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Abstract

Crank-Nicholson difference scheme for the system of nonlinear parabolic equations
observing epidemic models with general nonlinear incidence rate is investigated.
The theorem on the existence and uniqueness of a bounded solution of Crank-
Nicholson difference scheme uniformly with respect to time step � is established.
Applications of the theoretical results are presented for the four systems of one and
multidimensional problems with different boundary conditions. Numerical results
are given.
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1 INTRODUCTION

Classical epidemic SIR, SIS, and SEIR models have been proposed and studied by many authors in (see1,2,3,4,5,7,8,9,16 and
the references given therein). Theorems on existence and uniqueness of the bounded solution of linear and nonlinear systems
are established.6,12 The numerical solutions of the system of linear parabolic equations for observing HIV mother to child
transmission epidemic models is studied.12 In the paper,6 we consider a bounded solution of the initial-value problem for the
system of parabolic equations observing epidemic models with general nonlinear incidence rate
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du1 (t)
dt

+ �u1 (t) + Au1 (t) = −f (t, u1 (t), u2 (t)),

du2 (t)
dt

+ (� + �) u2 (t) + Au2 (t) = f (t, u1 (t), u2 (t)) − g(t, u2 (t)),

du3 (t)
dt

+ �u3(t) + Au3(t) = g(t, u2 (t)),

0 < t < T , un(0) = 'n, n = 1, 2, 3

(1)

in a Hilbert spaceH with a self-adjoint positive definite operator A. The main theorem on the existence and uniqueness of a
bounded solution of problem (1) is established.
Theorem 1.1. Assume the following hypotheses:

†This research was funded by “Russian Foundation for Basic Research (RFBR) grant number 16–01–00450”.
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1. 'n, n = 1, 2, 3 belongs to D(A) and
‖'n‖D(A) =M1. (2)

2. The function f ∶ [0, T ] ×H ×H ←→ H be continuous function, that is

‖f (t, u(t), v(t))‖H ≤M2 (3)

in [0, T ] ×H ×H and Lipschitz condition holds uniformly with respect to t

‖f (t, u, v) − f (t, z, w)‖H ≤ L1
[

‖u − z‖H + ‖v −w‖H
]

. (4)

3. The function g ∶ [0, T ] ×H ←→ H be continuous function, that is

‖g(t, u(t))‖H ≤M3 (5)

in [0, T ] ×H and Lipschitz condition holds uniformly with respect to t

‖g(t, u) − g(t, z)‖H ≤ L2‖u − z‖H . (6)

Then there exists a unique bounded solution u(t) =
(

u1(t), u2(t), u3(t)
)⟂ to problem (1).

In applications, theorems on the bounded solutions of several systems of nonlinear parabolic equations were established.
Moreover the first order of accuracy difference scheme
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⎪
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⎪
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⎪

⎪

⎩

u1k−u
1
k−1

�
+ �u1k + Au

1
k = −f (tk, u

1
k, u

2
k),

u2k−u
2
k−1

�
+ (� + �) u2k + Au

2
k = f (tk, u

1
k, u

2
k) − g(tk, u

2
k),

u3k−u
3
k−1

�
+ �u3k + Au

3
k = g(tk, u

2
k),

tk = k�, 1 ⩽ k ⩽ N,N� = T ,

un0 = '
n, n = 1, 2, 3

(7)

for the approximate solution of problem (1) was studied. The following theorem on the existence and uniqueness of a bounded
solution of difference scheme (7) uniformly with respect to time step � was established
Theorem 1.2. Let the assumptions (2)-(6) be satisfied and � + � > 2

(

L1 + L2
)

. Then, there exists a unique solution
u� =

{

uk
}N
k=0 of difference scheme (7) which is bounded uniformly with respect to �.

In applications, bounded solutions of several systems of nonlinear parabolic equations and difference schemes for the
approximate solution of these systems were established. Numerical results were given.
In general, it is not possible to get exact solution of nonlinear problems. Therefore, we are interested in finding a high order of

accuracy uniformly bounded difference schemes with respect to time stepsize for the approximate solutions initial value problem
(1).
In the present paper, the second order of accuracy Crank-Nicholson difference scheme for the approximate solution of problem

(1) is investigated. The theorem on the existence and uniqueness of a bounded solution of Crank-Nicholson difference scheme
uniformly with respect to time step � is established. Applications of the theoretical results are presented on four systems of
nonlinear parabolic equations to explain how it works on one andmultidimensional problemswith different boundary conditions.
Numerical results are given.
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2 THE MAIN THEOREM ON UNIFORMLY BOUNDEDNESS

For the approximate solution of (1) we will consider the second order of accuracy Crank-Nicholson difference scheme
⎧
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⎪
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⎪

⎨
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⎪

⎪

⎪
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⎪
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⎪

⎪

⎩

u1k−u
1
k−1

�
+ � u

1
k+u

1
k−1

2
+ A u1k+u

1
k−1

2
= −f

(

tk −
�
2
, u

1
k+u

1
k−1

2
, u

2
k+u

2
k−1

2

)

,

u2k−u
2
k−1

�
+ (� + �) u

2
k+u

2
k−1

2
+ A u2k+u

2
k−1

2

= f
(

tk −
�
2
, u

1
k+u

1
k−1

2
, u

2
k+u

2
k−1

2

)

− g
(

tk −
�
2
, u

2
k+u

2
k−1

2

)

,

u3k−u
3
k−1

�
+ � u

2
k+u

2
k−1

2
+ A u2k+u

2
k−1

2
= g

(

tk −
�
2
, u

2
k+u

2
k−1

2

)

,

tk = k�, 1 ⩽ k ⩽ N,N� = T ,

un0 = '
n, n = 1, 2, 3

(8)

for the approximate solution of the initial value problem (1).

We are interested to study the existence and uniqueness of a bounded solution of Crank-Nicholson difference scheme (8)
uniformly with respect to time step � under the assumptions of Theorem 1.2. We have not been able to obtain such result.
Nevertheless, we can establish the such result under assumptions more strong than in the Theorem 1.2.
The method of proof of the main theorem on the existence and uniqueness of a bounded solution of difference scheme (8)

uniformly with respect to � is based on reducing this difference scheme to an equvalent system of nonlinear equations. An
equvalent system of nonlinear equations for the difference scheme (8) is

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

u1k = B
k'1 −

k
∑

m=1Bk−mRf
(

tm −
�
2
, u

1
m+u

1
m−1

2
, u

2
m+u

2
m−1

2

)

�,

u2k = B
k
1'

2 +
k

∑

m=1B
k−m
1 R1

[

f
(

tm −
�
2
, u

1
m+u

1
m−1

2
, u

2
m+u

2
m−1

2

)

− g
(

tm −
�
2
u2m+u

2
m−1

2

)]

�,

u3k = B
k'3 +

k
∑

m=1Bk−mRg
(

tm −
�
2
u2m+u

2
m−1

2

)

�, 1 ≤ k ≤ N

(9)

in C� (H) × C� (H) × C� (H) and the use of successive approximations. Here and in future B = (I − �(�I+A)
2

)R,R = (I +
�(�I+A)

2
)−1, B1 = (I −

�((�+�)I+A)
2

)R1, R1 = (I +
�((�+�)I+A)

2
)−1 and C� (H) = C

(

[0, T ]� ,H
)

stands for the Banach space of the
mesh functions v� =

{

vl
}N
l=0 defined on [0, T ]� with values inH,equipped with the norm

∥ v� ∥C� (H)= max
0≤l≤N

‖

‖

vl‖‖H .
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The recursive formula for the solution of difference scheme (8) is

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ju1k−ju
1
k−1

�
+ � ju

1
k+ju

1
k−1

2
+ A ju1k+ju

1
k−1

2

= −f
(

tk −
�
2
, (j−1)u

1
k+(j−1)u

1
k−1

2
, (j−1)u

2
k+(j−1)u

2
k−1

2

)

,

ju2k−ju
2
k−1

�
+ (� + �) ju

2
k+ju

2
k−1

2
+ A ju2k+ju

2
k−1

2

= f
(

tk −
�
2
, (j−1)u

1
k+(j−1)u

1
k−1

2
, (j−1)u

2
k+(j−1)u

2
k−1

2

)

− g
(

tk −
�
2
, (j−1)u

2
k+(j−1)u

2
k−1

2

)

,

ju3k−ju
3
k−1

�
+ � ju

2
k+ju

2
k−1

2
+ A ju2k+ju

2
k−1

2
= g

(

tk −
�
2
, (j−1)u

2
k+(j−1)u

2
k−1

2

)

,

tk = k�, 1 ⩽ k ⩽ N,N� = T ,

jun0 = '
n, n = 1, 2, 3, j = 1, 2, ...,

0unk = B
k'n, n = 1, 3, 0u2k = B

k'2, 0 ≤ k ≤ N.

(10)

From (9) and (10) it follows
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ju1k = B
k'1 −

k
∑

m=1Bk−mRf
(

tk −
�
2
, (j−1)u

1
k+(j−1)u

1
k−1

2
, (j−1)u

2
k+(j−1)u

2
k−1

2

)

�,

ju2k = B
k
1'

2 +
k

∑

m=1B
k−m
1 R1f

(

tk −
�
2
, (j−1)u

1
k+(j−1)u

1
k−1

2
, (j−1)u

2
k+(j−1)u

2
k−1

2

)

�

−
k

∑

m=1B
k−m
1 R1g

(

tk −
�
2
, (j−1)u

2
k+(j−1)u

2
k−1

2

)

�,

ju3k = B
k'3 +

k
∑

m=1Bk−mRg
(

tk −
�
2
, (j−1)u

2
k+(j−1)u

2
k−1

2

)

, (j − 1) u2k)�,

1 ≤ k ≤ N, j = 1, 2, ...,

0umk = B
k'm, m = 1, 3, 0u2k = B

k'2, 0 ≤ k ≤ N.

(11)

Theorem 2.1. Let the assumptions (2)-(6) be satisfied and 2
(

L1 + L2
)

T < 1 + �(�+�)
2

. Then, there exists a unique solution
u� =

{

uk
}N
k=0 of difference scheme (8) which is bounded in C� (H) × C� (H) × C� (H) of uniformly with respect to �.

Proof. Since u3k does not appear in equations for unk−u
n
k−1

�
, n = 1, 2, it is sufficient to analyze the behaviors of solutions u1k and

u2k of (8). According to the method of recursive approximation (11), we get

unk = 0u
n
k +

∞
∑

i=0

[

(i + 1)unk − iu
n
k

]

, n = 1, 2, (12)

where

0unk =

⎧

⎪

⎨

⎪

⎩

Bk'n, n = 1, 3,

Bk1'
2, n = 2.

(13)

Applying formula (13), estimates
‖B‖H→H ≤ 1, ‖

‖

B1‖‖H→H ≤ 1, (14)
we get
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‖

‖

0unk‖‖H ≤ ‖'n‖H ≤M1. (15)
Applying formula (11), estimates (14) and

‖R‖H→H ≤ 1
1 + �(�+�)

2

, ‖
‖

R1‖‖H→H ≤ 1
1 + �(�+�+�)

2

, (16)

we get

‖1u1k − 0u
1
k‖H ≤

k
∑

m=1

‖

‖

‖

Bk−mR‖‖
‖H→H

‖

‖

‖

‖

‖

‖

f

(

tm −
�
2
,
0u1m + 0u

1

m−1

2
,
0u2m + 0u

2

m−1

2

)

‖

‖

‖

‖

‖

‖H

�

≤M2

k
∑

m=1

�
1 + �(�+�)

2

≤M2
T

1 + �(�+�)
2

,

‖1u2k − 0u
2
k‖H ≤

k
∑

m=1

‖

‖

‖

Bk−m1 R1
‖

‖

‖H→H

[

‖

‖

‖

‖

‖

‖

f

(

tm −
�
2
,
0u1m + 0u

1

m−1

2
,
0u2m + 0u

2

m−1

2

)

‖

‖

‖

‖

‖

‖H

+
‖

‖

‖

‖

‖

‖

g

(

tm −
�
2
,
0u2m + 0u

2

m−1

2

)

‖

‖

‖

‖

‖

‖H

]

�

≤
(

M2 +M3
)

k
∑

m=1

�
1 + �(�+�+�)

2

≤
(

M2 +M3
) T
1 + �(�+�+�)

2
for any k = 1, ⋅ ⋅ ⋅, N. Using the triangle inequality, we get

‖1u1k‖H ≤M1 +
(

M2 +M3
) T
1 + �(�+�)

2

,

‖1u2k‖H ≤M1 +
(

M2 +M3
) T
1 + �(�+�)

2
for any k = 1, ⋅ ⋅ ⋅, N. Applying formula (11), and estimates (14), (16), (4),(2) and (3), we get

‖2u1k − 1u
1
k‖H ≤ �

k
∑

m=1

‖

‖

‖

Bk−mR‖‖
‖H→H

×
‖

‖

‖

‖

‖

‖

f

(

tm −
�
2
,
1u1m + 1u

1

m−1

2
,
1u2m + 1u

2

m−1

2

)

− f

(

tm −
�
2
,
0u1m + 0u

1

m−1

2
,
0u2m + 0u

2

m−1

2

)

‖

‖

‖

‖

‖

‖H

≤
k
∑

m=1

L1�

1 + �(�+�)
2

[

‖

‖

‖

‖

‖

1u1m + 1u
1

m−1

2
−
0u1m + 0u

1

m−1

2

‖

‖

‖

‖

‖H

+
‖

‖

‖

‖

‖

1u2m + 1u
2

m−1

2
−
0u2m + 0u

2
m−1

2

‖

‖

‖

‖

‖H

]

≤
2L1

(

M2 +M3
)

T

1 + �(�+�)
2

k
∑

m=1

�
1 + �(�+�)

2

≤
2
(

L1 + L2
) (

M2 +M3
)

T 2
(

1 + �(�+�)
2

)2
,

‖2u2k − 1u
2
k‖H ≤ �

k
∑

m=1

‖

‖

‖

Bk−m1 R1
‖

‖

‖H→H

×
‖

‖

‖

‖

‖

‖

f

(

tm −
�
2
,
1u1m + 1u

1

m−1

2
,
1u2m + 1u

2

m−1

2

)

− f

(

tm −
�
2
,
0u1m + 0u

1

m−1

2
,
0u2m + 0u

2

m−1

2

)

‖

‖

‖

‖

‖

‖H

+�
k
∑

m=1

‖

‖

‖

Bk−m1 R1
‖

‖

‖H→H

‖

‖

‖

‖

‖

‖

g

(

tm −
�
2
,
1u2m + 1u

2

m−1

2

)

− g

(

tm −
�
2
,
0u2m + 0u

2

m−1

2

)

‖

‖

‖

‖

‖

‖H

≤ L1
k
∑

m=1

�
1 + �(�+�+�)

2

×

[

‖

‖

‖

‖

‖

1u1m + 1u
1

m−1

2
−
0u1m + 0u

1

m−1

2

‖

‖

‖

‖

‖H

+
‖

‖

‖

‖

‖

1u2m + 1u
2

m−1

2
−
0u2m + 0u

2
m−1

2

‖

‖

‖

‖

‖H

]
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+L2
k
∑

m=1

�
1 + �(�+�+�)

2

‖

‖

‖

‖

‖

1u2m + 1u
2

m−1

2
−
0u2m + 0u

2
m−1

2

‖

‖

‖

‖

‖H

≤
(

2L1 + L2
) (

M2 +M3
)

T

1 + �(�+�)
2

k
∑

m=1

�
1 + �(�+�+�)

2

≤
2
(

L1 + L2
) (

M2 +M3
)

T 2
(

1 + �(�+�)
2

)2

for any k = 1, ⋅ ⋅ ⋅, N. Then

‖2unk‖H ≤M1 +
(

M2 +M3
) T
1 + �(�+�)

2

+
2
(

L1 + L2
) (

M2 +M3
)

T 2

(� + �)2
, n = 1, 2

for any k = 1, ⋅ ⋅ ⋅, N. Let

‖junk − (j − 1) u
n
k‖H ≤

2j−1
(

L1 + L2
)j−1 (M2 +M3

)

T j
(

1 + �(�+�)
2

)j , n = 1, 2.

Applying formula (11), estimates (14), (4), (2) and (3), we get

‖ (j + 1) u1k − ju
1
k‖H ≤ �

k
∑

m=1

‖

‖

‖

Bk−mR‖‖
‖H→H

×
‖

‖

‖

‖

‖

‖

f

(

tm −
�
2
,
ju1m + ju

1

m−1

2
,
ju2m + ju

2

m−1

2

)

−f

(

tm −
�
2
,
(j − 1) u1m + (j − 1) u

1

m−1

2
,
(j − 1) u2m + (j − 1) u

2

m−1

2

)

‖

‖

‖

‖

‖

‖H

≤
k
∑

m=1

L1�

1 + �(�+�)
2

×

[

‖

‖

‖

‖

‖

ju1m + ju
1

m−1

2
−
(j − 1) u1m + (j − 1) u

1

m−1

2

‖

‖

‖

‖

‖H

+
‖

‖

‖

‖

‖

ju2m + ju
2

m−1

2
−
(j − 1) u2m + (j − 1) u

2
m−1

2

‖

‖

‖

‖

‖H

]

≤
2L1 ⋅ 2j−1

(

L1 + L2
)j−1 (M2 +M3

)

T j
(

1 + �(�+�)
2

)j

k
∑

m=1

�
1 + �(�+�)

2

≤
(

2
(

L1 + L2
))j (M2 +M3

)

T j+1
(

1 + �(�+�)
2

)j+1
,

‖ (j + 1) u2k − ju
2
k‖H ≤ �

k
∑

m=1

‖

‖

‖

Bk−m1 R1
‖

‖

‖H→H

×
‖

‖

‖

‖

‖

‖

f

(

tm −
�
2
,
ju1m + ju

1

m−1

2
,
ju2m + ju

2

m−1

2

)

−f

(

tm −
�
2
,
(j − 1) u1m + (j − 1) u

1

m−1

2
,
(j − 1) u2m + (j − 1) u

2

m−1

2

)

‖

‖

‖

‖

‖

‖H

+�
k
∑

m=1

‖

‖

‖

Bk−m1 R1
‖

‖

‖H→H

×
‖

‖

‖

‖

‖

‖

g

(

tm −
�
2
,
ju2m + ju

2

m−1

2

)

− f

(

tm −
�
2
,
(j − 1) u2m + (j − 1) u

2

m−1

2

)

‖

‖

‖

‖

‖

‖H

≤
k
∑

m=1

L1�

1 + �(�+�+a)
2
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×

[

‖

‖

‖

‖

‖

ju1m + ju
1

m−1

2
−
(j − 1) u1m + (j − 1) u

1

m−1

2

‖

‖

‖

‖

‖H

+
‖

‖

‖

‖

‖

ju2m + ju
2

m−1

2
−
(j − 1) u2m + (j − 1) u

2
m−1

2

‖

‖

‖

‖

‖H

]

+
k
∑

m=1

L2�

1 + �(�+�+a)
2

‖

‖

‖

‖

‖

ju2m + ju
2

m−1

2
−
(j − 1) u2m + (j − 1) u

2
m−1

2

‖

‖

‖

‖

‖H

≤
(

2L1 + L2
)

2j−1
(

L1 + L2
)j−1 (M2 +M3

)

T j
(

1 + �(�+�)
2

)j

k
∑

m=1

�
1 + �(�+�)

2

≤
(

2
(

L1 + L2
))j (M2 +M3

)

T j+1
(

1 + �(�+�)
2

)j+1

for any k = 1, ⋅ ⋅ ⋅, N. Then
‖ (j + 1) unk‖H ≤M1 +

(

M2 +M3
) T
1 + �(�+�)

2

+
2
(

L1 + L2
) (

M2 +M3
)

T 2

(� + �)2
+ ⋅ ⋅ ⋅ +

(

2
(

L1 + L2
))j (M2 +M3

)

T j+1
(

1 + �(�+�)
2

)j+1
, n = 1, 2

for any k = 1, ⋅ ⋅ ⋅, N. Therefore, for any j, j ≥ 1, we have that

‖ (j + 1) unk − ju
n
k‖H ≤

(

2
(

L1 + L2
))j (M2 +M3

)

T j+1
(

1 + �(�+�)
2

)j+1
, n = 1, 2,

and
‖

‖

(j + 1) unk‖‖H ≤M1 +
(

M2 +M3
) T
1 + �(�+�)

2

+
2
(

L1 + L2
) (

M2 +M3
)

T 2

(� + �)2
+ ⋅ ⋅ ⋅ +

(

2
(

L1 + L2
))j (M2 +M3

)

T j+1
(

1 + �(�+�)
2

)j+1
, n = 1, 2

by mathematical induction. From that and formula (12) it follows that

‖unk‖H ≤ ‖0unk‖H +
∞
∑

i=0
‖(i + 1)unk − iu

n
k‖H

≤M1 +

(

M2 +M3
)

T

1 + �(�+�)
2

∞
∑

i=0

2i
(

L1 + L2
)i T i

(

1 + �(�+�)
2

)i , n = 1, 2

which proves the existence of a bounded solution of difference scheme (8) which is bounded in C� (H) × C� (H) × C� (H) of
uniformly with respect to �. Theorem 2.1 is proved.

A study of discretization, over time only, of the initial value problem also permits one to include general difference schemes
in applications, if the differential operator A is replaced by the difference operator Aℎ that act in the Hilbert spaces and are
uniformly self-adjoint positive definite in ℎ for 0 < ℎ ≤ ℎ0.
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3 APPLICATIONS

First, we consider the initial-boundary value problem for one dimensional system of nonlinear partial differential equations
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

)u1(t,x)
)t

−
(

a(x)u1x (t, x)
)

x + (� + �) u
1(t, x) = −f (t, x; u1 (t, x), u2 (t, x)),

)u2(t,x)
)t

−
(

a(x)u2x (t, x)
)

x + (� + � + �) u
2(t, x)

= f (t, x; u1 (t, x), u2 (t, x)) − g(t, x; u2 (t, x)),

)u3(t,x)
)t

−
(

a(x)u3x (t, x)
)

x + (� + �) u
3(t, x) = g(t, x; u2 (t, x)),

0 < t < T , 0 < x < l,

un(0, x) = 'n(x), 'n(0) = 'n(l), 'mx (0) = '
n
x(l), x ∈ [0, l] , n = 1, 2, 3,

un(t, 0) = un(t, l), unx(t, 0) = u
n
x(t, l), 0 ≤ t ≤ T , n = 1, 2, 3,

(17)

where a(x), '(x) are given sufficiently smooth functions and � > 0 is the sufficiently large number. We will assume that a(x) ≥
a > 0 and a(l) = a(0).
Assume the following hypotheses:

1. 'n, n = 1, 2, 3 belongs toW 2
2 [0, l] and

‖'n‖W 2
2 [0,l]

≤M1. (18)

2. The function f ∶ [0, T ] × [0, l] × L2 [0, l] × L2 [0, l]→ L2 [0, l] be continuous function in t, that is

‖f (t, ⋅, u(t, ⋅), v(t, ⋅))‖L2[0,l] ≤M2 (19)

in [0, T ] × [0, l] × L2 [0, l] × L2 [0, l] and Lipschitz condition holds uniformly with respect to t

‖f (t, ⋅, u, v) − f (t, ⋅, z, w)‖L2[0,l] ≤ L1
[

‖u − z‖L2[0,l] + ‖v −w‖L2[0,l]
]

. (20)

3. The function g ∶ [0, T ] × [0, l] × L2 [0, l]→ L2 [0, l] be continuous function in t, that is

‖g(t, ⋅, u(t, ⋅))‖L2[0,l] ≤M3 (21)

in [0, T ] × [0, l] × L2 [0, l] and Lipschitz condition holds uniformly with respect to t

‖g(t, ⋅, u) − g(t, ⋅, z)‖L2[0,l] ≤ L2‖u − z‖L2[0,l]. (22)

Here and in future, Lm, m = 1, 2,Mm, m = 1, 2, 3 are positive constants.
The discretization of problem (17) is carried out in two steps. In the first step, let us define the grid space

[0, l]ℎ = {x ∶ xr = rℎ, 0 ≤ r ≤ K,Kℎ = l}.
We introduce the Hilbert spaces L2ℎ = L2([0, l]ℎ) and W 2

2ℎ = W 2
2 ([0, l]ℎ) of the grid functions 'ℎ(x) = {'r}K0 defined on

[0, l]ℎ, equipped with the norms

‖

‖

‖

'ℎ‖‖
‖L2ℎ

=

(

∑

x∈[0,l]ℎ

|

|

|

'ℎ(x)||
|

2
ℎ

)1∕2

and

‖

‖

‖

'ℎ‖‖
‖W 2

2ℎ

= ‖

‖

‖

'ℎ‖‖
‖L2ℎ

+

(

∑

x∈[0,l]ℎ

|

|

|

(

'ℎ
)

xx,j
|

|

|

2
ℎ

)1∕2
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respectively. To the differential operator A generated by problem (17), we assign the difference operator Axℎ by the formula

Axℎ'
ℎ(x) = {−(a(x)'x)x,r + �'r}K−11 , (23)

acting in the space of grid functions 'ℎ(x) = {'r}K0 satisfying the conditions '0 = 'K , '1 − '0 = 'K − 'K−1.With the help
of Axℎ, we arrive at the initial value problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

du1ℎ(t,x)
dt

+ �u1ℎ(t, x) + Axℎu
1ℎ(t, x) = −fℎ(t, x; u1ℎ (t, x), u2ℎ (t, x)),

du2ℎ(t,x)
dt

+ (� + �) u2ℎ(t, x) + Axℎu
2ℎ(t, x)

= fℎ(t, x; u1ℎ (t, x), u2ℎ (t, x)) − gℎ(t, x; u2ℎ (t, x)),

du3ℎ(t,x)
dt

+ �u3ℎ(t, x) + Axℎu
3ℎ(t, x) = gℎ(t, x; u2ℎ (t, x)),

0 < t < T , x ∈ [0, l]ℎ,

unℎ(0, x) = 'n(x), n = 1, 2, 3, x ∈ [0, l]ℎ

(24)

for an infinite system of nonlinear ordinary differential equations. In the second step, we replace problem (24) by difference
scheme (8)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u1k−u
1
k−1

�
+ � u

1
k+u

1
k−1

2
+ Axℎ

u1k+u
1
k−1

2
= −fℎ

(

tk −
�
2
, x, u

1
k+u

1
k−1

2
, u

2
k+u

2
k−1

2

)

,

u2k−u
2
k−1

�
+ (� + �) u

2
k+u

2
k−1

2
+ Axℎ

u2k+u
2
k−1

2

= fℎ
(

tk −
�
2
, x, u

1
k+u

1
k−1

2
, u

2
k+u

2
k−1

2

)

− gℎ
(

tk −
�
2
, x, u

2
k+u

2
k−1

2

)

,

u3k−u
3
k−1

�
+ � u

3
k+u

3
k−1

2
+ Axℎ

u3k+u
3
k−1

2
= gℎ

(

tk −
�
2
, x, u

2
k+u

2
k−1

2

)

,

tk = k�, 1 ⩽ k ⩽ N,N� = T , x ∈ [0, l]ℎ,

un0 = '
n, n = 1, 2, 3.

(25)

Theorem 3.1. Let the assumptions (18)-(22) be satisfied and 2
(

L1 + L2
)

T < 1+ �(�+�)
2

. Then, there exists a unique solution
u� =

{

uk
}N
k=0 of difference scheme (25) which is bounded in C�

(

L2ℎ
)

× C�
(

L2ℎ
)

× C�
(

L2ℎ
)

of uniformly with respect to �
and ℎ.
The proof of Theorem 3.1 is based on the abstract Theorem 2.1 and symmetry properties of the difference operatorAxℎ defined

by formula (23).13
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Second, we consider the initial-boundary value problem for one dimensional system of nonlinear partial differential equations
with involution

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

)u1(t,x)
)t

−
(

a(x)u1x (t, x)
)

x − �
(

a(−x)ux (t,−x)
)

x + (� + �) u
1(t, x)

= −f (t, x; u1 (t, x), u2 (t, x)),

)u2(t,x)
)t

−
(

a(x)u2x (t, x)
)

x − �
(

a(−x)ux (t,−x)
)

x + (� + � + �) u
2(t, x)

= f (t, x; u1 (t, x), u2 (t, x)) − g(t, x; u2 (t, x)),

)u3(t,x)
)t

−
(

a(x)u3x (t, x)
)

x − �
(

a(−x)ux (t,−x)
)

x + (� + �) u
3(t, x)

= g(t, x; u2 (t, x)), 0 < t < T ,−l < x < l,

un(0, x) = 'n(x), 'n(−l) = 'n(l) = 0, x ∈ [−l, l] , n = 1, 2, 3,

un(t,−l) = un(t, l) = 0, 0 ≤ t ≤ T , n = 1, 2, 3,

(26)

where a(x), '(x) are given sufficiently smooth functions and � > 0 is the sufficiently large number. We will assume that a ≥
a (x) = a (−x) ≥ � > 0, � − a |�| ≥ 0.
Assume the following hypotheses:

1. 'n, n = 1, 2, 3 belongs toW 2
2 [−l, l] and

‖'n‖W 2
2 [−l,l]

≤M1. (27)

2. The function f ∶ [0, T ] × [−l, l] × L2 [−l, l] × L2 [−l, l]→ L2 [−l, l] be continuous function in t, that is

‖f (t, ⋅, u(t, ⋅), v(t, ⋅))‖L2[−l,l] ≤M2 (28)

in [0, T ] × [−l, l] × L2 [−l, l] × L2 [−l, l] and Lipschitz condition holds uniformly with respect to t

‖f (t, ⋅, u, v) − f (t, ⋅, z, w)‖L2[−l,l] ≤ L1
[

‖u − z‖L2[−l,l] + ‖v −w‖L2[−l,l]
]

. (29)

3. The function g ∶ [0, T ] × [−l, l] × L2 [−l, l]→ L2 [−l, l] be continuous function in t, that is

‖g(t, ⋅, u(t, ⋅))‖L2[0,l] ≤M3 (30)

in [0, T ] × [−l, l] × L2 [−l, l] and Lipschitz condition holds uniformly with respect to t

‖g(t, ⋅, u) − g(t, ⋅, z)‖L2[−l,l] ≤ L2‖u − z‖L2[−l,l]. (31)

The discretization of problem (26) is carried out in two steps. In the first step, let us define the grid space

[−l, l]ℎ = {x ∶ xr = rℎ,−K ≤ r ≤ K,Kℎ = l}.
We introduce the Hilbert spaces L2ℎ = L2([−l, l]ℎ) andW 2

2ℎ = W
2
2 ([−l, l]ℎ) of the grid functions 'ℎ(x) = {'r}K−K defined on

[−l, l]ℎ, equipped with the norms

‖

‖

‖

'ℎ‖‖
‖L2ℎ

=

(

∑

x∈[−l,l]ℎ

|

|

|

'ℎ(x)||
|

2
ℎ

)1∕2

and

‖

‖

‖

'ℎ‖‖
‖W 2

2ℎ

= ‖

‖

‖

'ℎ‖‖
‖L2ℎ

+

(

∑

x∈[−l,l]ℎ

|

|

|

(

'ℎ
)

xx,j
|

|

|

2
ℎ

)1∕2

respectively. To the differential operator A generated by problem (26), we assign the difference operator Axℎ by the formula

Axℎ'
ℎ(x) = {−(a(x)'x(x))x,r − �

(

a(−x)'x(−x)
)

x,r + �'
r}K−1−K+1, (32)
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acting in the space of grid functions 'ℎ(x) = {'r}K−K satisfying the conditions '−K = 'K = 0.With the help of Axℎ, we arrive
at the initial value problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

du1ℎ(t,x)
dt

+ �u1ℎ(t, x) + Axℎu
1ℎ(t, x) = −fℎ(t, x; u1ℎ (t, x), u2ℎ (t, x)),

du2ℎ(t,x)
dt

+ (� + �) u2ℎ(t, x) + Axℎu
2ℎ(t, x)

= fℎ(t, x; u1ℎ (t, x), u2ℎ (t, x)) − gℎ(t, x; u2ℎ (t, x)),

du3ℎ(t,x)
dt

+ �u3ℎ(t, x) + Axℎu
3ℎ(t, x) = gℎ(t, x; u2ℎ (t, x)), 0 < t < T , x ∈ [−l, l]ℎ,

unℎ(0, x) = 'n(x), n = 1, 2, 3, x ∈ [−l, l]ℎ

(33)

for an infinite system of nonlinear ordinary differential equations. In the second step, we replace problem (33) by difference
scheme (8)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u1k−u
1
k−1

�
+ � u

1
k+u

1
k−1

2
+ Axℎ

u1k+u
1
k−1

2
= −fℎ

(

tk −
�
2
, x, u

1
k+u

1
k−1

2
, u

2
k+u

2
k−1

2

)

,

u2k−u
2
k−1

�
+ (� + �) u

2
k+u

2
k−1

2
+ Axℎ

u2k+u
2
k−1

2

= fℎ
(

tk −
�
2
, x, u

1
k+u

1
k−1

2
, u

2
k+u

2
k−1

2

)

− gℎ
(

tk −
�
2
, x, u

2
k+u

2
k−1

2

)

,

u3k−u
3
k−1

�
+ � u

3
k+u

3
k−1

2
+ Axℎ

u3k+u
3
k−1

2
= gℎ

(

tk −
�
2
, x, u

2
k+u

2
k−1

2

)

,

tk = k�, 1 ⩽ k ⩽ N,N� = T , x ∈ [−l, l]ℎ,

un0 = '
n, n = 1, 2, 3.

(34)

Theorem 3.2. Let the assumptions (27)-(31) be satisfied and 2
(

L1 + L2
)

T < 1+ �(�+�)
2

. Then, there exists a unique solution
u� =

{

uk
}N
k=0 of difference scheme (34) which is bounded in C�

(

L2ℎ
)

× C�
(

L2ℎ
)

× C�
(

L2ℎ
)

of uniformly with respect to �
and ℎ.
The proof of Theorem 3.2 is based on the abstract Theorem 2.1 and symmetry properties of the difference operatorAxℎ defined

by formula (32).14
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Third, let Ω ⊂ Rn be a bounded open domain with smooth boundary S, Ω = Ω ∪ S. In [0, T ] × Ω we consider the
initial-boundary value problem for multidimensional system of nonlinear partial differential equations

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

)u1(t,x)
)t

−
n
∑

r=1
(ar(x)u1xr)xr + (� + �) u

1(t, x)

= −f (t, x; u1 (t, x), u2 (t, x)),

)u2(t,x)
)t

−
n
∑

r=1
(ar(x)u2xr)xr + (� + � + �) u

2(t, x)

= f (t, x; u1 (t, x), u2 (t, x)) − g(t, x; u2 (t, x)),

)u3(t,x)
)t

−
n
∑

r=1
(ar(x)u3xr)xr + (� + �) u

3(t, x)

= g(t, x; u2 (t, x)), 0 < t < T , x = (x1, ..., xn) ∈ Ω,

um(0, x) = 'm(x), x ∈ Ω, m = 1, 2, 3,

um(t, x) = 0, 0 ≤ t ≤ T , x ∈ S,m = 1, 2, 3,

(35)

where ar(x) and 'm(x) are given sufficiently smooth functions and � > 0 is the sufficiently large number and ar(x) > 0.
Assume the following hypotheses:

1. 'm, m = 1, 2, 3 belongs to L2(Ω) and
‖'m‖W 2

2 (Ω)
≤M1. (36)

2. The function f ∶ [0, T ] × [0, l] × L2(Ω) × L2(Ω)→ L2(Ω) be continuous function in t, that is

‖f (t, ⋅, u(t, ⋅), v(t, ⋅))‖L2(Ω) ≤M2 (37)

in [0, T ] × [0, l] × L2(Ω) × L2(Ω) and Lipschitz condition holds uniformly with respect to t

‖f (t, ⋅, u, v) − f (t, ⋅, z, w)‖L2(Ω) ≤ L1
[

‖u − z‖L2(Ω) + ‖v −w‖L2(Ω)
]

. (38)

3. The function g ∶ [0, T ] × [0, l] × L2(Ω)→ L2(Ω) be continuous function in t, that is

‖g(t, ⋅, u(t, ⋅))‖L2(Ω) ≤M3 (39)

in [0, T ] × [0, l] × L2(Ω) and Lipschitz condition holds uniformly with respect to t

‖g(t, ⋅, u) − g(t, ⋅, z)‖L2(Ω) ≤ L2‖u − z‖L2(Ω). (40)

The discretization of problem (35) is also carried out in two steps. In the first step, let us define the grid sets

Ωℎ =
{

x = xr = (ℎ1r1, ..., ℎmrm), r = (r1, ..., rm),
0 ≤ rj ≤ Nj , ℎjNj = 1, j = 1, ..., m,

}

,

Ωℎ = Ωℎ ∩ Ω, Sℎ = Ωℎ ∩ S.
We introduce the Banach spaces L2ℎ = L2(Ωℎ) andW 2

2ℎ = W
2
2 (Ωℎ) of the grid functions '

ℎ(x) =
{

'(ℎ1r1, ..., ℎmrm)
}

defined
on Ωℎ, equipped with the norms

‖

‖

‖

'ℎ‖‖
‖L2ℎ

=
⎛

⎜

⎜

⎝

∑

x∈Ωℎ

|

|

|

'ℎ(x)||
|

2
ℎ1 ⋅ ⋅ ⋅ ℎm

⎞

⎟

⎟

⎠

1∕2
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and

‖

‖

‖

'ℎ‖‖
‖W2ℎ

= ‖

‖

‖

'ℎ‖‖
‖L2ℎ

+
⎛

⎜

⎜

⎝

∑

x∈Ωℎ

m
∑

r=1

|

|

|

(

'ℎ
)

xrxr,jr
|

|

|

2
ℎ1 ⋅ ⋅ ⋅ ℎm

⎞

⎟

⎟

⎠

1∕2

respectively. To the differential operator A generated by problem (35), we assign the difference operator Axℎ by the formula

Axℎu
ℎ
x = −

m
∑

r=1

(

ar(x)uℎxr

)

xr,jr
(41)

acting in the space of grid functions uℎ(x), satisfying the conditions uℎ(x) = 0 for all x ∈ Sℎ. It is known thatAxℎ is a self-adjoint
positive definite operator in L2(Ωℎ).With the help of Axℎ, we arrive at the initial value problem

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

du1ℎ(t,x)
dt

+ �u1ℎ(t, x) + Axℎu
1ℎ(t, x) = −fℎ(t, x; u1ℎ (t, x), u2ℎ (t, x)),

du2ℎ(t,x)
dt

+ (� + �) u2ℎ(t, x) + Axℎu
2ℎ(t, x)

= fℎ(t, x; u1ℎ (t, x), u2ℎ (t, x)) − gℎ(t, x; u2ℎ (t, x)),

du3ℎ(t,x)
dt

+ �u3ℎ(t, x) + Axℎu
3ℎ(t, x) = gℎ(t, x; u2ℎ (t, x)), 0 < t < T , x ∈ Ωℎ,

umℎ(0, x) = 'm(x), m = 1, 2, 3, x ∈ Ωℎ

(42)

for an infinite system of nonlinear ordinary differential equations. In the second step, we replace problem (42) by difference
scheme (8)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

u1k−u
1
k−1

�
+ � u

1
k+u

1
k−1

2
+ Axℎ

u1k+u
1
k−1

2
= −fℎ

(

tk −
�
2
, x, u

1
k+u

1
k−1

2
, u

2
k+u

2
k−1

2

)

,

u2k−u
2
k−1

�
+ (� + �) u

2
k+u

2
k−1

2
+ Axℎ

u2k+u
2
k−1

2

= fℎ
(

tk −
�
2
, x, u

1
k+u

1
k−1

2
, u

2
k+u

2
k−1

2

)

− gℎ
(

tk −
�
2
, x, u

2
k+u

2
k−1

2

)

,

u3k−u
3
k−1

�
+ � u

3
k+u

3
k−1

2
+ Axℎ

u3k+u
3
k−1

2
= gℎ

(

tk −
�
2
, x, u

2
k+u

2
k−1

2

)

,

tk = k�, 1 ⩽ k ⩽ N,N� = T , x ∈ Ωℎ,

um0 = '
m, m = 1, 2, 3.

(43)

Theorem 3.3. Let the assumptions (36)-(40) be satisfied and 2
(

L1 + L2
)

T < 1+ �(�+�)
2

. Then, there exists a unique solution
u� =

{

uk
}N
k=0 of difference scheme (43) which is bounded in C�

(

L2ℎ
)

× C�
(

L2ℎ
)

× C�
(

L2ℎ
)

of uniformly with respect to �
and ℎ.
The proof of Theorem 3.4 is based on the abstract Theorem 3.1 and symmetry properties of the difference operatorAxℎ defined

by formula (41) and the following theorem on coercivity inequality for the solution of the elliptic problem in L2ℎ.
Theorem 3.4. For the solutions of the elliptic difference problem

{

Axℎv
ℎ(x) = gℎ(x), x ∈ Ωℎ,
vℎ(x) = 0, x ∈ Sℎ

the following coercivity inequality
m
∑

r=1

‖

‖

‖

vℎxrxr,jr
‖

‖

‖L2ℎ
≤M ‖

‖

‖

gℎ‖‖
‖L2ℎ

.

holds.15
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Fourth, in [0, T ] × Ω we consider the initial-boundary value problem for multidimensional system of nonlinear partial
differential equations

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

)u1(t,x)
)t

−
n
∑

r=1
(ar(x)u1xr)xr + (� + �) u

1(t, x) = −f (t, x; u1 (t, x), u2 (t, x)),

)u2(t,x)
)t

−
n
∑

r=1
(ar(x)u2xr)xr + (� + � + �) u

2(t, x)

= f (t, x; u1 (t, x), u2 (t, x)) − g(t, x; u2 (t, x)),

)u3(t,x)
)t

−
n
∑

r=1
(ar(x)u3xr)xr + (� + �) u

3(t, x)

= g(t, x; u2 (t, x)), 0 < t < T , x = (x1, ..., xn) ∈ Ω,

um(0, x) = 'm(x), x ∈ Ω, m = 1, 2, 3,

)u
)⃗p
(t, x) = 0, 0 ≤ t ≤ T , x ∈ S,m = 1, 2, 3,

(44)

where ar(x) and 'm(x) are given sufficiently smooth functions and � > 0 is the sufficiently large number and ar(x) > 0. Here, ⃖⃗p
is the normal vector to Ω.
The discretization of problem (44) is also carried out in two steps. In the first step, to the differential operator A generated by

problem (44), we assign the difference operator Axℎ by the formula

Axℎu
ℎ
x = −

m
∑

r=1

(

ar(x)uℎxr

)

xr,jr
+ �uℎ(x) (45)

acting in the space of grid functions uℎ(x), satisfying the conditions Dℎuℎ(x) = 0 for all x ∈ Sℎ. Here Dℎ is the approximation
of operator )

)⃖⃗p
. It is known that Axℎ is a self-adjoint positive definite operator in L2(Ωℎ). With the help of Axℎ, we arrive at

the initial value problem (42) for an infinite system of nonlinear ordinary differential equations. In the second step, we replace
problem (42) by difference scheme (8), we get difference scheme (43).
Theorem 3.5. Let the assumptions (36)-(40) be satisfied and 2

(

L1 + L2
)

T < 1+ �(�+�)
2

. Then, there exists a unique solution
u� =

{

uk
}N
k=0 of difference scheme (43) which is bounded in C�

(

L2ℎ
)

× C�
(

L2ℎ
)

× C�
(

L2ℎ
)

of uniformly with respect to �
and ℎ.
The proof of Theorem 3.5 is based on the abstract Theorem 2.1 and symmetry properties of the difference operatorAxℎ defined

by formula (45) and the following theorem on coercivity inequality for the solution of the elliptic problem in L2ℎ.
Theorem 3.6. For the solutions of the elliptic difference problem

{

Axℎv
ℎ(x) = gℎ(x), x ∈ Ωℎ,

Dℎvℎ(x) = 0, x ∈ Sℎ
the following coercivity inequality holds.15

m
∑

r=1

‖

‖

‖

vℎxrxr,jr
‖

‖

‖L2ℎ
≤M ‖

‖

‖

gℎ‖‖
‖L2ℎ

.
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4 NUMERICAL RESULTS

In present section, we consider the initial-boundary value problem
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

)u1 (t,x)
)t

− � + �u1 (t, x) − � )
2u1 (t,x)
)x2

= −� + (−1 + � + �) e−t sin x − sin
(

u1 (t, x)u2 (t, x) − e−2t sin2 x
)

,

)u2 (t,x)
)t

+ (� + �)u2 (t, x) − d )
2u2 (t,x)
)x2

= (−1 + � + � + d) e−t sin x

+ sin
(

u1 (t, x)u2 (t, x) − e−2t sin2 x
)

− cos
(

u2 (t, x) − e−t sin x
)

,

)u3 (t,x)
)t

+ �u1 (t, x) −  )
2u1 (t,x)
)x2

= (−1 + � + ) e−t sin x

+cos
(

u2 (t, x) − e−t sin x
)

, 0 < t < 1, 0 < x < �,

um(0, x) = sin (x) , 0 ≤ x ≤ �,m = 1, 2, 3,

um(t, 0) = um(t, �) = 0, 0 ≤ t ≤ 1, m = 1, 2, 3

(46)

for the system of nonlinear partial differential equations. The spatial factor, x, can be spatially discrete or spatially continuous. In
either case, the spatial factor is used to describe the mobility of the population. This mobility can be due to travel and migration,
and it could be between cities, towns or even countries, depending on the studied case. The exact solution of problem (46) is
um (t, x) = e−t sin x, m = 1, 2, 3.

We consider the first order of accuracy iterative difference scheme

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ju1,kn −ju1,k−1n

�
+ �ju1,kn − � ju

1,k
n+1−2(ju1,kn )+ju1,kn−1

ℎ2

= (−1 + � + �) e−tk sin xn − sin
(

(j − 1) u1,kn (j − 1) u
2,k

n − e−2tk sin2 xn
)

,

ju2,kn −ju2,k−1n

�
+ (� + �) ju2,kn − d ju

2,k
n+1−2(ju2,kn )+ju2,kn−1

ℎ2
= (−1 + � + � + d) e−tk sin xn

+ sin
(

(j − 1) u1,kn (j − 1) u
2,k

n − e−2tk sin2 xn
)

− cos
(

(j − 1) u2,kn − e−tk sin xn
)

,

ju3,kn −ju3,k−1n

�
+ �ju3,kn −  ju

3,k
n+1−2(ju3,kn )+ju3,kn−1

ℎ2
= (−1 + � + ) e−tk sin xn

+cos
(

(j − 1) u2,kn − e−tk sin xn
)

,

tk = k�, 1 ≤ k ≤ N,N� = 1, xn = nℎ, 1 ≤ n ≤M − 1,Mℎ = �,

jum,0n = 'm(xn), ju
m,k
0 = jum,kM = 0, 0 ≤ k ≤ N,m = 1, 2, 3, j = 1, 2, ⋅ ⋅ ⋅,

0um,kn , 0 ≤ k ≤ N, 0 ≤ n ≤M,m = 1, 2, 3 is given

(47)
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and the second order of accuracy iterative Crank-Nicholson difference scheme
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ju1,kn −ju1,k−1n

�
+ � ju

1,k
n +ju1,k−1n

2
− � ju

1,k
n+1−2(ju1,kn )+ju1,kn−1

2ℎ2
− � ju

1,k−1
n+1 −2(ju1,k−1n )+ju1,k−1n−1

2ℎ2

= (−1 + � + �) e−
(

tk−
�
2

)

sin xn

− sin
(

(j−1)u1,kn +(j−1)u1,k−1n

2
(j−1)u2,kn +(j−1)u2,k−1n

2
− e−2

(

tk−
�
2

)

sin2 xn

)

,

ju2,kn −ju2,k−1n

�
+ (� + �) ju

2,k
n +ju2,k−1n

2
− d ju

2,k
n+1−2(ju2,kn )+ju2,kn−1

2ℎ2
− d ju

2,k−1
n+1 −2(ju2,k−1n )+ju2,k−1n−1

2ℎ2

= (−1 + � + � + d) e−
(

tk−
�
2

)

sin xn

+ sin
(

(j−1)u1,kn +(j−1)u1,k−1n

2
(j−1)u2,kn +(j−1)u2,k−1n

2
− e−2

(

tk−
�
2

)

sin2 xn

)

−cos
(

(j−1)u2,kn +(j−1)u2,k−1n

2
− e−

(

tk−
�
2

)

sin xn

)

,

ju3,kn −ju3,k−1n

�
+ � ju

3,k
n +ju3,k−1n

2
−  ju

3,k
n+1−2(ju3,kn )+ju3,kn−1

2ℎ2
−  ju

3,k−1
n+1 −2(ju3,k−1n )+ju3,k−1n−1

2ℎ2

= (−1 + � + ) e−
(

tk−
�
2

)

sin xn + cos
(

(j−1)u2,kn +(j−1)u2,k−1n

2
− e−

(

tk−
�
2

)

sin xn

)

,

tk = k�, 1 ≤ k ≤ N,N� = 1, xn = nℎ, 1 ≤ n ≤M − 1,Mℎ = �,

jum,0n = 'm(xn), ju
m,k
0 = jum,kM = 0, 0 ≤ k ≤ N,m = 1, 2, 3, j = 1, 2, ⋅ ⋅ ⋅,

0um,kn , 0 ≤ k ≤ N, 0 ≤ n ≤M,m = 1, 2, 3 is given

(48)

for the approximate solution of the initial-boundary value problem (46) for the system of nonlinear parabolic equations. Here
and in future j denotes the iteration index and an initial guess 0ukn , k ≥ 1, 0 ≤ n ≤ M is to be made. For solving difference
schemes (48), the numerical steps are given below. For 0 ≤ k < N, 0 ≤ n ≤M the algorithm is as follows:10
1. j = 1.
2. j−1ukn is known.
3. jukn is calculated.
4. If the max absolute error between j−1ukn and jukn is greater than the given tolerance value, take j = j + 1 and go to step 2.

Otherwise, terminate the iteration process and take jukn as the result of the given problem. The errors are computed by

(jEm)NM = max
1≤k≤N,1≤n≤M−1

|

|

|

um(tk, xn) − (jum)
k
n
|

|

|

, m = 1, 2, 3 (49)

of the numerical solutions, where um(tk, xn) , m = 1, 2, 3 represents the exact solution and (jum)kn , m = 1, 2, 3 represents the
numerical solution at (tk, xn) and the results are given in the following table

(jEm)NM N =M = 20 N =M = 40 N =M = 80
m = 1 0.0068, j=6 0.0032, j=6 0.0016, j=6
m = 2 0.0071, j=6 0.0033, j=6 0.0016, j=6
m = 3 0.0073, j=6 0.0034, j=6 0.0017, j=6

(50)

(jEm)NM N =M = 20 N =M = 40 N =M = 80
m = 1 3.4708e-6, j=7 5.4645e-6, j=7 6.9510e-6, j=7
m = 2 1.3882e-5, j=7 2.1857e-5, j=7 2.7803e-5, j=7
m = 3 5.5516e-5, j=7 8.7420e-5, j=7 1.1120e-4, j=7

(51)
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As it is seen in Table 50 and Table 51, we get some numerical results. IfN andM are doubled, the value of errors in the first
order of accuracy difference scheme decrease by a factor of 1∕2, the errors in the second order of accuracy difference schemes
(48) decrease approximately by a factor of 1∕4. The errors presented in the tables indicate the stability of the difference schemes
and the accuracy of the results. Thus, the second order of accuracy difference scheme increases faster than the first order of
accuracy difference scheme.

5 CONCLUSIONS

In the present paper, the initial boundary value problem for the nonlinear system of parabolic equations observing epidemic
models with general nonlinear incidence rate is investigated.

The main theorem on the existence and uniqueness of a bounded solution of Crank-Nicholson difference scheme uniformly
with respect to time step � is established. Applications of the theoretical results are presented for the four systems of one and
multidimensional problems with different boundary conditions. Numerical results are given.
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