
Received 23 April 2020; Revised: 00 Month 0000 Accepted: 00 Month 0000

DOI: xxx/xxxx

RESEARCH ARTICLE

Adaptive hybrid steepest descent algorithms involving an inertial
extrapolation term for split monotone variational inclusion
problems

Zheng Zhou | Bing Tan | Songxiao Li*

Institute of Fundamental and Frontier
Sciences, University of Electronic Science
and Technology of China, Chengdu, China

Correspondence
Songxiao Li, Institute of Fundamental and
Frontier Sciences, University of Electronic
Science and Technology of China, Chengdu,
China.
Email: jyulsx@163.com
MSC Classification:47H10; 47J25; 65K10;
65Y10; 90C25

In this paper, we discuss the split monotone variational inclusion problem and pro-
pose two new inertial algorithms in infinite-dimensional Hilbert spaces. As well as,
the iterative sequence by the proposed algorithms converges strongly to the solution
of a certain variational inequality with the help of the hybrid steepest descent method.
Furthermore, an adaptive step size criterion is considered in suggested algorithms
to avoid the difficulty of calculating the operator norm. Finally, some numerical
experiments show that our algorithms are realistic and summarize the known results.
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1 INTRODUCTION

As one of the important generalized forms of convex feasibility problems, the split feasibility problem (shortly, SFP) was intro-
duced by Censor and Elfving1 in 1994 and used to model inverse problems in phase retrievals and medical image reconstruction.
In fact, the SFP is also used in signal recovery, computer tomography, radiation therapy treatment planning, etc.; for further
detail, see2,3,4 and the references therein. At the same time, many good algorithms and excellent convergence results have been
produced in the study of the approximate solution of the SFP, among which the CQmethod given by Byrne5 is the most familiar
iterative method. Further research, the feasible sets in the SFP are often considered as other forms, such as the fixed point set
of nonlinear mappings, the solution set of variational inequality problems, the solution set of equilibrium problems, the solu-
tion set of inclusion problem and so on. Consequently, Moudafi6 introduced the split monotone variational inclusion problem
(shortly, SMVIP) that is formulated as follows:

Find x ∈ 1, such that 0 ∈ f1(x) + B1(x) and 0 ∈ f2(Ax) + B2(Ax),

where 1 and 2 are Hilbert spaces, f1 ∶ 1 → 1 and f2 ∶ 2 → 2 are single-valued mappings, B1 ∶ 1 → 21 and
B2 ∶ 2 → 22 are set-valued maximal monotone mappings, A ∶ 1 → 2 is a bounded linear operator. By means of Byrne’s
CQ method, Moudafi suggested the following iterative algorithm: for arbitrary x1 ∈ 1, 
 > 0, xn+1 = JB1
 (I − 
f1)(xn −
�A∗(I − JB2
 (I − 
f2))Axn), n ≥ 1, where JBi
 is resolvent operator of Bi and is defined by JBi
 = (I + 
Bi)−1 for 
 > 0 and
i = 1, 2,A∗ is the adjoint operator ofA and I is an identity mapping. Meanwhile, the generated sequence {xn} converges weakly
to a solution of the SMVIP under mild assumptions. It should be emphasized that the SMVIP also covers many split problem,
such as the split variational inclusion problem, the split variational inequality problem, the split minimization problem and the
split feasibility problem; for more detail, see Sect. 5.
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Specifically, in this case that f1 ≡ 0 ≡ f2, B1 = NC1 and B2 = NQ1 (NC1 and NQ1 are normal cone of C1 and Q1,
respectively), the SMVIP is viewed as the SFP, that is,

find x ∈ C1 such that Ax ∈ Q1, (1)

whereC1 andQ1 are nonempty closed convex subsets of1 and2, respectively. From the perspective of optimization problems,
the SFP can also be described as a constrained optimization problem as follows:

min
x∈C1

1
2
‖Ax − PQ1(Ax)‖

2.

For convenience, take the objective function F (x) = 1
2
‖Ax−PQ1(Ax)‖

2. Obviously, F is continuously differentiable, its gradient
is given by ∇F (x) = A∗

(

I − PQ1
)

A(x) and ∇F is ‖A‖2-Lipschitz continuous. The gradient projection method is used to deal
with this problem and the following iterative scheme is generated:

xn+1 = PC1
(

I − �A∗
(

I − PQ1
)

A
)

xn, n ≥ 1, (2)

where � is a constant in (0, 2
‖A‖2

). Generally, suppose that1 ∶= RN ,2 ∶= RM ,A is a realM byN matrix andA∗ = AT (AT is
the transposition ofA). So∇F is �(ATA)-Lipschitz continuous (�(ATA) is the spectral radius of the matrixATA) and Algorithm
2 is exactly the CQ algorithm proposed by Byrne.5 Thanks to the iterative form generated by the gradient projection method,
López et al.7 constructed an adaptive step size sequence {�n} to replace � in Algorithm 2, that is, �n ∶=

�nF (xn)
‖∇F (xn)‖2

with �n ∈ (0, 4).
This variable step size increases the practicability of the algorithm in applications, especially when it is not easy or possible
to calculate the norm of A and the spectral radius of ATA. Recently, Yao et al.8 introduced a weakly convergent algorithm
for solving the SMVIP by using the idea of this step size. But, a common flaw in5,6,8 is that they can only guarantee the weak
convergence of the algorithm. Naturally, an interesting question is how to construct a strongly convergent algorithm with an
adaptive step size criterion that approximates the solution of the SMVIP.
In fact, the strong convergence of iterative sequences is better than the weak convergence for some applications in an infinite-

dimensional Hilbert space, for example, CT reconstruction and machine learning. One of the most familiar strong convergence
algorithms is the viscosity algorithm introduced by Moudafi9 in 2000 which is implemented by using a contraction mapping
embedded in the Krasnosel’skii-Mann iterative algorithm. Further, Marino and Xu10 proposed a general viscosity algorithm by
combining a contraction mapping and a strongly positive bounded linear operator. Meanwhile, the generated sequence converges
strongly to the unique solution of a variational inequality, which is also the solution of a convex minimization problem. In
addition, Yamada11 introduced the hybrid steepest descent method for solving a variational inequality problem over the fixed
point set of a nonexpansive mapping. The resulting sequence also converges in norm to the unique solution of a variational
inequality. Inspiration from the above work, Tian12 suggested a strongly convergent algorithm by combining a contraction
mapping and a Lipschitz continuous and strongly monotone mapping.
On the other hand, based on the idea of the implicit discretization of a differential system of the second-order in time, Alvarez

and Attouch in13 gave an implicit weakly convergent algorithm to approximate a solution of the variational inclusion problem:

0 ∈ xn+1 − xn − �n(xn − xn−1) + 
nB(xn+1),

which can also be expressed as the following explicit iterative form:

xn+1 = JB
n
(

xn + �n(xn − xn−1)
)

, (IPPA)

where B ∶  → 2 is a maximal monotone mapping, JB
n is the resolvent operator of B, for 
n ≥ 
 > 0. Such an algorithm is
called the inertial proximal point algorithm (for short, IPPA), and �n(xn − xn−1) is referred to as the inertial extrapolation term
of IPPA. By means of this design, the iterative sequence {xn} can quickly converge to a solution of the variational inclusion
problem. At the same time, the inertial technique plays an important role in accelerating the convergence speed of the algorithm
for solving other mathematical problems, such as the split monotone variational inclusion problem,8 the variational inequality
problem,14,15 the split common fixed point problem16,17 and references therein.
Based on the above results, two novel strongly convergent inertial algorithms are proposed for solving the split monotone

variational inclusion problem in infinite-dimensional Hilbert spaces. To bemore precise, our contribution in this paper is twofold.
The first one is that these two algorithms combine the hybrid steepest descent method and the inertial method. Thus, the strong
convergence and fast convergence behavior of the suggested algorithms are guaranteed and implemented. The second one is that
a variable step size is chosen in our algorithms, which is generated adaptively by calculating each iteration. Furthermore, this
step size criterion effectively overcomes the case that the operator norm is not easy to calculate in the iteration process.
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The rest of the article is organized as follows. Sect. 2 introduces some basic definitions and useful lemmas to explain the
subsequent proofs. In Sect. 3, we give two new algorithms, namely Algorithms 1 and 2. Then in Sect. 4, the main results are
presented and the corresponding proofs are given. In addition, some theoretical applications to other split problems are presented
in Sect. 5. Finally, in Sect. 6, some numerical experiments including signal recovery problems are given to characterize the
validity of Algorithms 1 and 2 and to compare known algorithms.

2 PRELIMINARIES

This section will provide some relevant definitions and useful lemmas for the proofs in Sects. 3 and 4. First of all, assume that
 is a Hilbert space embedded with the inner product ⟨⋅, ⋅⟩ and the induced norm ‖ ⋅ ‖ and C is a nonempty closed convex
subset of . The notations xn → x and xn ⇀ x represent strong convergence and weak convergence of the sequence {xn} to
x, respectively. The symbol F ix(T ) denotes all fixed points of a mapping T . Let B ∶  → 2 be a set-valued mapping with
domain D(B) = {x ∈  ∶ B(x) ≠ ∅} and graph G(B) = {(x,w) ∈  × ∶ x ∈ D(B), w ∈ B(x)}. Recall that a mapping
B ∶  → 2 is monotone if and only if ⟨x − y,w − v⟩ ≥ 0 for any w ∈ B(x) and v ∈ B(y). Further, a monotone mapping
B ∶  → 2 is maximal, that is, G(B) is not properly contained in the graph of any other monotone mapping. In this case, B
is a maximal monotone mapping if and only if for any (x,w) ∈ G(B) and (y, v) ∈  ×, ⟨x− y,w− v⟩ ≥ 0 implies v ∈ B(y).

Definition 1. The metric projection of  onto C is denoted by PC , that is, PCx = argminy∈C ‖x − y‖, ∀x ∈ . Meanwhile,
the following conclusions are also true.

⟨PCx − x, PCx − y⟩ ≤ 0,∀y ∈ C ⇔ ‖y − PCx‖2 + ‖x − PCx‖2 ≤ ‖x − y‖2. (3)

For more detail, see Goebel and Reich18 and Kopecká and Reich19. In addition, for any x, y ∈  and � ∈ ℝ, the following
properties are readily available.

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2⟨x, y⟩ ≤ ‖x‖2 + 2⟨y, x + y⟩, (4)
‖�x + (1 − �)y‖2 = �‖x‖2 + (1 − �)‖y‖2 − �(1 − �)‖x − y‖2. (5)

Definition 2. For any x, y ∈ , a mapping T ∶  →  is said to be

(1) contraction, if there exists � ∈ [0, 1) such that

‖Tx − T y‖ ≤ �‖x − y‖.

(2) nonexpansive, if
‖Tx − T y‖ ≤ ‖x − y‖.

(3) L-Lipschitz continuous with L > 0, if
‖Tx − T y‖ ≤ L‖x − y‖.

(4) firmly nonexpansive, if
‖Tx − T y‖2 ≤ ⟨Tx − T y, x − y⟩.

(5) �-averaged with � ∈ (0, 1), if there exists an identity mapping I ∶  →  and a nonexpansive mapping S ∶  →  such
that

T = (1 − �)I + �S.

(6) �-strongly monotone, if there exists � > 0 such that

�‖x − y‖2 ≤ ⟨Tx − T y, x − y⟩.

(7) #-inverse strongly monotone, if there exists # > 0 such that

#‖Tx − T y‖2 ≤ ⟨Tx − T y, x − y⟩.

Remark 1. (i) The firmly nonexpansive mapping is 1-inverse strongly monotone mapping. (ii) The firmly nonexpansive mapping
is 1-Lipschitz continuous mapping, i.e., nonexpansive mapping. (iii) The mapping T is firmly nonexpansive if and only if T is



4 ZHOU ET AL.

1
2
-averaged, i.e., T = 1

2
(I + S). (iv) The #-inverse strongly monotone mapping is 1

#
-Lipschitz continuous mapping. (v) If T is

#-inverse strongly monotone, then �T is #
�
-inverse strongly monotone for � > 0.

Lemma 1 (Crombez20,21). Let T ∶  →  be a nonexpansive mapping. For arbitrary x, y ∈ ,

⟨(x − Tx) − (y − T y), T y − Tx⟩ ≤ 1
2
‖(x − Tx) − (y − T y)‖2

and consequently if p ∈ F ix(T ) then
⟨x − Tx, p − Tx⟩ ≤ 1

2
‖x − Tx‖2.

Lemma 2 (Zhou and Qin22). Let C be a nonempty closed convex subset of  and T ∶ C → C be a nonexpansive mapping
with F ix(T ) ≠ ∅. I − T is demiclosed at zero, that is, for any sequence {xn} ⊂ C , satisfying xn ⇀ x∗ and xn − T (xn) → 0,
then x∗ ∈ F ix(T ).

Lemma 3 (Moudafi6 and Byrne23). (I) The composite of finitely many averaged mappings is averaged;
(II) If the mappings

{

Ti
}N
i=1 are averaged and have a nonempty common fixed point, then

N
⋂

i=1
F ix(Ti) = F ix

(

T1⋯ TN
)

;

(III) T is averaged if and only if its complement I − T is #-inverse strongly monotone for some # > 1
2
;

(IV) If T is averaged andN is a nonexpansive, then (1 − a)T + aN is averaged for some a ∈ (0, 1).

Lemma 4 (Moudafi6). Let f ∶  →  be a mapping and B ∶  → 2 be a maximal monotone mapping. The following
properties hold.

(1) 0 ∈ f (x∗) + B(x∗) if and only if x∗ = JB
 (I − 
f )x
∗, i.e., x∗ ∈ F ix(JB
 (I − 
f )), for 
 > 0;

(2) If f ∶  →  is #-inverse strongly monotone, then JB
 (I − 
f ) is average for 
 ∈ (0, 2#).

Remark 2. From Lemma 4 (1), the solution set of the split monotone variational inclusion problem is characterized as that of
the fixed point problem, i.e.,

Ω = {x∗ ∈ 1 ∶ x∗ ∈ F ix(JB1
 (I − 
f1)) and Ax
∗ ∈ F ix(JB2
 (I − 
f2))} for 
 > 0.

This implies that the solution set Ω is closed and convex.

The following lemma is an improvement of Lemma 3.1 in Yamada11 and Lemma 2.5 in Thong et al.,24 and also plays an
important role in the convergence analysis of our algorithms.

Lemma 5. LetD ∶  →  be a L-Lipschitz continuous and �-strongly monotone mapping with L, � > 0. For any � ∈ (0, 1),
define a mapping K�(x) = (I − ��D)x, ∀x ∈ . If 0 < � < min{ 1

2�
, 2�
L2
}, the following inequality holds:

‖K�(x) −K�(y)‖ ≤ (1 − �(1 −
√

1 − �(2� − �L2)))‖x − y‖, ∀x, y ∈ ,

then K� is a contraction mapping.

Proof. For any x, y ∈ , set D� = �D − I . We have

‖D�x −D�y‖
2 = �2‖Dx −Dy‖2 − 2�⟨Dx −Dy, x − y⟩ + ‖x − y‖2

≤ �2L2‖x − y‖2 − 2��‖x − y‖2 + ‖x − y‖2

= (1 − 2�� + �2L2)‖x − y‖2.

Since 0 < � < min{ 1
2�
, 2�
L2
}, then 0 < 1 − 2�� + �2L2 = 1 − �(2� − �L2) < 1. Further,

‖K�x −K�y‖ ≤ ‖(1 − �)(x − y)‖ + �‖D�x −D�y‖

≤ (1 − �)‖x − y‖ + �
√

1 − �(2� − �L2)‖x − y‖

= (1 − �(1 −
√

1 − �(2� − �L2)))‖x − y‖.

By � ∈ (0, 1) and 0 < 1 − �(2� − �L2) < 1, we get 0 < 1 − �(1 −
√

1 − �(2� − �L2)) < 1, this implies that the mapping K� is
contraction.
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In particular, if D ∶  →  is a L-Lipschitz continuous and �-strongly monotone mapping with L ≥ � > 0 in Lemma 5,
then the following lemma can be obtained by the above proof process.

Lemma 6. LetD ∶  →  be aL-Lipschitz continuous and �-strongly monotone mapping withL ≥ � > 0. For any � ∈ (0, 1),
define a mapping K�(x) = (I − ��D)x, ∀x ∈ . If 0 < � < 2�

L2
, the following inequality holds:

‖K�(x) −K�(y)‖ ≤ (1 − �(1 −
√

1 − �(2� − �L2)))‖x − y‖, ∀x, y ∈ ,

then K� is a contraction mapping.

Lemma 7 (He and Yang25). Suppose that {Sn} and {cn} are sequences of nonnegative real numbers such that

Sn+1 ≤ (1 − an)Sn + anbn and Sn+1 ≤ Sn − cn + dn, n ≥ 1,

where {an}, {bn} and {dn} are real sequences with 0 < an < 1. If
∑∞
n=1 an = ∞, lim

n→∞
dn = 0, and lim

k→∞
cnk = 0 implies

lim sup
k→∞

bnk ≤ 0 ({nk} is any subsequence of {n}). The sequence {Sn} converges to 0 as n→∞.

3 PROPOSED ALGORITHMS

In this section, we state two adaptive algorithms with an inertial extrapolation term for finding approximate solutions of the split
monotone variational inclusion problem. Suppose that the solution setΩ of the SMVIP is nonempty. To begin with, the relevant
assumptions are set as follows:

(A1) 1, 2 are two Hilbert spaces and A ∶ 1 → 2 is a bounded linear operator with adjoint operator A∗;

(A2) f1 ∶ 1 → 1 is a #1-inverse strongly monotone mapping and f2 ∶ 2 → 2 is a #2-inverse strongly monotone mapping;

(A3) B1 ∶ 1 → 21 and B2 ∶ 2 → 22 are two set-valued maximal monotone mappings;

(A4) ℎ ∶ 1 → 1 is a L1-Lipschitz continuous mapping with L1 > 0;

(A5) D ∶ 1 → 1 is a L2-Lipschitz continuous and �-strongly monotone mapping with L2, � > 0.

Meanwhile, settingW1 = J
B1

 (I − 
f1) andW2 = J

B2

 (I − 
f2). In order to ensure the convergence of the proposed algorithms,

the following control conditions need to be satisfied:

(C1) {�n} ⊂ (0, 1) such that limn→∞ �n = 0 and
∑∞
n=1 �n = ∞;

(C2) {�n} ⊂ [0, 1), {�n} ⊂ (0, 1) and limn→∞
�n
�n
‖xn − xn−1‖ = 0;

(C3) 0 < 
 < 2# with # = min{#1, #2};

(C4) 0 ≤ �L1 < � = 1 −
√

1 − �(2� − �L22) and 0 < � < min{
1
2�
, 2�
L22
}.

Algorithm 1
Require: Take arbitrary starting points x0, x1 in1. Choose sequences {�n} ⊂ [0, 1), {�n} and {�n} in (0, 1) and 
, �, � > 0.
1: Set n = 1 and compute un = xn + �n(xn − xn−1) and adaptive step size

�n =

⎧

⎪

⎨

⎪

⎩

�n‖(I −W2)Aun‖2

‖A∗(I −W2)Aun‖2
, Aun ∉ F ix(W2),

0, otherwise.
(6)

2: Compute yn = W1
(

un − �nA∗(I −W2)Aun
)

.
3: If yn = un, then stop. Otherwise, compute xn+1 = �n�ℎ(yn) + (I − �n�D)yn.
4: Set n ∶= n + 1 and return 1.
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Algorithm 2
Require: Two arbitrary starting points x0, x1 in 1. Choose sequences {�n} ⊂ [0, 1), {�n} and {�n} in (0, 1) and 
, �, � > 0.
1: Set n = 1 and compute un = xn + �n(xn − xn−1), zn = W1(un), and adaptive step size

�n =

⎧

⎪

⎨

⎪

⎩

�n‖(I −W2)Azn‖2

‖A∗(I −W2)Azn‖2
, Azn ∉ F ix(W2),

0, otherwise.
(7)

2: Compute yn = zn − �nA∗(I −W2)Azn.
3: If yn = zn = un, then stop. Otherwise, compute xn+1 = �n�ℎ(yn) + (I − �n�D)yn.
4: Set n ∶= n + 1 and return 1.

Lemma 8. The adaptive step size sequence {�n} defined by (6) and (7) is well-defined.

Proof. From Lemma 3 (III) and Lemma 4 (2), we have thatW2 is average and I −W2 is #̄-inverse strongly monotone for #̄ > 1
2
.

Taking x∗ ∈ Ω, i.e., x∗ ∈ F ix(W1), Ax∗ ∈ F ix(W2). According to the definition of (6), we have

‖A∗(I −W2)Aun‖‖un − x∗‖ ≥ ⟨A∗(I −W2)Aun, un − x∗⟩
= ⟨(I −W2)Aun, Aun − Ax∗⟩
≥ #̄‖(I −W2)Aun‖2.

So, when Aun ∉ F ix(W2), we get ‖A∗(I −W2)Aun‖ > 0. This means that the sequence {�n} in (6) is well-defined. Similarly,
{�n} in (7) is also well-defined.

Lemma 9. If yn = un in Algorithm 1, then un is a solution of SMVIP, i.e., un ∈ Ω.

Proof. SinceW1 andW2 are average, it is easy to get thatW1 andW2 are nonexpansive. For any x∗ ∈ Ω, i.e., x∗ ∈ F ix(W1)
and Ax∗ ∈ F ix(W2), it follows from Lemma 1 that

2�n⟨(I −W2)Aun, Aun − Ax∗⟩ = 2�n⟨(I −W2)Aun,W2Aun − Ax∗⟩ + 2�n‖(I −W2)Aun‖2

≥ −�n‖(I −W2)Aun‖2 + 2�n‖(I −W2)Aun‖2

= �n‖(I −W2)Aun‖2.
Further, we have

‖yn − x∗‖2 ≤ ‖un − �nA∗(I −W2)Aun − x∗‖2

= ‖un − x∗‖2 − 2�n⟨A∗(I −W2)Aun, un − x∗⟩ + �2n‖A
∗(I −W2)Aun‖2

= ‖un − x∗‖2 − 2�n⟨(I −W2)Aun, Aun − Ax∗⟩ + �2n‖A
∗(I −W2)Aun‖2

≤ ‖un − x∗‖2 − �n(1 − �n)‖(I −W2)Aun‖2.

(8)

Hence,
‖yn −W1yn‖ ≤ ‖un − �nA∗(I −W2)Aun − yn‖ = �n‖A∗(I −W2)Aun‖. (9)

By virtue of (8), (9) and yn = un, limn→∞ ‖(I −W1)yn‖ = limn→∞ ‖(I −W2)Aun‖ = 0, which implies that un belongs to Ω. In
particular, if �n = 0, the above results also hold.

Lemma 10. If yn = zn = un in Algorithm 2, then un is a solution of SMVIP, i.e., un ∈ Ω.

Proof. Obviously, when �n = 0, un ∈ Ω. On the other hand, using the proof of Lemma 8, we know that I −W2 is #̄-inverse
strongly monotone for #̄ > 1

2
. In the same way, I −W1 is �̄-inverse strongly monotone for �̄ > 1

2
. For any x∗ ∈ Ω, using Lemma

1 and yn = zn = un we get
0 = ⟨un − zn, un − x∗⟩ + ⟨zn − yn, zn − x∗⟩
= ⟨un −W1un, un − x∗⟩ + �n⟨A∗(I −W2)Azn, zn − x∗⟩
= ⟨un −W1un, un − x∗⟩ + �n⟨(I −W2)Azn, Azn − Ax∗⟩
≥ �̄‖(I −W1)un‖2 + �n#̄‖(I −W2)Azn‖2.

Then, limn→∞ ‖(I −W1)un‖ = limn→∞ ‖(I −W2)Azn‖ = 0, which implies that un ∈ Ω.



ZHOU ET AL. 7

4 CONVERGENCE ANALYSIS

In what follows, the convergence analysis of Algorithms 1 and 2 are proved. Moreover, some nontrivial corollaries have also
been proposed for solving the split monotone variational inclusion problem and extend the existing results.

Lemma 11. The iterative sequence {xn} generated by Algorithms 1 and 2 is bounded.

Proof. For any x∗ ∈ Ω, from (8) and Algorithm 1, we get

‖yn − x∗‖2 ≤ ‖un − x∗‖2 − �n(1 − �n)‖(I −W2)Aun‖2.

This implies that ‖yn − x∗‖ ≤ ‖un − x∗‖. Using Lemma 5 and Condition (C4) to get

‖xn+1 − x∗‖ ≤ �n‖�ℎ(yn) − �ℎ(x∗) + �ℎ(x∗) − �Dx∗‖ + ‖(I − �n�D)yn − (I − �n�D)x∗)‖
≤ �n�L1‖yn − x∗‖ + �n‖�ℎ(x∗) − �Dx∗‖ + (1 − �n�)‖yn − x∗‖
≤ [1 − �n(� − �L1)]‖xn − x∗‖ + �n‖�ℎ(x∗) − �Dx∗‖ + �n‖xn − xn−1‖

≤ [1 − �n(� − �L1)]‖xn − x∗‖ + �n(� − �L1)
�n‖�ℎ(x∗) − �Dx∗‖ + �n‖xn − xn−1‖

�n(� − �L1)
.

In view of 0 ≤ �L1 < � and limn→∞
�n
�n
‖xn − xn−1‖ = 0, there exists a non-negative constantM > 0 such that

M∕2 = max
{

‖�ℎ(x∗) − �Dx∗‖
� − �L1

,
�n‖xn − xn−1‖
�n(� − �L1)

}

.

Therefore, the above inequality can be characterized as follows:
‖xn+1 − x∗‖ ≤ [1 − �n(� − �L1)]‖xn − x∗‖ + �n(� − �L1)M

≤ max
{

‖xn − x∗‖,M
}

≤⋯ ≤ max
{

‖x0 − x∗‖,M
}

.
(10)

In addition, by applying the same method as in (8) to Algorithm 2, we also have

‖yn − x∗‖2 ≤ ‖zn − x∗‖2 − �n(1 − �n)‖(I −W2)Azn‖2. (11)

SinceW1 is nonexpansive, then ‖zn − x∗‖ ≤ ‖un − x∗‖. Similarly, we can also obtain the same relation (10) above. To sum up,
the sequence {xn} generated by Algorithms 1 and 2 is bounded. Furthermore, if �n = 0, the above conclusion still holds.

Theorem 1. The iterative sequence {xn} generated by Algorithm 1 converges in norm to a point x∗ = PΩ◦(I − �D + �ℎ)(x∗),
which is also a unique solution of the following variational inequality

⟨(�D − �ℎ)x∗, x − x∗⟩ ≥ 0, ∀x ∈ Ω. (12)

Proof. It follows from Remark 2 that PΩ is well-defined. Using Lemma 5, we have that I − �D is contraction mapping with
coefficient 1 − �. Further, for any x, y ∈ ,

‖(I − �D + �ℎ)x − (I − �D + �ℎ)y‖ ≤ �L1‖x − y‖ + (1 − �)‖x − y‖ = (1 − (� − �L1))‖x − y‖.

By the control condition (C4), we know 0 ≤ �L1 < �. Thus, PΩ◦(I − �D + �ℎ) is a contraction mapping with coefficient
1 − (� − �L1). By virtue of Banach contraction principle, there exists a unique fixed point x∗, i.e., x∗ = PΩ◦(I − �D+ �ℎ)(x∗).
Furthermore, such a solution x∗ is also equivalent to ⟨(�D − �ℎ)x∗, x − x∗⟩ ≥ 0, ∀x ∈ Ω by (3). Besides, from un and (4), we
obtain

‖un − x∗‖2 = ‖xn + �n(xn − xn−1) − x∗‖2

≤ ‖xn − x∗‖2 + 2�n⟨un − x∗, xn − xn−1⟩
≤ ‖xn − x∗‖2 + 2�n‖un − x∗‖‖xn − xn−1‖.

(13)

Because ofW1 is averaged, there exists a constant � ∈ (0, 1) and a nonexpansive mapping S such thatW1 = (1− �)I + �S. By
means of (5), (8) and Δn = un − �nA∗(I −W2)Aun, we have

‖yn − x∗‖2 = ‖(1 − �)Δn + �SΔn − x∗‖2

≤ (1 − �)‖Δn − x∗‖2 + �‖SΔn − x∗‖2 − 2�(1 − �)‖(I − S)Δn‖2

≤ ‖Δn − x∗‖2 − 2�(1 − �)‖(I − S)Δn‖2

≤ ‖un − x∗‖2 − �n(1 − �n)‖(I −W2)Aun‖2 − 2�(1 − �)‖(I − S)Δn‖2.

(14)
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SetHn = �n(1 − �n)‖(I −W2)Aun‖2 + 2�(1 − �)‖(I − S)Δn‖2. From (4) and (13), we have

‖xn+1 − x∗‖2 = ‖�n�(ℎ(yn) − ℎ(x∗)) + �n(�ℎ(x∗) − �Dx∗) + (I − �n�D)yn − (I − �n�D)x∗‖2

≤
[

�n�L1‖yn − x∗‖ + (1 − �n�)‖yn − x∗‖
]2 + 2�n⟨�ℎ(x∗) − �Dx∗, xn+1 − x∗⟩

≤ (1 − �n(� − �L1))‖yn − x∗‖2 + 2�n⟨�ℎ(x∗) − �Dx∗, xn+1 − x∗⟩
≤ (1 − �n(� − �L1))

(

‖un − x∗‖2 −Hn
)

+ 2�n⟨�ℎ(x∗) − �Dx∗, xn+1 − x∗⟩
≤ (1 − �n(� − �L1))‖xn − x∗‖2 + 2�n⟨�ℎ(x∗) − �Dx∗, xn+1 − x∗⟩
+ (1 − �n(� − �L1))

(

2�n‖un − x∗‖‖xn − xn−1‖ −Hn
)

.

(15)

Hence, the above inequality leads to the following relations:

Sn+1 ≤ (1 − an)Sn + anbn and Sn+1 ≤ Sn − cn + dn, n ≥ 1,

where

Sn = ‖xn − x∗‖2, an = �n(� − �L1), cn = (1 − �n(� − �L1))Hn;

bn =
2�n(1 − an)‖un − x∗‖‖xn − xn−1‖ + 2�n⟨�ℎ(x∗) − �Dx∗, xn+1 − x∗⟩

�n(� − �L1)
;

dn = 2�n(1 − an)‖un − x∗‖‖xn − xn−1‖ + 2�n⟨�ℎ(x∗) − �Dx∗, xn+1 − x∗⟩.

Since {xn} is bounded in Lemma 11, so {un} and {yn} are also bounded. And then we have limn→∞ an = 0,
∑∞
n=1 an = ∞,

limn→∞ dn = 0 by Conditions (C1) and (C2). After that, we need to show that limk→∞ bnk ≤ 0 when limk→∞ cnk = 0 for any
real number sequence {nk} of {n}. For this purpose, suppose that limk→∞ cnk = 0, it follows from the definition of Hn that
limk→∞ ‖(I −W2)Aunk‖ = 0 and limk→∞ ‖(I − S)Δnk‖ = 0. Furthermore,

‖ynk − unk‖ ≤ ‖ynk − Δnk‖ + ‖Δnk − unk‖
= �‖(I − S)Δnk‖ + �nk‖A

∗(I −W2)Aunk‖
≤ �‖(I − S)Δnk‖ + �nk‖A‖‖(I −W2)Aunk‖ → 0, as k→∞,

and
‖unk −W1unk‖ ≤ ‖unk − ynk‖ + ‖ynk −W1unk‖

≤ ‖unk − ynk‖ + �nk‖A‖‖(I −W2)Aunk‖ → 0, as k→∞.
On the other hand, from the boundedness of {xnk}, there exists a subsequence {xnki } of {xnk} such that xnki weakly converges x̂
and lim supk→∞⟨(�ℎ−�D)x∗, xnk−x

∗
⟩ = limi→∞⟨(�ℎ−�D)x∗, xnki −x

∗
⟩. By virtue of limk→∞ ‖unk−xnk‖ = limk→∞ �nk‖xnk−

xnk−1‖ = 0 and the bounded linear operator A, we obtain unki ⇀ x̂ and Aunki ⇀ Ax̂. It follows from Lemma 2 that x̂ ∈ F ix(W1)
and Ax̂ ∈ F ix(W2), i.e., x̂ ∈ Ω. Subsequently, we have that limi→∞⟨(�ℎ − �D)x∗, xnki − x

∗
⟩ = ⟨(�ℎ − �D)x∗, x̂ − x∗⟩ ≤ 0 by

(3). In addition,
‖xnk+1 − xnk‖ ≤ ‖xnk+1 − ynk‖ + ‖ynk − unk‖ + ‖unk − xnk‖

≤ �nk‖�ℎ(ynk) − �Dynk‖ + ‖ynk − unk‖ + ‖unk − xnk‖ → 0, as k→∞.

As a consequence, lim supk→∞⟨(�ℎ − �D)x∗, xnk+1 − x
∗
⟩ ≤ 0 and

lim
n→∞

�n(1 − an)‖un − x∗‖‖xn − xn−1‖
�n(� − �L1)

≤ lim
n→∞

�n‖un − x∗‖‖xn − xn−1‖
�n(� − �L1)

= 0.

This means that lim supk→∞ bnk ≤ 0. It follows from Lemma 7 that limn→∞ ‖xn − x∗‖ = 0, i.e., the iterative sequence {xn}
converges in norm to x∗ and x∗ = PΩ◦(I − �D + �ℎ)(x∗). Besides, when �n = 0, the above strong convergence of {xn} is still
valid. The proof is completed.

Theorem 2. The sequence {xn} generated by Algorithm 2 converges in norm to a point x∗ = PΩ◦(I − �D + �ℎ)(x∗), which is
also a unique solution of the variational inequality (12).

Proof. For any x∗ ∈ Ω, using the same approach as (14), we have
‖zn − x∗‖2 = ‖(1 − �)un + �Sun − x∗‖2

≤ (1 − �)‖un − x∗‖2 + �‖Sun − x∗‖2 − 2�(1 − �)‖(I − S)un‖2

≤ ‖un − x∗‖2 − 2�(1 − �)‖(I − S)un‖2.
(16)
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Further, combining (11), (13), (15) and (16), we get
‖xn+1 − x∗‖2 ≤ (1 − �n(� − �L1))‖yn − x∗‖2 + 2�n⟨�ℎ(x∗) − �Dx∗, xn+1 − x∗⟩

≤ (1 − �n(� − �L1))‖zn − x∗‖2 + 2�n⟨�ℎ(x∗) − �Dx∗, xn+1 − x∗⟩
− (1 − �n(� − �L1))�n(1 − �n)‖(I −W2)Azn‖2

≤ (1 − �n(� − �L1))
(

‖un − x∗‖2 − En
)

+ 2�n⟨�ℎ(x∗) − �Dx∗, xn+1 − x∗⟩
≤ (1 − �n(� − �L1))‖xn − x∗‖2 + 2�n⟨�ℎ(x∗) − �Dx∗, xn+1 − x∗⟩
+ (1 − �n(� − �L1))

(

2�n‖un − x∗‖‖xn − xn−1‖ − En
)

,
where

En = �n(1 − �n)‖(I −W2)Azn‖2 + 2�(1 − �)‖(I − S)un‖2.
If limn→∞ En = 0, we have limn→∞ ‖(I −W2)Azn‖ = limn→∞ ‖(I − S)un‖ = 0. Further,

‖(I −W1)un‖ = ‖un − zn‖ = ‖(I − S)un‖ → 0, as n→∞.

Following the same proof of Theorem 1, we can prove limn→∞ ‖xn − x∗‖ = 0, which implies that the iterative sequence {xn}
converges in norm to x∗ and x∗ = PΩ◦(I − �D + �ℎ)(x∗). The proof is completed.

Remark 3. (I) Algorithms 1 and 2 includes Algorithm 2.1 in Yao et al.8 and Algorithm (8) in Moudafi.6 These conclusions have
been promoted from weak convergence to strong convergence under the condition of an adaptive step size sequence {�n}.
(II) The hybrid steepest descent method involving Lipschitz continuous mappings and strongly monotone mappings is set in our
algorithms and is a broader method including the viscosity method, the Halpern method, and the Mann-type method.
(III) From Condition (C2), the coefficient �n of the inertial extrapolation term is easy to find realistically. For example, setting
the sequence {�n} is constructed as follows:

�n ∶=

⎧

⎪

⎨

⎪

⎩

min
{

�,
�n

‖

‖

xn − xn−1‖‖

}

, xn ≠ xn−1,

�, otherwise.

Since the value of ‖xn−xn−1‖ is known in each iteration of Algorithms 1 and 2, {�n} can be chosen by �n = o(�n) and � ∈ [0, 1).
On the other hand, from Condition (C1), we consider the sequence {�n} generated by �n = n−p with (0 < p ≤ 1), then {�n} is
obtained by �n = n−q with (q > p). For more detail, see16.
(IV) When �n = 0, Algorithms 1 and 2 are reduced to the case without inertial extrapolation terms, as well as Theorems 1 and
2 are also guaranteed under the same conditions.

In what follows, from the definition of the Lipschitz continuous mapping, we know that the Lipschitz continuous mapping
includes the contraction mapping. Hence, the following corollary is obtained.

Corollary 1. Let ℎ ∶ 1 → 1 be a contraction mapping with coefficient � ∈ [0, 1). If Condition (C4) is replaced with
0 ≤ �� < � = 1−

√

1 − �(2� − �L22) and 0 < � < min{
1
2�
, 2�
L22
}, the strong convergence of {xn} is still guaranteed in Algorithms

1 and 2.

In addition, when � = 0, Step 3 in Algorithm 1 is reduced to the same form as in Yamada11. Then, the following corollary
holds.

Corollary 2. Assume that (A1)-(A3), (A5) and (C1)-(C4) hold. Take any initial points x0, x1 ∈ 1, the sequence {xn} is
generated by the following way: un, yn are constructed as in Algorithm 1. If un = yn, then stop. Otherwise, calculate

xn+1 = yn − �n�D(yn), n ≥ 1. (17)

The iterative sequence {xn} generated by the above algorithm converges in norm to a point x∗ = PΩ◦(I − �D)(x∗), which is a
unique solution of the following variational inequality

⟨Dx∗, x − x∗⟩ ≥ 0, ∀x ∈ Ω.

In this case that D ∶ 1 → 1 is an identity mapping, ℎ ∶ 1 → 1 is a contraction mapping and � = � = 1, Step
3 in Algorithm 1 is taken as the viscosity algorithm in Moudafi9. Thus, the following corollary is produced by Lemma 6 and
Theorem 1.
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Corollary 3. Assume that (A1)-(A3) and (C1)-(C3) hold. Letℎ ∶ 1 → 1 be a contractionmappingwith coefficient � ∈ [0, 1).
Take any initial points x0, x1 ∈ 1, the sequence {xn} is generated by the following way: un, yn are constructed as in Algorithm
1. If un = yn, then stop. Otherwise, calculate

xn+1 = �nℎ(yn) + (1 − �n)yn, n ≥ 1. (18)

The iterative sequence {xn} converges in norm to a point x∗ = PΩ◦ℎ(x∗), which is a unique solution of the following variational
inequality

⟨x∗ − ℎ(x∗), x − x∗⟩ ≥ 0, ∀x ∈ Ω.

Proposition 1. In Corollary 3, if contraction mapping ℎ is a constant mapping, the formula (18) is replaced with

xn+1 = �nu + (1 − �n)yn, n ≥ 1.

Then the sequence {xn} converges strongly to a point x∗ = PΩ(u).

In addition, whenD ∶ 1 → 1 is an identity mapping, � = 1 and � = 0, Algorithm 1 degenerates to a Mann-type algorithm
and its strong convergence is obtained by Lemma 6 and Theorem 1.

Corollary 4. Assume that (A1)-(A3) and (C1)-(C3) hold. Take any initial points x0, x1 ∈ 1, {xn} is generated by the following
scheme: un, yn are constructed as in Algorithm 1. If un = yn, then stop. Otherwise, calculate

xn+1 = (1 − �n)yn, n ≥ 1.

Then {xn} converges in norm to a point x∗ = PΩ(0), which is the minimum-norm element of Ω.

Remark 4. The special settings in the above Corollaries can also be implemented in Algorithm 2, and the corresponding strong
convergence is still satisfied.

5 THEORETICAL APPLICATIONS

In this section, our results in Sect. 3 will be applied to other split problems, and also extend and generalize the known results.
These conclusions are also helpful for their further research in the future. Moreover, some examples in practical applications are
considered and solved by our algorithms. For the sake of simplicity, let ℎ ∶ 1 → 1 be a L1-Lipschitz continuous mapping
with L1 > 0 and D ∶ 1 → 1 be a L2-Lipschitz continuous and �-strongly monotone mapping with L2, � > 0. The related
lemmas and theorems are given below.

5.1 Split variational inclusion problems
As one of the important special cases of the SMVIP, the split variational inclusion problem has a wide range of application
background, such as split minimization problems, split feasibility problems, split equilibrium problems and so on. In other words,
when f1 ≡ 0 and f2 ≡ 0, the SMVIP is reduced to the split variational inclusion problem. For the sake of convenience, we denote
by Γ the solution set of the split variational inclusion problem, i.e., Γ = {x∗ ∈ 1 ∶ 0 ∈ B−11 (x

∗) and 0 ∈ B−12 (Ax
∗)}. Therefore,

the results in Theorems 1 and 2 are applied to the split variational inclusion problem. Before this, the following important
properties need to be reviewed. For any 
 > 0, JBi
 represents the resolvent mapping of Bi and defined as JBi
 = (I + 
Bi)−1,
(i = 1, 2). Then JBi
 is a single-valued and firmly nonexpansive mapping andF ix(JBi
 )⇔ B−1i (0) = {x

∗ ∈ (Bi) ∶ 0 ∈ Bi(x∗)}.
For further detail, see.22,26

Theorem 3. Let 1, 2 be two Hilbert spaces and A ∶ 1 → 2 be a bounded linear operator with adjoint operator A∗.
Let B1 ∶ 1 → 21 and B2 ∶ 2 → 22 be two set-valued maximal monotone mappings. Choose arbitrary initial points
x0, x1 ∈ 1, {xn} is constructed by the following process:

⎧

⎪

⎨

⎪

⎩

un = xn + �n(xn − xn−1),

yn = JB1

(

un − �nA∗(I − JB2
 )Aun
)

,

xn+1 = �n�ℎ(yn) + (I − �n�D)yn, n ≥ 1,
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where

�n =

⎧

⎪

⎨

⎪

⎩

�n‖(I − J
B2

 )Aun‖2

‖A∗(I − JB2
 )Aun‖2
, Aun ∉ F ix(JB2
 ),

0, otherwise.
Suppose that Conditions (C1)-(C2) and (C4) hold. If yn = un, then stop and un ∈ Γ. Otherwise, the sequence {xn} converges in
norm to a point x∗ = PΓ◦(I − �D + �ℎ)(x∗), which is a unique solution of the following variational inequality

⟨(�D − �ℎ)x∗, x − x∗⟩ ≥ 0, ∀x ∈ Γ. (19)

Theorem 4. Let 1, 2, A, A∗, B1, B2 be the same as those in Theorem 3. Put any initial points x0, x1 ∈ 1, the sequence
{xn} is generated by the following way:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

un = xn + �n(xn − xn−1),
zn = JB1
 (un),

yn = zn − �nA∗(I − JB2
 )Azn,

xn+1 = �n�ℎ(yn) + (I − �n�D)yn, n ≥ 1,

where

�n =

⎧

⎪

⎨

⎪

⎩

�n‖(I − J
B2

 )Azn‖2

‖A∗(I − JB2
 )Azn‖2
, Azn ∉ F ix(JB2
 ),

0, otherwise.
Suppose that Conditions (C1)-(C2) and (C4) hold. If yn = zn = un, then stop and un ∈ Γ. Otherwise, the sequence {xn}
converges in norm to a point x∗ = PΓ◦(I − �D + �ℎ)(x∗), which is a unique solution of the variational inequality (19).

5.2 Split variational inequality problems
Let C be a nonempty closed convex subset of a Hilbert space 1. Define the normal coneNC (x) of C at a point x ∈ C by

NC (x) = {z ∈ 1 ∶ ⟨z, y − x⟩ ≤ 0, ∀y ∈ C}.

Obviously, u = (I+
NC )−1x⇔ x−u ∈ NC (u)⇔ ⟨x−u, y−u⟩ ≤ 0, ∀y ∈ C ⇔ u = PCx, which implies that (I+
NC )−1 = PC .
Let C1 and Q1 be nonempty closed convex subsets of Hilbert spaces 1 and 2, respectively. Therefore, when B1 = NC1 and
B2 = NQ1 in SMVIP, the following split variational inequality problem is obtained:

find x∗ ∈ C1, ⟨f1(x∗), x − x∗⟩ ≥ 0, ∀x ∈ C1 and ⟨f2(Ax∗), y − Ax∗⟩ ≥ 0, ∀y ∈ Q1.

This is equivalent to the following form:

find x∗ ∈ C1, x∗ ∈ F ix(PC1(I − 
f1)) and Ax
∗ ∈ F ix(PQ1(I − 
f2)), for any 
 > 0.

Meanwhile, we denote byΨ the solution set of the above problem. In particular, if themapping f1 is #1-inverse stronglymonotone
and 
 ∈ (0, 2#1), then PC1(I − 
f1) is average. Indeed, from Remark 1 (v), Lemma 3 (III) and 
 ∈ (0, 2#1), the mapping I − 
f1
is average. Furthermore, PC1 is firmly nonexpansive, which means that PC1 is average. So, PC1(I − 
f1) is average. Then, the
following results can be obtained from our Theorems 1 and 2.

Theorem 5. Let1,2, C1,Q1 be the same as above. LetA ∶ 1 → 2 be a bounded linear operator with adjoint operatorA∗.
Let f1 ∶ 1 → 1 be #1-inverse strongly monotone mapping and f2 ∶ 2 → 2 be #2-inverse strongly monotone mapping.
Select arbitrary initial points x0, x1 ∈ 1, {xn} is generated by the following scheme:

⎧

⎪

⎨

⎪

⎩

un = xn + �n(xn − xn−1),
yn = PC1(I − 
f1)

(

un − �nA∗(I − PQ1(I − 
f2))Aun
)

,

xn+1 = �n�ℎ(yn) + (I − �n�D)yn, n ≥ 1,
(20)

where

�n =

⎧

⎪

⎨

⎪

⎩

�n‖(I − PQ1(I − 
f2))Aun‖
2

‖A∗(I − PQ1(I − 
f2))Aun‖
2
, Aun ∉ F ix(PQ1(I − 
f2)),

0, otherwise.
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Suppose that Conditions (C1)-(C4) are satisfied. If yn = un, then stop and un ∈ Ψ. Otherwise, the sequence {xn} converges in
norm to a point x∗ = PΨ◦(I − �D + �ℎ)(x∗), which is a unique solution of the following variational inequality

⟨(�D − �ℎ)x∗, x − x∗⟩ ≥ 0, ∀x ∈ Ψ. (21)

Theorem 6. Let 1, 2, C1, Q1, A, A∗, f1 and f2 be the same as those in Theorem 5 and �n be the same as in Algorithm 20.
Take any initial points x0, x1 ∈ 1, the sequence {xn} is generated by the following process:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

un = xn + �n(xn − xn−1),
zn = PC1(I − 
f1)(un),
yn = zn − �nA∗(I − PQ1(I − 
f2))Azn,
xn+1 = �n�ℎ(yn) + (I − �n�D)yn, n ≥ 1,

where

�n =

⎧

⎪

⎨

⎪

⎩

�n‖(I − PQ1(I − 
f2))Azn‖
2

‖A∗(I − PQ1(I − 
f2))Azn‖
2
, Azn ∉ F ix(PQ1(I − 
f2)),

0, otherwise.
Suppose that Conditions (C1)-(C4) are satisfied. If yn = zn = un, then stop and un ∈ Ψ. Otherwise, the sequence {xn} converges
in norm to a point x∗ = PΨ◦(I − �D + �ℎ)(x∗), which is a unique solution of the variational inequality (21).

5.3 Split feasibility problems
From (1), we know that the SFP is a special case of the SMVIP. According to Subsection 5.2, we have (I + 
NC1)

−1 = PC1
and (I + 
NQ1)

−1 = PQ1 . Meanwhile, the solution set for SFP is called Φ. Thus, the following algorithms and theorems can be
derived for finding the solution of the split feasibility problem.

Theorem 7. Let 1, 2, C1, Q1, A and A∗ be the same as above. Select arbitrary initial points x0, x1 ∈ 1, {xn} is generated
by the following scheme:

⎧

⎪

⎨

⎪

⎩

un = xn + �n(xn − xn−1),
yn = PC1

(

un − �nA∗(I − PQ1)Aun
)

,

xn+1 = �n�ℎ(yn) + (I − �n�D)yn, n ≥ 1,
where

�n =

⎧

⎪

⎨

⎪

⎩

�n‖(I − PQ1)Aun‖
2

‖A∗(I − PQ1)Aun‖
2
, Aun ∉ Q1,

0, otherwise.
Assume that Conditions (C1)-(C2) and (C4) hold. If yn = un, then stop and un ∈ Φ. Otherwise, the sequence {xn} converges in
norm to a point x∗ = PΦ◦(I − �D + �ℎ)(x∗), which is a unique solution of the following variational inequality

⟨(�D − �ℎ)x∗, x − x∗⟩ ≥ 0, ∀x ∈ Φ. (22)

Theorem 8. Let1,2, C1,Q1,A andA∗ be the same as those in Theorem 7. Take any initial points x0, x1 ∈ 1, the sequence
{xn} is generated by the following process:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

un = xn + �n(xn − xn−1),
zn = PC1(un),
yn = zn − �nA∗(I − PQ1)Azn,
xn+1 = �n�ℎ(yn) + (I − �n�D)yn, n ≥ 1,

where

�n =

⎧

⎪

⎨

⎪

⎩

�n‖(I − PQ1)Azn‖
2

‖A∗(I − PQ1)Azn‖
2
, Azn ∉ Q1,

0, otherwise.
Assume that Conditions (C1)-(C2) and (C4) hold. If yn = zn = un, then stop and un ∈ Φ. Otherwise, the sequence {xn}
converges in norm to a point x∗ = PΦ◦(I − �D + �ℎ)(x∗), which is a unique solution of the variational inequality (22).
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As an important part of the split monotone variational inclusion problem, the split feasibility problem is widely used to solve
practical problems in various situations and many excellent results have been obtained. In what follows, two examples in L2
spaces and in signal recovery problem are introduced.

Example 5.1 (The split feasibility problem in infinite-dimensional Hilbert spaces). Assume that 1 = 2 = L2([0, 1]) with
the inner product ⟨x, y⟩ ∶= ∫ 1

0 x(t)y(t) dt and the induced norm ‖x‖ ∶=
(

∫ 1
0 |x(t)|2 dt

)1∕2, for any x, y ∈ L2([0, 1]). Consider
the following nonempty closed and convex subsets C1 and Q1 in L2([0, 1]):

C1 ∶=
{

x ∈ L2([0, 1]) ∣

1

∫
0

x(t) dt ≤ 1
}

and Q1 ∶=
{

y ∈ L2([0, 1]) ∣

1

∫
0

|y(t) − sin(t)|2 dt ≤ 16
}

.

Suppose that A ∶ L2([0, 1]) → L2([0, 1]) is the Volterra integration operator that is defined by (Ax)(t) = ∫ t
0 x(s) ds, ∀t ∈

[0, 1], x ∈ 1. Hence, A is a bounded linear operator and the norm ‖A‖ = 2
�
. Moreover, the adjoint operator A∗ of A is defined

by (A∗x)(t) = ∫ 1
t x(s) ds. In addition, its projections on sets C1 and Q1 have explicit forms, i.e.,

PC1(x) =
{

1 − a + x , a > 1 ;
x , a ≤ 1 , and PQ1(y) =

{

sin(⋅) + 4(y−sin(⋅))
√

b
, b > 16 ;

y , b ≤ 16 ,

where a ∶= ∫ 1
0 x(t) dt and b ∶= ∫ 1

0 |y(t) − sin(t)|2 dt. Naturally, x(t) = 0 is a solution, i.e., the solution set is nonempty.

Example 5.2 (The split feasibility problem in signal recovery problems). It is well known that compressed sensing is one of the
effective methods to recover clean signals from polluted signals. In this context, the following underdetermined system problem
need to be considered and resolved:

y = Ax + " ,
where y ∈ ℝM is the observed noise data, A ∈ ℝM×N is a bounded linear observation operator, x ∈ ℝN with k (k ≪ N) non-
zero elements is the original and clean data that needs to be restored, and " is the noise observation encountered during data
transmission. An important consideration of this problem is that the signal x is sparse, that is, the number of non-zero elements
in the signal x is much smaller than the dimension of the signal x. To solve this situation, a classical model, convex constraint
minimization problem, is used to describe the above problem, i.e.,

min
x∈ℝN

1
2
‖y − Ax‖2 subject to ‖x‖1 ≤ t , (23)

where t is a positive constant and ‖ ⋅ ‖1 is l1 norm. It is worth noting that this problem is related to the least absolute shrinkage
and selection operator problem. More precisely, the problem (23) is equivalent to the split feasibility problem when C1 =
{

x ∈ ℝN ∶ ‖z‖1 ≤ t
}

and Q1 = {y}.

Remark 5. (I) All of the above theorems can be derived from the proof of Theorems 1 and 2.
(II) The above theorems generalizes many important results that are available, such as the split feasibility problem,1,5,7 the split
variational inclusion problem,27,28,29 the split variational inequality problem30 and so on.

6 NUMERICAL EXPERIMENTS

In this section, we provide some numerical examples to demonstrate the effectiveness and realization of convergence behavior
of Theorems 1 and 2. All the programs were implemented in Matlab 2018a on a Intel(R) Core(TM) i5-8250U CPU@1.60 GHz
computer with RAM 8.00 GB.

Theorem 9 (Moudafi6). Assume that (A1)-(A3) and (C3) hold. Let l be the spectral radius of A∗A and 0 < � < 1∕l. For any
x1 ∈ 1, the iterative sequence {xn} is generated by the following iterative scheme:

xn+1 = JB1
 (I − 
f1)
(

xn − �A∗(I − JB2
 (I − 
f2))Axn
)

, n ≥ 1. (24)

Then {xn} converges weakly to a point x∗ ∈ Ω.
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Theorem 10 (Yao et al.8). Assume that (A1)-(A3) and (C3) hold. For any initial points x0, x1 ∈ 1, the iterative sequence
{xn} is generated by the following iterative scheme:

⎧

⎪

⎨

⎪

⎩

un = xn + �n(xn − xn−1),

xn+1 = JB1
 (I − 
f1)
(

un − �nA∗(I − JB2
 (I − 
f2))Aun
)

, n ≥ 1.
(25)

where

�̄n ∶=

⎧

⎪

⎨

⎪

⎩

min

{

�,
�n

‖

‖

xn − xn−1‖‖
2

}

, if xn ≠ xn−1,

�, if xn = xn−1,
and

�n ∶=

⎧

⎪

⎨

⎪

⎩

�n‖(I − J
B2

 (I − 
f2))Aun‖2

‖A∗(I − JB2
 (I − 
f2))Aun‖2
, if (I − JB2
 (I − 
f2))Aun ≠ 0,

�̄, otherwise,

If 0 ≤ �n ≤ �̄n, � ∈ [0, 1) and {�n} ⊂ l1, i.e.,
∑∞
n=1 �n ‖‖xn − xn−1‖‖

2 < ∞, �̄ > 0, �n ∈ (0, 1) and 0 < lim infn→∞ �n ≤
lim supn→∞ �n < 1. The sequence {xn} converges weakly to a point x∗ ∈ Ω.

Example 6.1. Assume that A,A1, A2 ∶ ℝm → ℝm are created from a normal distribution with mean zero and unit variance.
Let B1 ∶ ℝm → ℝm and B2 ∶ ℝm → ℝm be defined by B1(x) = A∗1A1x and B2(y) = A∗2A2y, respectively. Consider the
problem of finding a point x̄ =

(

x̄1,… , x̄m
)T ∈ ℝm such that B1(x̄) = (0,… , 0)T and B2(Ax̄) = (0,… , 0)T. It is easy to check

that the solution of the problem mentioned above is x∗ = (0,… , 0)T. The parameters of all algorithms are set as follows. Set
f1 = f2 = 0 for all algorithms. Take 
 = 1, �n = 1∕(n+ 1), �n = 0.5, � = 0.5 and �n = 1∕(n+ 1)2 for the proposed Algorithms
1 and 2 and Algorithm (25). Select ℎ(x) = 0.5x, D(x) = 0.5x, � = 1 and � = 2 for the proposed Algorithms 1 and 2. Choose
� = 0.5∕‖A∗A‖ for Algorithm (24). The start points with the initial values x0 = x1 = 20rand(n, 1). Dn = ‖

‖

xn − x∗‖‖ is used
to measure the iteration error of all the algorithms. The stopping condition is Dn < 10−5. Table 1 and Fig. 1 describe the
numerical behavior of all algorithms with different dimensions.

TABLE 1 Numerical results of Example 6.1

Algotithms
m = 50 m = 100 m = 200 m = 400

Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)

Our Alg. 1 27 0.0113 30 0.0313 32 0.0744 35 0.3091
Our Alg. 2 28 0.0116 33 0.0341 33 0.0754 33 0.2872

Yao et al. Alg. 32 0.0107 36 0.0342 39 0.0917 43 0.3693
Moudafi Alg. 81 0.0518 96 0.1883 110 0.5751 128 2.7578

Example 6.2. We apply the same algorithms and parameters as in Example 6.1 to solve Example 5.1. The stopping condition
is eitherDn =

‖

‖

‖

(I − PC1)xn
‖

‖

‖

2
+ ‖

‖

‖

A∗(I − PQ1)Axn
‖

‖

‖

2
< 10−5 or maximum number of iterations which is set to 49. Table 2 and

Fig. 2 show the numerical behavior of all algorithms with four different initial values x0 = x1.

Example 6.3. We now consider using the proposed iterative schemes to solve Example 5.2. In our numerical experiments, the
matrix A ∈ ℝM×N is created from a standard normal distribution with zero mean and unit variance and then orthonormalizing
the rows. The clean signal x ∈ ℝN contains k (k ≪ N) randomly generated ±1 spikes. The observation y is formed by
y = Ax + � with white Gaussian noise � of variance 10−4. The recovery process starts with the initial signals x0 = x1 = 0 and
ends after 1000 iterations. We use the mean squared errorMSE = (1∕N) ‖x∗ − x‖2 (x∗ is an estimated signal of x) to measure
the restoration accuracy of all algorithms. In our test, we setM = 512,N = 1024 and k = 50. The parameters of all algorithms
are the same as those set in Example 6.1. The recovery results of the suggested algorithms are shown in Fig. 3 .

Remark 6. Based on the results presented in Examples 6.1–6.3, it is easy to get the following observations.
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FIGURE 1 Numerical behavior of all algorithms with different dimensions in Example 6.1

TABLE 2 Numerical results of Example 6.2

Algotithms
x1 = 200 log(t) x1 = 1000 sin(t) x1 = 2000t2 x1 = 1000(t3 + 2t)

Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s)

Our Alg. 1 10 8.0815 23 26.2392 36 21.0198 40 32.0593
Our Alg. 2 11 8.444 20 24.3155 33 18.6057 35 30.3805

Yao et al. Alg. 19 27.1521 49 68.845 49 32.4184 49 44.4225
Moudafi Alg. 49 9.964 49 10.0659 49 8.4375 49 9.672

(1) For different initial values, our algorithms are effective under the excitation of the inertial extrapolation term and the hybrid
steepest descent method.

(2) It can be seen from the figures and tables that the convergence behavior of our algorithms is better than that of the existing
algorithms in Moudafi6 and Yao et al.,8 and these results have nothing to do with the choice of initial values and the size of
the dimension.

(3) The adaptive step size is added to our algorithms and the convergence behavior is also maintained.
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(a) x0 = x1 = 200 log(t)
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(b) x0 = x1 = 1000 sin(t)
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(c) x0 = x1 = 2000t2
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FIGURE 2 Numerical behavior of all algorithms with different initial values in Example 6.2

7 CONCLUSION

In this article, the main contribution is to introduce two novel inertial iterative algorithms for solving the split monotone vari-
ational inclusion problem. Furthermore, the suggested algorithms employs the hybrid steepest descent method, which involves
a L-Lipschitz continuous mapping and a strongly monotone mapping. The strong convergence of the proposed algorithms is
given through the adaptive step size criterion, which overcomes the fact that the norm of the operator is not easy to calculate
in practical applications. The numerical experiment also shows the convergence behavior of our algorithms and its superiority
over existing algorithms.
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