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Abstract

The basic reproduction number of an infectious agent is the av-
erage number of infections one case can generate over the course of
the infectious period, in a naive, uninfected population. This primer
article focuses on the basic reproduction number, R0, for infectious
diseases, and other reproduction numbers related to R0 that are use-
ful in guiding control strategies. Beginning with a simple population
model, the concept is developed for a threshold value of R0 determin-
ing whether or not the disease dies out. The next generation matrix
method of calculating R0 in a compartmental model is described and
illustrated. To address control strategies reproduction numbers are
defined and these theoretical ideas are then applied to models that
are formulated for different SI, SI with incubation delay, SIR, SEIR
and SEQIR the novel coronavirus (2019-nCoV) infection model , the
reproduction number has been found to vary, reflecting the dynamics
of transmission of the coronavirus outbreak as well as the case report-
ing rate. If R0 > 1, then the number of latently infected individuals
exponentially grows. However, if R0 < 1 (e.g. due to quarantine mea-
sures and contact restrictions imposed by public authorities), then the
number of infected decays exponentially. We then consider the avail-
able data on the disease development in different countries to show
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that there are three possible patterns: growth dynamics, growth- de-
cays dynamics, and patchy dynamics. During this period of time, the
growth rate of the total number of infected was gradually decreasing.

Keywords: COVID-19, quarantine, basic reproduction number, SEQIR
model, next generation matrix.

1 Introduction

Coronaviruses are a group of enveloped viruses with a positive-sense, single-
stranded RNA and viral particles resembling a crown e from which the name
derives. They belong to the order of Nidovirales, family of Coronaviridae,
and subfamily of Orthocoronavirinae [1](Carlos, Dela Cruz, Cao, Pasnick, &
Jamil, 2020). They can affect mammals, including humans, causing generally
mild infectious disorders, sporadically leading to severe outbreaks clusters,
such as those generated by the Severe Acute Respiratory Syndrome (SARS)
virus in 2003 in mainland China, and by the Middle East Respiratory Syn-
drome (MERS) virus in 2012 in the Kingdom of Saudi Arabia and in 2015
in South Korea [2](Gralinski & Menachery, 2020). Currently, there exist
no vaccines or anti-viral treatments officially approved for the prevention or
management of the disease. Anti-retroviral drugs belonging to the class of
protease inhibitors, including Lopinavir and Ritonavir, usually utilized for
the treatment of HIV/AIDS patients, seem to exert anti-viral effects against
coronaviruses. GS-734 (Remdesivir), a nucleotide analogue pro-drug, origi-
nally developed against the Ebola and the Marburg viruses, has been recently
suggested to be effective also against coronaviruses. Other potential pharma-
ceuticals include nucleoside analogues, neuraminidase inhibitors, and RNA
synthesis inhibitors. Also, Umifenovir (Abidol), used for treating severe in-
fluenza cases, anti-inflammatory drugs and EK1 peptide have been proposed
as possible drugs against coronaviruses [3](Lu, 2020).

The outbreak of COVID-19 originated from the four admitted patients
with pneumonia who had been working in Wuhan Huanan seafood wholesale
market, doing business in live poultry, aquatic products, and some wild ani-
mals. The now closed market being a common factor in infections encouraged
the belief that the infection may be linked with certain animals. The species
that harbored the SARS-CoV-2 was probably bat, containing 96 % identical
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at the whole genome level [4]. The COVID-19 may include signs of fever,
cough, shortness of breath and general breathing difficulties, organ failures or
even death, posing a severe threat to the whole society. The WHO declared
the coronavirus outbreak a global health emergency on 30 January 2020 [5].
The global epidemic seemed to be spreading at an alarming rate, causing 79
824 accumulative laboratory-confirmed infections with 2870 deaths as of 29
February 2020 in China[6] and 6009 outside China [7], so it deserved priority
attention and intensive research. Chinese health authorities stated that it
was likely to transmit from person to person even before any actual signs
appeared, which made it especially difficult to prevent and control [8].

Mathematical modelling can play an important role in helping to quan-
tify possible disease control strategies by focusing on the important aspects
of a disease, determining threshold quantities for disease survival, and eval-
uating the effect of particular control strategies. A very important threshold
quantity is the basic reproduction number, sometimes called the basic repro-
ductive number or basic reproductive ratio [9], which is usually denoted by
R0. The epidemiological definition of R0 is the average number of secondary
cases produced by one infected individual introduced into a population of
susceptible individuals, where an infected individual has acquired the dis-
ease, and susceptible individuals are healthy but can acquire the disease.
The interaction between medical and theoretical epidemiology of infectious
diseases is probably not as strong as it should. Many results in the respective
fields fail to migrate to the other. There are of course exceptions. Perhaps
the most important are the ideas of epidemic thresholds and the parameter
R0the basic reproduction numberas a key predictor of the epidemiological
severity of a disease [9, 10]. R0 is defined as the expected number of other
individuals that an infected individual will infect if he or she enters a pop-
ulation entirely composed of susceptible individuals. It is thus a combined
property of the process of contagion and the contact patterns of the popula-
tion. In classic mathematical models of infectious disease spreading, R0 = 1
marks an epidemic threshold. If R0 < 1, the expected fraction of infected
people in an outbreak, denoted by Ω, will not depend on the total population
size . If R0 > 1, the expected value of Ω is proportional to population. In
other words, in the limit of large populations, a finite fraction of the popula-
tion can be infected. The focus on R0 in the literature has sometimes been so
strong that researchers rather calculate R0 than quantities directly related to
the outbreak, such as prevalence, incidence, and time to the peak prevalence.
The aim of this review is to elaborate on mathematical ways of finding R0
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for ODE disease models in a population, bearing in mind the epidemiological
meaning of R0, and to demonstrate how this and other reproduction numbers
can be used to guide control strategies. In this study we have used the basic
reproduction number as a essential controling parameter for spreading and
controlling of COVID-19 disease. In this endemic situation in China Indian
Govt. will be careful to protect such type disease transmission in local as
well as community and they follow the guide line and instruction by WHO.

2 basic reproduction number:

2.1 Derivation of R0 from SI model:

We consider susceptible-infected (SI) model without demographic issue i.e.
natural birth and death of the individuals. The model we use is called an SI
model.

The simple SI model

dS

dt
= −βSI

dI

dt
= βSI − γI (1)

Here β is theinfection rate and γ is the diseas induced mortality rate of
the infected population.

If infection is very low level, S >> I. We consider S ∼= S0. Since the coro-
navirus epidemics is admittedly still in its early stage, let us only determine
the condition of the disease progression at its beginning, i.e. when the num-
ber of infected/recovered/dead is much less than the number of susceptible,
and hence S in the model above can be considered as constant, S ∼= S0.

Let I = I0e
mt be solution of the equation

dI

dt
= βSI − γI (2)

.
Then we get

I = I0e
(βS0−γ)t.
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Therefore I → 0 iff βS0 − γ < 0 i.e. βS0

γ
= R0 < 1.

Therefore if R0 < 1, I → 0 i.e. system will be disease free. But if R0 > 1,
then infected population will grows exponentially and as a result system will
be endemic.

This R0 is called basic reproduction number. Here βS0 is the new born
infected population and 1

γ
is the life span of infected individual. Therefore

basic reproduction number can be described as total number of new born
infected individuals by a infected individual in its life span. A model that
allows for the incubation period will be considered in the next subsection.

2.2 Derivation of R0 from SI model with incubation
delay:

If we take assumption that coronavirus disease spread among community
to take some time which is called incubation delay, the system (1) can be
written as

dS

dt
= −βSI

dI

dt
= βS(t− τ)I(t− τ)− γI

where τ is incubation period of infected individual.
Here as t >> τ we consider S ∼= S0 and I = I0e

mt be solution of the
equation of the equation

dI

dt
= βS(t− τ)I(t− τ)− γI.

From above equation we get

I0me
mt = βS0I0e

m(t−τ) − γI0emt

m = βS0e
−mτ − γ

m = γ(R0e
−mτ − 1)

m = γ(R0e
−mτ − 1)
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This equation has solution m = 0 for all values of parameters. Besides
this solution, it can have a positive or a negative solution m. The function
f(m) = βS0e

−mτ −γ is an decreasing function with the asymptotic limit βS0

at infinity. The sign of the solution is determined by the derivative f ′(0).
If f ′(0) > 1, then there is a positive solution, if f ′(0) < 1, the solution is
negative. In terms of the basic reproduction number R0 = βS0e

−τ , the con-
dition is similar as for the SI model. However, the meaning of this parameter
is different. It characterizes the total infection rate during the incubation
period and not its ratio with the rates of recover and death.

2.3 Derivation of R0 from SIR model:

Now we considered susceptible-infected-recovered (SIR) model in case of
coronavirus (COVID-19) disease. If we will consider recovery rate σ for
infected population the system (1 ) can be written as

dS

dt
= −βSI

dI

dt
= βSI − γI − σI (3)

dR

dt
= γI

It is assumed here that recovered individuals do not return to susceptible
class, that is, recovered individuals have immunity against the COVID-19
disease; they cannot become infected again and cannot infect susceptibles
either.

What are the conditions for an epidemic? An epidemic occurs if the num-
ber of infected individuals increase i.e. dI

dt
> 0.

At the outset of COVID-19 epidemic, early every susceptible population
is very large than infected ones. So we can say that S ∼= S0. Substituting
S = S0, we arrive at the following inequality

βS0I − γI − σI > 0

βS0I > (γ + σ)I

βS0

(γ + σ)
> 1
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βS0

(γ+σ)
= R0 is called the basic reproduction number. If R0 > 1, then

the number of infected will grow, if R0 < 1 it will decay. Thus, R0 plays
the key role in the covid -19 epidemics development. In particular, one can
change the course of the disease dynamics by changing R0. For instance,
if measures are introduced that push the value of R0 below one (e.g. by
making β to decrease), the exponential growth changes to exponential decay.
Interestingly, this is exactly what has happened in China after restrictions
on daily life were introduced.

The classical SIR model therefore determines the condition of the disease
development from the comparison of the disease transmission rate with the
sum of the recover and death rates. In the other words, we compare the
rates of adding and removal of infected. The model does not account for the
incubation period of the disease that was shown to be important in the case
of coronavirus spread: individuals can become infective before showing any
symptoms.

2.4 Derivation of R0 from next generation matrix:

2.4.1 Basic concept on next generation matrix:

If R0 is the number of secondary infections produced by a single typical
infection in a rarefied population, how do we define it when there are multiple
types of infected individuals. For example, what is a typical infection in
a vector-borne disease like malaria? What about a sexually transmitted
infection where there are large asymmetries in transmissibility (like HIV)?
Or what about a multi-host pathogen like influenza ? It turns out that there
is a straightforward extension of the theory for structured epidemic models.
The mathematics behind this theory is not especially difficult, but it does
involve scary German terms that are not familiar to the non-engineers in our
midst. The key concept is that we now need to average the expected number
of new infections over all possible infected types. Assume that we have a
system in which there are multiple discrete types of infected individuals (e.g.,
mosquitoes and humans; women and men; or humans, dogs, and chickens).
We define the next generation matrix as the square matrix G in which the
ijth element of G, gij , is the expected number of secondary infections of
type i caused by a single infected individual of type j, again assuming that
the population of type i is entirely susceptible. That is, each element of
the matrix G is a reproduction number, but one where who infects whom is
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accounted for. Once we have G, we are one step away from R0. The basic
reproduction number is given by the spectral radius of G. The spectral radius
is the also known as the dominant eigenvalue of G. The next generation
matrix has a number of desirable properties from a mathematical standpoint.
In particular, it is a non-negative matrix and, as such, it is guaranteed that
there will be a single, unique eigenvalue which is positive, real, and strictly
greater than all the others. This is R0.

For illustrative purposes, we will limit our discussion to the case where
there are two classes of infected individual. The next generation matrix is
thus 22. Define

G =

[
a b
c d

]
The eigenvalues of G are:

λ =
T

2

√
(
T

2
)2 −D

where T = a+d is the trace and D = ad−bc is the determinant of matrix
G.

For example, you have a sexually transmitted disease in a completely
heterosexual population. Define f as the expected number of infected women
and m as the expected number of infected men given contact with a single
infected member of the opposite sex in a completely susceptible population.
The next generation matrix is

G =

[
0 f
m 0

]
R0 is thus

√
mf . It is worth noting that this is the geometric mean of

the expected number of female and male secondary cases.

2.4.2 Derivation of R0

Hefferman et al. (2005) provides a nice readable introduction for calculating
R0 in structured population models. Consider the next generation matrix G.
It is comprised of two parts: F and V −1, where

F =
∂Fi(x0)

∂xj
(4)
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and

V =
∂Vi(x0)

∂xj
(5)

The Fi are the new infections, while the Vi transfers of infections from
one compartment to another. x0 is the disease-free equilibrium state. R0 is
the dominant eigenvalue of the matrix G = FV −1.

Consider a Susceptible-Exposed-Infected-Removed (SEIR) Epidemic. This
is an appropriate model for a disease where there is a considerable post-
infection incubation period in which the exposed person is not yet infectious.

The simple SEIR model consists of a set of four differential equations:

dS

dt
= A− βSI − µS

dE

dt
= βSI − (µ+ k)E (6)

dI

dt
= E − (γ + k)I

dR

dt
= γI − µR

where β is the effective contact rate, A is the birth rate of susceptibles,
µ is the mortality rate, k is the progression rate from exposed (latent) to
infected, γ is the removal rate.

To calculate the next generation matrix for the SEIR model, we need to
enumerate the number of ways that (1) new infections can arise and (2) the
number of ways that individuals can move between compartments. There
are two disease states but only one way to create new infections:

F =

[ βA
µ

0

0 0

]
.

In contrast, there are various ways to move between the states:

V =

[
0 k + µ

γ + µ −k

]
.

R0 is the leading eigenvalue of the matrix FV −1. This is reasonably
straightforward to calculate since FV −1 is simply a 2 2 matrix.
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R0 =
kβA

µ(k + µ)(γ + µ)
.

It is interesting to note that R0 is also the product of the rate of pro-
duction of (1) new exposures and (2) new infections, as it should be. It can
be shown easily from Jacobian matrix around the disease free equilibrium
point that if R0 < 1, the disease free equilibrium point will stable. This
implies disease can be wiped out from the system. If R0 > 1, the disease
free equilibrium point will be unstable and disease will be endemic in the
system. Since R0 is the increasing function of two important parameters β
and A. If the effective contact rate β is increased the unknown disease such
as COVID-19 will be spread in the community. If the birth rate A of the sus-
ceptible individuals is increased the value of R0 will be increased and which
implies COVID-19 disease transmits among the community rapidly. So we
can conclude R0 is the controlling parameter for spearing COVID-19 disease
transmission.

2.5 Quarantine COVID-19 model:

A compartmental differential equation model for COVID is formulated. We
adopt a variant that reflects some key epidemiological properties of COVID-
19. The model monitors the dynamics of five sub-populations, namely sus-
ceptible (S(t)), exposed (E(t)), quarantined (Q(t)), infected (I(t)), and re-
covered (R(t)) individuals. The total population size is N(t) = S(t)+E(t)+
Q(t) + I(t) + R(t). In this model, quarantine refers to the separation of
COVID infected individuals from the general population when the popula-
tion are infected but not infectious, whereas isolation describes the separation
of COVID infected individuals when the population become symptomatic in-
fectious. Our model incorporates some demographic effects by assuming a
proportional natural death rate µ > 0 in each of the five sub-populations
of the model. In addition, our model includes a net inflow of susceptible
individuals into the region at a rate A per unit time.This parameter includes
new births, immigration and emigration. By recruiting individuals into the
region, the susceptible population is increased and reduced by natural death.
Also the susceptible population decreases after infection, acquired through
interaction between a susceptible individual and an infected person who may
be quarantined, infected. For these two groups of infected individuals, the
transmission coefficients are β, rQβ, respectively. We consider the β as a
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transmission rate along with the modification factors for quarantined rQ. The
interaction between infected individuals (quarantined, infected) and suscep-
tible is modelled in the form of total population without quarantined using
mass action incidence incidence. Population who are exposed are infected
individuals but not infectious for the community. The exposed population
decreases with quarantine at a rate of γ1, and become infected at a rate k1
and σ1 is the recovery rate of quarantine individuals natural death at a rate
µ. The infected individuals are produced by a proportion of k1 of exposed
class after the exposer of clinical symptoms of COVID-19 by exposed indi-
viduals. σ2 is the recovery rate and natural death at a rate µ. Quarantined,
infected individuals recover from the disease at rates σ1, σ2 respectively, and
this population is reduced by a natural death rate µ.

Under these assumptions, we consider the quarantine COVID-19 model:

dS

dt
= A− βSI − rQβQS − µS

dE

dt
= βSI + rQβQS − (γ1 + k1 + µ)E

dQ

dt
= γ1E − (σ1 + µ)Q

dI

dt
= k1E − (σ2 + µ)I

dR

dt
= σ1Q+ σ2I − µR

The diseases-free equilibrium can be obtained for the system (7) by putting
E = 0, Q = 0, I = 0 , which is denoted by L0 = (S0, 0, 0, 0, R0), where
S0 = A

µ
, R0 = 0.

The basic reproduction number, a central concept in the study of the
spread of communicable diseases, is the number of secondary infections caused
by a single infective in a population consisting essentially only of susceptibles
with the control measures in place (quarantined and isolated class)[11]. This
dimensionless number is calculated at the DFE by next generation operator
method [12] and it is denoted by R0. For this, we assemble the compartments
which are infected from the system (7) and decomposing the right hand side
as Γ − Λ, where Γ is the transmission part, expressing the the production
of new infection, and the transition part is Λ, which describe the change in
state.
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Γ =

 βSI + rQβSQ
0
0

 .
Λ =

 (γ1 + k1 + µ)E
−γ1E + (σ1 + µ)Q
k1E + (σ2 + µ)I

 .
Now we calculate the Jacobian of F and V at DFE L0

F =
∂Γ

∂X
=

 0 rQβ β
0 0 0
0 0 0


and

V =
∂Λ

∂X
=

 γ1 + k1 + µ 0 0
−γ1 σ1 + µ 0
k1 0 σ2 + µ

 .
From next generation matrix R0 = ρ(FV −1), where ρ is the spectral

radius of the next-generation matrix (FV −1). Thus, from the model (7), we

have the following expression for R0 and R0 =
rQβγ1

(γ1+k1+µ)(σ1+µ)
+ βk1

(γ1+k1+µ)(σ2+µ)

We have observed the impact of quarantine which is measured qualita-
tively on the disease transmission dynamics. A threshold study of the param-
eter correlated with the quarantine of exposed individuals γ1 is performed by
measuring the partial derivatives of the basic reproduction number R0 with
respect to the parameter.

We have observed that

dR0

dγ1
=

rQβ(k1 + µ)

(γ1 + k1 + µ)2(σ1 + µ)
− βk1

(γ1 + k1 + µ)2(σ2 + µ)

so that dR0

dγ1
< 0(> 0) iff rQ < rγ1 (rQ > rγ1) where 0 < rγ1 = k1(σ1+µ)

(k1+µ)(σ2+µ)
.

From the above analysis it is obvious that if the relative infectiousness of
quarantine individuals rQ will not cross the threshold value rγ1 , then quaran-
tining of exposed individ- uals results in reduction of the basic reproduction
number R0 and therefore reduction of the disease burden. On the other side,
if rQ > rγ1 , then the basic reproduction number R0 would rise due to the
increase in infectiousness of the quarantine rate and thus the disease burden
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will also rise. So if the disease infectiousness into the quarantine population
increases, the use of quarantine in this scenario is harmful.

3 Will An Epidemic Infect Everyone?

Will an epidemic, once it has taken off in a population, eventually infect
everyone ? In order to answer this question, we want to know how i changes
with respect to the fuel for the epidemic, S. We thus get from system (1)

dI

dS
= −1− γ

βS
.

We solve this equation and get

log(S∞) = R0(S∞ − 1). (7)

This is an implicit equation for S∞, the number of susceptible at the end
of the epidemic. When R0 > 1, this equation has exactly two roots, only
one of which lies in the interval (0, 1). Subtract log(S∞) from both sides and
we get R0(S∞ − 1) − log(S∞) = 0. Call the whole left-hand side y. y will
have different values for different values of log(S∞). Only a couple of those
will satisfy equation (7). log(S∞) = 1 will always satisfy the requirement of
y = 0 (plug it in and see!). When R0 > 1, the other solution to y = 0 is the
actual value of the final size. This is the one we really care about. If R0 < 1,
the only value that satisfies equation (7) is log(S∞) = 1. In words, at the end
of the epidemic, everyone will still be susceptible (i.e., no one gets infected).
Figure 3 shows the solutions of equation (7) for various values of R0 > 1 in
black. The point where the curve crosses the horizontal axis is the value for
S∞, the total fraction of the population infected at the end of the epidemic.
As R0 gets larger, the final size of the epidemic gets larger as well. Figure(1)
also shows the solution when R0 < 1 in the red. The curve never crosses
the horizontal axis, meaning that essentially none of the total population
becomes infected when an infection is sub-critical. The conclusion we can
draw from all this analysis is that, in general, a fraction of the population will
escape infection. That is, S∞ < 1. This is one of the fundamental insights
of mathematical theory of epidemics.
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Figure 1: Solutions of equation (7) for various values of R0 > 1. The solution
of equation (7) when R0 < 1 is plotted in red. 15
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4 Optimal Virulence:

Here we consider a SI epidemic model:

dS

dt
= −βSI − µS (8)

dI

dt
= βSI − (µ+ δ)I

Here β is disease transmission rate, µ is natural death rate and δ is the
disease-induced mortality rate.

The basic reproduction number of above system is

R0 =
β

µ+ δ
.

The parameter µ is independent of the epidemic, but the parameters, µ
and δ can conceivably be functions of virulence, which we denote by x. An
Evolutionary Stable Strategy (ESS) is a phenotype that can not be invaded
by a rare mutant. Loosely speaking, it represents the optimal phenotype.
The ESS virulence occurs where dR0

dx
= 0.

Now
dR0

dx
=
β′(µ+ δ)− γ′β

(µ+ δ)2
= 0.

Rearranging and evaluating β(x) and δ(x) and the ESS values of x (de-
noted x∗), we have

dβ(x)

dδ(x∗)
=

β(x∗)

µ+ δ(x∗)
. (9)

This result has a nice geometric interpretation. The ESS virulence occurs
where a line rooted at the origin is tangent to the curve that relates β to δ.
This result is known as the Marginal Value Theorem and has applications in
economics and ecology as well as epidemiology. The MVT model for optimal
virulence is plotted in figure(2). In the lower curve, the tangent line hits
further out on the horizontal axis and mortality is higher.
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Figure 2: Marginal value theorem for optimal virulence. The ESS virulence
occurs where a line rooted at the origin is tangent to the curve that relates
β to δ. Two curves are depicted. The first curve shows a pathogen in which
transmissibility increases relatively rapidly with mortality. Point A indicates
the optimal balance between β(x) and δ(x) under this case, and the optimal
virulence is indicated x∗. For the second curve, relative transmission is less
efficient. Therefore, the tangent line from the origin to the curve hits further
out (B) along the mortality axis and the optimal virulence is higher (x∗∗).
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Figure 3: The pattern of infected individuals obtained as a sum of daily
cases during the quartine period of 5 days data in South Korea, the growing
branch is approximated by the exponential, decaying .

5 Data

We used the data from [4] showing the total number of infected individuals
and daily cases in different countries and worldwide. Across the world, daily
cases clearly show two-mode dynamics such as in China (growth-decay) and
Europe (growth). There are periods of exponential growth, decay and re-
growth. The origin of the outbreak on February 12 (in China) is not clear
yet. It may be related to the method of data collection. Daily reported cases
curves in China and South Korea correspond to the growth-decay dynamics.

The daily new cases curves for France, Germany, Italy, Spain, USA cor-
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Figure 4: The pattern of infected population during the 5 days quarantine
period in Italy.

respond to the growth mode. Note that the data on daily reported cases
do not exactly correspond to the variable I(t). The latter represents a sum
of daily cases during the quarantine period. Taking into consideration that
the quarantine period to be of 5 days, we therefore obtain the graphs for
the infected individuals. We observe growth-decay dynamics for South Ko-
rea (Figure(3)) and growth dynamics in Italy (Figure(4)). Fitting the data
allows us to determine the growth of infected population from equation (7).
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6 Conclusion:

In the present study we have studied different model in respect of coron-
avirus diease outbreak in Chaina, South Korea and Italy. We have different
technique to derive the basic reproduction number which has important role
to predic the disease will be endemic or not endemic. It has been shown that
if R0 < 1, system will be disease free. But if R0 > 1, disease will be endemic
for any SI, SEI and SEIR models. From the above analysis it is obvious that
if the relative infectiousness of quarantine individuals rQ will not cross the
threshold value rγ1 , then quarantining of exposed individuals results in re-
duction of the basic reproduction number R0 and therefore reduction of the
disease burden. On the other side, if rQ > rγ1 , then the basic reproduction
number R0 would rise due to the increase in infectiousness of the quarantine
rate and thus the disease burden will also rise. So if the disease infectious-
ness into the quarantine population increases, the use of quarantine in this
scenario is harmful. Our model confirms the efficiency of the approach to
stop the disease spread by the limiting the number of contacts between the
individuals through quarantine of infected individuals. This is quite obvious
in theory, with the help of the simplest model formulation, but difficult in
practice. Success of the strategy also depends upon the appropriate time
of implementa- tion. Experience of China and South Korea shows that the
peak of infection (maximum of newly reported cases on daily basis) is reached
about 10 days after adopting serious restric- tive measures. The number of
infection increased during this time in 10-20 times. In Italy 10 days after
the universities and schools were closed (March 4) the peak of infection does
not seem to be reached, and exponential growth continues. Moreover, the
exponential growth rate of the total number of infected in China and in
South Korea observed before the adopted measures (January 25 and Febru-
ary 22, respec- tively) rapidly changed to a slower growth rate afterward .
Similar situation is observed in Iran though the information about adopted
measures is not fully available yet. However, in Italy the exponential growth
rate does not change up to March 4. This can be an indication that the
introduced measures are not sufficient or that they are not respected by local
people. Our updated findings suggest that the best measure is persistent
and strict self-isolation. The epidemics will continue to grow, and can peak
soon with the peak time depending highly on the public health interventions
practically implemented. Exceptional measures adopted for the coronavirus
infection suggest to introduce another model of infection development. We
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consider the sub-population of latently infected individuals who are already
infected but do not show any symptom during the incubation period. When
the incubation period is over, the disease manifests itself with its symptoms,
and the individual is isolated in the quarantine where he/she cannot infect
the others.
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