z., Piepenbreier, F., Marthala, V. R., Karbacher, K., & Hartmann, M. (2015). Immobilization of lipase in cage-type mesoporous organosilicas via covalent bonding and crosslinking. Catalysis Today , 243, 173-183. doi.org/10.1016/j.cattod.2014.07.047