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1 Introduction

Schrödinger equation is the basic equation of quantum mechanics, which reveals the basic law of

material movement in the micro physical world. It has important applications in physical phenomena

such as optical pulse propagation, superconductivity, wave in water and plasma, and self-focusing in

laser pulse. Recently, there are many methods to study the positive problem of Schrödinger equation

[1–15]. For the inverse Schrödinger problem has been studied by many scholars. Eskin [16] proves the

uniqueness of time-varying EMF determination for Schrödinger equation with obstacle region from

Dirichlet-to-Neumann mapping. Rakesh and Symes [17] prove that the Dirichlet-to-Neumann map

uniquely determines the time-independent potential in the wave equation. Cipolatti and Lopez [18]

consider the inverse problem of restoring time-independent damping coefficients in the wave equation

from Dirichlet to Neumann mapping. In [19], Cheng and Yamamoto prove the stability estimate and

give the convergence rate of Tikhonov regularization solution. For two-dimensional inverse boundary

value problems, see [20–24].
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Fractional equation has many natural advantages, such as simple modeling, clear physical meaning

and accurate description, and is widely used in various research fields. For the fractional Schrödinger

equation, Laskin [25] derives a space-fractional Schrödinger equation with the Laplace operator instead

of the quantum Riesz derivative by using the Feynman path integrals over the Levy trajectories. In [26],

Naber proposed and discussed a different generalization method, which converted the first order time-

derivative into Caputo fractional derivative, and studied two different generalization methods. And

for the numerical solution of the time fractional Schrödinger equation, see [27, 28]. However, few

researchers have studied the inverse problem of time-fractional Schrödinger equation.

There are many regularization methods for the study of inverse problems, such as Tikhonov reg-

ularization method [29], quasi-boundary value method [30], quasi-reversibility regularization method

[31, 32], a mollification regularization method [33], Fourier regularization method [34–36], Landwe-

ber iterative regularization method [37, 38] and so on. In this paper, we consider the following the

potential-free field inverse time-fractional Schrödinger problem with boundary condition
i C0 D

α
t u(x, t) + uxx(x, t) = 0, x > 0, t > 0,

u(x, 0) = 0, x ≥ 0,

u(1, t) = f(t), t ≥ 0,

u(x, t) |x→∞ bounded, t > 0,

(1.1)

where i =
√
−1 is the imaginary unit and C

0 D
α
t is the Caputo time-fractional derivative of order α

defined as

C
0 D

α
t u(x, t) =

1

Γ(1− α)

∫ t

0
(t− τ)−αuτ (x, τ)dτ, 0 < α < 1,

in which Γ(·) is the Gamma function.

In problem (1.1), we wish to reconstruct the wave function u(x, t) for 0 ≤ x < 1 according to the

measured data function f δ(t).

We will prove that the inverse time-fractional Schrödinger problem is ill-posed and introduce a

modified kernel method [39] to compute u(x, t)(0 ≤ x < 1). We find that under the rules of priori

and posteriori regularization parameter selection, the priori estimates obtained by the modified kernel

method are optimal, and the posteriori estimates are order-optimal. Finally, some examples are given

to illustrate the effectiveness of this method.

The manuscript is organized as follows. In the second section, we use Fourier transform to obtain

the exact solution and prove the ill-posedness of the problem (1.1). In the third section, we draw

into preliminary result and optimal error bound for problem (1.1). Above all, we introduce a modified

kernel method, and give the convergence estimates between exact solutions and regularization solutions

under priori and posteriori regularization parameter selection rules in the fourth section. In the fifth

section, the analysis of the optimal approximation of this regularization methods are solved. Some

numerical examples are given in the sixth part. The seventh section makes a brief conclusion.

2 Ill-posed analysis

In this section, we mainly apply the Fourier transform techniques to study the ill-posedness of the

problem (1.1). In order to use the Fourier transform techniques, we extend the definition domain of

function u(x, t), f(t) and f δ(t) to the whole real field R, and set the function to be zero under t < 0.
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We assume that the exact data function f(t) ∈ L2(R) and the measurement data function f δ(t) ∈
L2(R) satisfy

‖f(·)− f δ(·)‖ ≤ δ, (2.1)

where ‖ · ‖ denotes the L2(R)-norm and δ > 0 is the noise level.

Let

f̂(ξ) =
1√
2π

∫ +∞

−∞
f(t)e−iξtdt, ξ ∈ R

be the Fourier transform of a function f(t). Taking the Fourier transform to Equations (1.1) with

respect to t, by a simple calculation, we obtain the solution of Equations (1.1) in the frequency domain

û(x, ξ) = e(1−x)
√
−i(iξ)α f̂(ξ), 0 ≤ x < 1, (2.2)

where

(iξ)α = |ξ|α(cos(
απ

2
) + isign(ξ) sin(

απ

2
)).

Denote θ(ξ) as follows

θ(ξ) :=
√
−i(iξ)α = Φ(ξ) + iΨ(ξ), (2.3)

where

Φ(ξ) :=

√
|ξ|α(1 + sign(ξ) sin(απ2 ))

2
,

Ψ(ξ) := −
√
|ξ|α(1− sign(ξ) sin(απ2 ))

2
.

In accordance with (2.3), the expression (2.2) is redefined as follows

û(x, ξ) = e(1−x)θ(ξ)f̂(ξ), 0 ≤ x < 1. (2.4)

Using inverse Fourier transform, we obtain the exact solution

u(x, t) =
1√
2π

∫ +∞

−∞
e(1−x)θ(ξ)f̂(ξ)eiξtdξ, 0 ≤ x < 1. (2.5)

From above formula (2.5), since |e(1−x)θ(ξ)| is unbounded with respect to variables ξ, the small

errors in the high frequency components will be amplified. Therefore, this inverse problem is a serious

ill-posed problem, which requires a feasible regularization method.

Suppose u(0, t) satisfies the a-priori bound condition

‖u(0, t)‖Mp(R) ≤ E, p ≥ 0, (2.6)

where E is a positive constant and ‖ · ‖Mp(R) is defined with the norm

‖u(0, t)‖Mp(R) :=
(∫ +∞

−∞
epΦ(ξ)|û(0, ξ)|2dξ

) 1
2
. (2.7)

Remark 2.1. When p = 0, we can know that Mp(R) = M0(R) = L2(R) and formula (2.6) is bounded

in the L2(R)-norm.
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3 Preliminary result and optimal error bound

3.1 Preliminary result

We consider arbitrary ill-posed inverse problems [40–44]:

Ax = y, (3.1)

where A ∈ L(X,Y ) is a linear bounded between infinite dimensional Hilbert spaces X and Y with

non-closed range R(A) of A. Assume that yδ ∈ Y are available noisy data with ‖y − yδ‖ ≤ δ. Any

operator R : Y → X can be considered as a special method for approximately solving (3.1), and the

approximate solution of (3.1) is given by Ryδ.

Let M ⊂ X be a bounded set. Let us introduce the worst case error ∆(δ,R) for identifying x from

yδ as [40–43]

∆(δ,R) := sup{‖Ryδ − x‖|x ∈M,yδ ∈ Y, ‖Kx− yδ‖ ≤ δ}. (3.2)

The best possible error bound (or optimal error bound) is defined as the infimum over all mappings

R : Y → X:

ω(δ) := inf
R

∆(δ,R). (3.3)

Now let us review some optimality results if the set M = Mϕ,E is given by

Mϕ,E = {x ∈ X|x = [ϕ(A∗A)]
1
2υ, ‖υ‖ ≤ E}, (3.4)

where the operator function ϕ(A∗A) is well defined via spectral representation [42], [45], [46]

ϕ(A∗A) =

∫ a

0
ϕ(λ)dEλ, (3.5)

where A∗A =
∫ a

0 λdEλ is the spectral decomposition of A∗A, Eλ denotes the spectral family of the

operator A∗A, and a is a constant such that ‖A∗A‖ ≤ a with a = ∞ if A∗A is unbounded. In the

case when A : L2(R) → L2(R) is a multiplication operator, Ax(s) = γ(s)x(s), the operator function

ϕ(A∗A) has the form

ϕ(A∗A)x(s) = ϕ(|γ(s)|2)x(s). (3.6)

Then a method R0 is called [43]

(i) optimal on the set Mp,E if ∆(δ,R0) = ω(δ, E) holds;

(ii) order optimal on the set Mp,E if ∆(δ,R0) ≤ Cω(δ, E) with C ≥ 1 holds.

In order to derive an explicit (best possible) optimal error bound for the worst case error ∆(δ,R)

defined in (3.2), we assume that the function ϕ in (3.6) satisfies the following assumption:

Assumption 3.1. ( [42, 43, 46])The function ϕ(λ) : (0, a] → (0,∞) in (3.6), where a is a constant

such that ‖A∗A‖ ≤ a, is continuous and has the following properties:

(i) limλ→0 ϕ(λ) = 0;

(ii) ϕ is strictly monotonically increasing on (0, a];

(iii) ρ(λ) = λϕ−1(λ) : (0, ϕ(a)]→ (0, aϕ(a)] is convex.
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Under Assumption 3.1, the next theorem gives us a general formula for the optimal error bound.

Theorem 3.1. ( [42, 43, 46])Let Mϕ,E be given by (3.4), let Assumption 3.1 be satisfied, and let
δ2

E2 ∈ σ(A∗Aϕ(A∗A)), where σ(A∗A) denotes the spectrum of operator A∗A, then

ω(δ, E) = E

√
ρ−1(

δ2

E2
). (3.7)

3.2 Optimal error bound

In this section we consider problem (1.1) and deal with the question concerning the best possible

worst case error (3.3) for identifying u(x, t)(0 ≤ x < 1) from noisy data f δ(t) ∈ L2(R) provided (2.1)

and u(x, t) ∈Mp,E hold, where Mp,E is given by

u(x, t) ∈Mp,E = {u(x, t) ∈ L2(R)|‖u(0, t)‖Mp(R) ≤ E, p ≥ 0}, (3.8)

where ‖ · ‖Mp(R) is defined with the norm

‖u(0, t)‖Mp(R) :=
(∫ +∞

−∞
epΦ(ξ)|û(0, ξ)|2dξ

) 1
2
. (3.9)

Let us formulate problem (1.1) as an operator equation

Au(x, t) = f(t), 0 ≤ x < 1, (3.10)

with linear operator A ∈ L(L2(R), L2(R)). Obviously, this equation is equivalent to the operator

equation in the frequency space

Âû(x, ξ) = f̂(ξ), Â = FAF−1, (3.11)

where F : L2(R) → L2(R) is the (unitary) Fourier transformation operator that maps any function

υ(t) ∈ L2(R) into its Fourier transform υ̂(ξ). From (2.2), we obtain

e−(1−x)θ(ξ)û(x, ξ) = f̂(ξ). (3.12)

So

Â = e−(1−x)θ(ξ), (3.13)

which shows that Â : L2(R)→ L2(R) in (3.11) is a linear and bounded multiplication operator, where

the inverse Â−1 is unbounded. Since Â∗ = e−(1−x)θ(ξ), we have

ÂÂ∗ = Â∗Â = e−2(1−x)Φ(ξ). (3.14)

The smoothness condition (3.8) can also be transformed into an equivalent condition in the fre-

quency domain. From (3.9) we have that condition (3.8) is equivalent to the condition

û(x, ξ) ∈ M̂p,E = {û(x, ξ) ∈ L2(R)|‖û(0, ξ)‖Mp(R) ≤ E, p ≥ 0}, (3.15)

where

‖û(0, ξ)‖Mp(R) :=
(∫ +∞

−∞
epΦ(ξ)|û(0, ξ)|2dξ

) 1
2
. (3.16)

This condition can be reformulated into an equivalent condition with a set of the structure (3.4).
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Proposition 3.1. Consider the operator equation (3.11). Then the set M̂p,E given in (3.15) is equiv-

alent to the general source set

M̂ϕ,E = {û(x, ξ) ∈ L2(R)|, ‖[ϕ(A∗A)]−
1
2 û(x, ξ)‖ ≤ E}, (3.17)

where ϕ = ϕ(λ) is given (in parameter representation) by{
λ(r) = e−2(1−x)r,

ϕ(r) = e−(p+2x)r,
0 ≤ r <∞. (3.18)

Proof. From (2.4), we have û(x, ξ) = e−xθ(ξ)û(0, ξ). Comparing (3.15) with (3.17), we obtain

ϕ(Â∗Â)) = e−(p+2x)Φ(ξ). (3.19)

From this representation and (3.14), we obtain that ϕ is given (in parameter representation) by

λ(ξ) = e−2(1−x)Φ(ξ), ϕ(ξ) = e−(p+2x)Φ(ξ), ξ ∈ R. We substitute Φ(ξ) = r and obtain (3.18). �
We will discuss properties of the function ϕ = ϕ(λ)(λ ∈ (0,∞)) which is given (in parameter

representation) by (3.18) in the following.

Proposition 3.2. The function ϕ(λ) defined by (3.18) is continuous and has the following properties:

Case 1: when p = 0 and 0 < x < 1, there holds

(i) limλ→0 ϕ(λ) = 0;

(ii) ϕ is strictly monotonically increasing;

(iii) ρ(λ) = λϕ−1(λ) is strictly monotonically increasing and possesses the following parameter

representation:{
λ(r) = e−2xr,

ρ(r) = e−2r,
0 ≤ r <∞. (3.20)

(iv) ρ−1(λ) is strictly monotonically increasing and possesses the following parameter representa-

tion: {
λ(r) = e−2r,

ρ−1(r) = e−2xr,
0 ≤ r <∞. (3.21)

(v) For the inverse function ρ−1(λ), there holds

ρ−1(λ) = λx, for λ→ 0. (3.22)

Case 2: when p > 0 and x = 0, there holds

(i) limλ→0 ϕ(λ) = 0;

(ii) ϕ is strictly monotonically increasing;

(iii) ρ(λ) = λϕ−1(λ) is strictly monotonically increasing and possesses the following parameter

representation:{
λ(r) = e−pr,

ρ(r) = e−(p+2)r,
0 ≤ r <∞. (3.23)
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(iv) ρ−1(λ) is strictly monotonically increasing and possesses the following parameter representa-

tion: {
λ(r) = e−(p+2)r,

ρ−1(r) = e−pr,
0 ≤ r <∞. (3.24)

(v) For the inverse function ρ−1(λ), there holds

ρ−1(λ) = λ
p
p+2 , for λ→ 0. (3.25)

Proof. The proof of (i), (ii), (iii) and (iv) are obvious in Case 1 and Case 2. We only give the proof

of (v).

For case 1, let F1(λ) = ρ−1(λ)λ−x, we can obtain

lim
λ→0

F1(λ) = lim
r→∞

e−2xr(e−2r)−x

= lim
r→∞

e−2xr+2xr

= 1.

For case 2, let F2(λ) = ρ−1(λ)λ
− p
p+2 , we have

lim
λ→0

F2(λ) = lim
r→∞

e−pr(e−(p+2)r)
− p
p+2

= lim
r→∞

e−pr+pr

= 1.

The proof of (3.22) and (3.25) are completed. �

Proposition 3.3. The function ρ(λ) defined by (3.20) and (3.23) are strictly convex.

Proof. The proof is similar to [42,43,46,47], and we omit it. �
Now we will formulate our main result of this section concerning the best possible worst case error

ω(δ, E) defined in (3.2) for identifying the solution u(x, t)(0 ≤ x < 1) of problem (1.1) from noisy data

f δ(t) ∈ L2(R) under condition (2.1) and u(x, t) ∈ Mp,E , where the set Mp,E is given by (3.8). Since

the Fourier operator F is unitary (i.e. F−1 = F∗), we introduce the optimal error bound by

ω(δ, E) = ω̂(δ, E) := inf sup{‖R̂f̂ δ − û(x, ·)‖|û(x, ·) ∈ M̂p,E , f̂
δ ∈ L2(R), ‖f̂ − f̂ δ‖ ≤ δ}, (3.26)

where R̂ is an arbitrary method for approximately solving (3.11), and “ inf ” means the minimum

over all methods R̂ : L2(R)→ L2(R).

Theorem 3.2. Suppose conditions (2.1) and (3.17) hold. Then the optimal error bound for solving

problem (1.1) is:

(i) in case p = 0 and 0 < x < 1, there holds

ω(δ, E) = δxE1−x. (3.27)

(ii) in case p > 0 and x = 0, there holds

ω(δ, E) = δ
p
p+2E

2
p+2 . (3.28)
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Proof. Combining (3.7) with (3.22) and (3.25), for (i), we get

ω(δ, E) = E

√
ρ−1(

δ2

E2
)

= E

√
(
δ2

E2
)x

= δxE1−x.

For (ii), we have

ω(δ, E) = E

√
ρ−1(

δ2

E2
)

= E

√
(
δ2

E2
)

p
p+2

= δ
p
p+2E

2
p+2 .

The proof is completed. �

4 A modified kernel method and convergence rates

In this section, we propose a modified kernel method to solve the ill-posed problem (1.1) and give

the convergence estimates. The regularization solution is given by

ûδµ(x, ξ) = kµ(x, ξ)f̂ δ(ξ), 0 ≤ x < 1, (4.1)

where

kµ(x, ξ) =

{
e(1−x)(Φ(ξ)+iΨ(ξ)), e(1−x)Φ(ξ) ≤ µ(x),

µ(x)ei(1−x)Ψ(ξ), e(1−x)Φ(ξ) > µ(x),
(4.2)

where µ(x) > 1 is the regularization parameter.

According to the inverse Fourier transform, we obtain regularization solution

uδµ(x, t) =
1√
2π

∫ +∞

−∞
kµ(x, ξ)f̂ δ(ξ)eiξtdξ, 0 ≤ x < 1. (4.3)

Next, we give two error estimates under an a priori regularization parameter choice rule and an a

posteriori parameter choice rule.

4.1 The error estimate with a priori parameter choice

Theorem 4.1. Suppose that uδµ(x, t) given by (4.3) is the regularization solution of the exact solution

(2.5). Let p = 0 and let the assumption (2.1) and (2.6) be satisfied. If we choose

µ(x) = x
(E
δ

)1−x
, (4.4)

then for every x ∈ (0, 1), we obtain the following error estimate

‖uδµ(x, t)− u(x, t)‖ ≤ δxE1−x. (4.5)
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Proof. Due to the Parseval’s identity and the triangle inequality, we have

‖uδµ(x, t)− u(x, t)‖ = ‖ûδµ(x, ξ)− û(x, ξ)‖
≤ ‖ûδµ(x, ξ)− ûµ(x, ξ)‖+ ‖ûµ(x, ξ)− û(x, ξ)‖

= ‖kµ(x, ξ)f̂ δ − kµ(x, ξ)f̂‖+ ‖kµ(x, ξ)f̂ − û(x, ξ)‖
= I1 + I2.

(4.6)

For I1, we can deduce that

I1 = ‖kµ(x, ξ)f̂ δ − kµ(x, ξ)f̂‖ = ‖kµ(x, ξ)(f̂ δ − f̂)‖ ≤ sup
ξ∈R
|kµ(x, ξ)|δ ≤ δµ(x). (4.7)

From (2.4), we obtain û(0, ξ) = eθ(ξ)f̂(ξ) and û(x, ξ) = e−xθ(ξ)û(0, ξ). Hence, we have

I2 = ‖(kµ(x, ξ)e−θ(ξ) − e−xθ(ξ))û(0, ξ)‖

=
∥∥∥kµ(x, ξ)− e(1−x)(Φ(ξ)−iΨ(ξ))

eΦ(ξ)−iΨ(ξ)
û(0, ξ)

∥∥∥
≤ sup

ξ∈R

∣∣∣e(1−x)(Φ(ξ)−iΨ(ξ)) −min{e(1−x)(Φ(ξ)−iΨ(ξ)), µ(x)ei(1−x)Ψ(ξ)}
eΦ(ξ)−iΨ(ξ)

∣∣∣E
≤ E sup

ξ∈R,e(1−x)Φ(ξ)>µ(x)

∣∣∣e(1−x)Φ(ξ) − µ(x)

eΦ(ξ)

∣∣∣
= E sup

ξ∈R,e(1−x)Φ(ξ)>µ(x)

e(1−x)Φ(ξ) − µ(x)

eΦ(ξ)
.

(4.8)

Denote γ := Φ(ξ) and let

G(γ) =
e(1−x)γ − µ(x)

eγ
.

Suppose γ∗ satisfies G
′
(γ∗) = 0, by a simple calculation, we obtain

γ∗ =
1

1− x
ln
(1

x
µ(x)

)
,

then we have

I2 ≤ EG(γ∗) = E
( 1
x − 1)µ(x)

( 1
xµ(x))

1
1−x

. (4.9)

Combining (4.6), (4.7) and (4.9), we obtain

‖uδµ(x, t)− u(x, t)‖ ≤ I1 + I2 ≤ δµ(x) + E
( 1
x − 1)µ(x)

( 1
xµ(x))

1
1−x

.

Choosing the regularization parameter µ(x) by

µ(x) = x
(E
δ

)1−x
,

we then obtain the following convergence estimate

‖uδµ(x, t)− u(x, t)‖ ≤ δxE1−x.

The proof of the theorem has been completed. �
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Remark 4.1. When x = 0, the error estimate in Theorem 4.1 is only bounded instead of convergence.

In order to obtain the convergent error estimate between the exact solution and the regularization

solution at x = 0, a stronger priori hypothesis must be introduced. Therefore, for x = 0, there is the

following theorem.

Theorem 4.2. Suppose that uδµ(x, t) given by (4.3) is the regularization solution of the exact solution

(2.5). Let p > 0 and let the assumption (2.1) and (2.6) be satisfied. If we choose

µ =
p

p+ 2

(E
δ

) 2
p+2

, (4.10)

then for x = 0, we obtain the following error estimate

‖uδµ(0, t)− u(0, t)‖ ≤ δ
p
p+2E

2
p+2 . (4.11)

Proof. Due to the Parseval’s identity and the triangle inequality, we can obtain

‖uδµ(0, t)− u(0, t)‖ = ‖ûδµ(0, ξ)− û(0, ξ)‖
≤ ‖ûδµ(0, ξ)− ûµ(0, ξ)‖+ ‖ûµ(0, ξ)− û(0, ξ)‖

= ‖kµ(0, ξ)f̂ δ − kµ(0, ξ)f̂‖+ ‖kµ(0, ξ)f̂ − û(0, ξ)‖
= I3 + I4,

(4.12)

where

I3 = ‖kµ(0, ξ)f̂ δ − kµ(0, ξ)f̂‖ = ‖kµ(0, ξ)(f̂ δ − f̂)‖ ≤ sup
ξ∈R
|kµ(0, ξ)|δ ≤ δµ, (4.13)

and

I4 =
∥∥∥kµ(0, ξ)− eθ(ξ)

eθ(ξ)
û(0, ξ)

∥∥∥
=
∥∥∥eΦ(ξ)+iΨ(ξ) − kµ(0, ξ)

eΦ(ξ)+iΨ(ξ)
e−

p
2

Φ(ξ)e
p
2

Φ(ξ)û(0, ξ)
∥∥∥

≤ sup
ξ∈R

∣∣∣eΦ(ξ)+iΨ(ξ) −min{eΦ(ξ)+iΨ(ξ), µeiΨ(ξ)}
eΦ(ξ)+iΨ(ξ)

e−
p
2

Φ(ξ)
∣∣∣E

≤ E sup
ξ∈R,eΦ(ξ)>µ

∣∣∣eΦ(ξ) − µ
eΦ(ξ)

e−
p
2

Φ(ξ)
∣∣∣

= E sup
ξ∈R,eΦ(ξ)>µ

eΦ(ξ) − µ
e( p

2
+1)Φ(ξ)

.

(4.14)

Denote γ := Φ(ξ) and let

H(γ) =
eγ − µ
e( p

2
+1)γ

.

Suppose γ? satisfies H
′
(γ?) = 0, then we obtain

γ? = ln
(p+ 2

p
µ
)
,
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then

I4 ≤ EH(γ?) = E
(p+2
p − 1)µ

(p+2
p µ)

p+2
2

. (4.15)

Combining (4.10), (4.12), (4.13) and (4.15), we obtain the convergence estimate

‖uδµ(0, t)− u(0, t)‖ ≤ I3 + I4 ≤ δ
p
p+2E

2
p+2 .

We have completed the proof of theorem. �

4.2 The error estimate with a posteriori parameter choice

In this section, we consider a posteriori regularization parameter choice rule. The most general a

posteriori rule is the Morozov’s discrepancy principle [48] that is used to determine the regularization

parameter µ(x).

Let τ > 1 be given a fixed constant. According to Morozov’s discrepancy principle, we use the

regularization parameter µ(x) as the solution of the equation

‖e−(1−x)θ(ξ)kµ(x, ξ)f̂ δ − f̂ δ‖ = τδ, 0 ≤ x < 1. (4.16)

Let Kµ = e−(1−x)θ(ξ)kµ(x, ξ)− 1, we have the following lemma.

Lemma 4.1. Let ω(µ) = ‖Kµf̂ δ‖ = ‖e−(1−x)θ(ξ)kµ(x, ξ)f̂ δ − f̂ δ‖, then we have the following results

(a) ω(µ) is a continuous function;

(b) limµ→1 ω(µ) = ‖(e−(1−x)Φ(ξ) − 1)f̂ δ‖;
(c) limµ→+∞ ω(µ) = 0;

(d) ω(µ) is a strictly decreasing function for any µ ∈ (1,+∞).

Remark 4.2. The proof of Lemma 4.1 is obvious, and we omitted it here. From Lemma 4.1, we

know that if 0 < τδ < ‖(e−(1−x)Φ(ξ) − 1)f̂ δ‖, the equation (4.16) exists a unique solution.

Lemma 4.2. Let p = 0 and let the assumption (2.1) and (2.6) be satisfied. If µ(x) is the solution of

equation (4.16), then for every x ∈ (0, 1), µ(x) satisfies the following inequality

µ(x) ≤
( E

(τ − 1)δ

)1−x
. (4.17)

Proof. First we know |Kµ| ≤ 1. Due to the triangle inequality and (4.16) we have

τδ = ‖Kµf̂ δ‖ ≤ ‖Kµ(f̂ δ − f̂)‖+ ‖Kµf̂‖ ≤ δ + ‖Kµf̂‖. (4.18)

11



For the right side of the upper formula (4.18), we can obtain

‖Kµf̂‖ = ‖(e−(1−x)θ(ξ)kµ(x, ξ)− 1)e−θ(ξ)û(0, ξ)‖

=
∥∥∥1− e−(1−x)θ(ξ)kµ(x, ξ)

eθ(ξ)
û(0, ξ)

∥∥∥
=
∥∥∥e(1−x)θ(ξ) − kµ(x, ξ)

e(2−x)θ(ξ)
û(0, ξ)

∥∥∥
≤ sup

ξ∈R

∣∣∣e(1−x)θ(ξ) − kµ(x, ξ)

e(2−x)θ(ξ)

∣∣∣E
≤ E sup

ξ∈R,e(1−x)Φ(ξ)>µ(x)

e(1−x)Φ(ξ) − µ(x)

e(2−x)Φ(ξ)

= E sup
ξ∈R,e(1−x)Φ(ξ)>µ(x)

e(1−x)Φ(ξ) − µ(x)

e(1−x)Φ(ξ)
e−Φ(ξ)

≤ E sup
ξ∈R,e(1−x)Φ(ξ)>µ(x)

e−Φ(ξ).

(4.19)

Note that e(1−x)Φ(ξ) > µ(x), we have e−Φ(ξ) ≤ µ(x)−
1

1−x , therefore we can obtain

‖Kµf̂‖ ≤ E sup
ξ∈R,e(1−x)Φ(ξ)>µ(x)

e−Φ(ξ) ≤ Eµ(x)−
1

1−x . (4.20)

Combining (4.18) and (4.20), we have

(τ − 1)δ ≤ Eµ(x)−
1

1−x , (4.21)

i.e.,

µ(x) ≤
( E

(τ − 1)δ

)1−x
.

The proof of lemma has been completed. �

Theorem 4.3. Suppose that uδµ(x, t) given by (4.3) is the regularization solution of the exact solution

(2.5). Let p = 0 and let the assumption (2.1) and (2.6) be satisfied. Taking the solution of equation

(4.16) as the regularization parameter, then for every x ∈ (0, 1), we obtain the following error estimate

‖uδµ(x, t)− u(x, t)‖ ≤ C1δ
xE1−x, (4.22)

where C1 = (τ − 1)x−1 + (2τ2 + 2)
x
2 is positive constant.

Proof. Due to the Parseval’s identity and the triangle inequality, we have

‖uδµ(x, t)− u(x, t)‖ = ‖ûδµ(x, ξ)− û(x, ξ)‖
≤ ‖ûδµ(x, ξ)− ûµ(x, ξ)‖+ ‖ûµ(x, ξ)− û(x, ξ)‖
= δµ(x) + ‖ûµ(x, ξ)− û(x, ξ)‖.

(4.23)

According to Lemma 4.2, we obtain

δµ(x) ≤ (τ − 1)x−1δxE1−x. (4.24)
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Due to the Hölder inequality, for the right side of the upper formula (4.23), we have

‖ûµ(x, ξ)− û(x, ξ)‖2 = ‖(kµ(x, ξ)− e(1−x)θ(ξ))f̂‖2

= ‖(kµ(x, ξ)− e(1−x)θ(ξ))e−θ(ξ)û(0, ξ)‖2

= ‖kµ(x, ξ)− e(1−x)θ(ξ)

e(1−x)θ(ξ)
|f̂ |x|û(0, ξ)|1−x‖2

= ‖(e−(1−x)θ(ξ)kµ(x, ξ)− 1)|f̂ |x|û(0, ξ)|1−x‖2

= ‖Kµ|f̂ |x|û(0, ξ)|1−x‖2

= ‖|Kµf̂ |x|Kµû(0, ξ)|1−x‖2

=

∫ +∞

−∞
|Kµf̂ |2x|Kµû(0, ξ)|2(1−x)dξ

≤
(∫ +∞

−∞
|Kµf̂ |2dξ

)x(∫ +∞

−∞
|Kµû(0, ξ)|2dξ

)1−x

≤ 2x
(∫ +∞

−∞
|Kµ|2(|f̂ − f̂ δ|2 + |f̂ δ|2)dξ

)x
E2(1−x)

= 2x(‖Kµ(f̂ − f̂ δ)‖2 + ‖Kµf̂ δ‖2)xE2(1−x)

≤ (2τ2 + 2)xδ2xE2(1−x),

therefore, we obtain

‖ûµ(x, ξ)− û(x, ξ)‖ ≤ (2τ2 + 2)
x
2 δxE1−x. (4.25)

Combining (4.23), (4.24) and (4.25), we have

‖uδµ(x, t)− u(x, t)‖ ≤ C1δ
xE1−x,

where C1 = (τ − 1)x−1 + (2τ2 + 2)
x
2 .

The proof of theorem is completed. �

Remark 4.3. When x = 0, the error estimate in Theorem 4.3 is only bound, not convergence.

Therefore, for x = 0, we give the following lemma.

Lemma 4.3. Let p > 0 and let the assumption (2.1) and (2.6) be satisfied. If µ is the solution of

equation (4.16), then for x = 0, µ satisfies the following inequality

µ ≤
( E

(τ − 1)δ

) 2
p+2

. (4.26)

Proof. Let K0
µ = e−θ(ξ)kµ(0, ξ)− 1. Due to the triangle inequality and (4.16), we have

τδ = ‖K0
µf̂

δ‖ ≤ ‖K0
µ(f̂ δ − f̂)‖+ ‖K0

µf̂‖ ≤ δ + ‖K0
µf̂‖, (4.27)
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where

‖K0
µf̂‖ = ‖(e−θ(ξ)kµ(0, ξ)− 1)e−θ(ξ)û(0, ξ)‖

=
∥∥∥1− e−θ(ξ)kµ(0, ξ)

eθ(ξ)
e−

p
2

Φ(ξ)e
p
2

Φ(ξ)û(0, ξ)
∥∥∥

=
∥∥∥eθ(ξ) − kµ(0, ξ)

e2θ(ξ)
e−

p
2

Φ(ξ)e
p
2

Φ(ξ)û(0, ξ)
∥∥∥

≤ sup
ξ∈R

∣∣∣eθ(ξ) − kµ(0, ξ)

e2θ(ξ)
e−

p
2

Φ(ξ)
∣∣∣E

≤ E sup
ξ∈R,eΦ(ξ)>µ

∣∣∣eΦ(ξ) − µ
eΦ(ξ)

e−( p
2

+1)Φ(ξ)
∣∣∣

≤ E sup
ξ∈R,eΦ(ξ)>µ

e−( p
2

+1)Φ(ξ).

Similar to the proof of Lemma 4.2, we obtain

‖K0
µf̂‖ ≤ E sup

ξ∈R,eΦ(ξ)>µ

e−( p
2

+1)Φ(ξ) ≤ Eµ−
p+2

2 . (4.28)

Combining (4.27) and (4.28), we obtain

µ ≤
( E

(τ − 1)δ

) 2
p+2

.

The proof has been completed. �

Theorem 4.4. Suppose that uδµ(x, t) given by (4.3) is the regularization solution of the exact solution

(2.5). Let p > 0 and let the assumption (2.1) and (2.6) be satisfied. Taking the solution of equation

(4.16) as the regularization parameter, then for x = 0, we have the following error estimate

‖uδµ(0, t)− u(0, t)‖ ≤ C2δ
p
p+2E

2
p+2 , (4.29)

where C2 = (τ − 1)
− 2
p+2 + (2τ2 + 2)

p
2(p+2) is positive constant.

Proof. Due to the Parseval’s identity and the triangle inequality, we have

‖uδµ(0, t)− u(0, t)‖ = ‖ûδµ(0, ξ)− û(0, ξ)‖
≤ ‖ûδµ(0, ξ)− ûµ(0, ξ)‖+ ‖ûµ(0, ξ)− û(0, ξ)‖
≤ δµ+ ‖ûµ(0, ξ)− û(0, ξ)‖.

(4.30)

Form Lemma 4.3, we obtain

δµ ≤ (τ − 1)
− 2
p+2 δ

p
p+2E

2
p+2 . (4.31)
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According to the Hölder inequality, we have

‖ûµ(0, ξ)− û(0, ξ)‖2 = ‖(kµ(0, ξ)− eθ(ξ))f̂‖2

= ‖(kµ(0, ξ)− eθ(ξ))e−θ(ξ)û(0, ξ)‖2

= ‖kµ(0, ξ)− eθ(ξ)

eθ(ξ)
|f̂ |

p
p+2 |e

p
2

Φ(ξ)û(0, ξ)|
2
p+2 ‖2

= ‖(e−θ(ξ)kµ(0, ξ)− 1)|f̂ |
p
p+2 |e

p
2

Φ(ξ)û(0, ξ)|
2
p+2 ‖2

= ‖|K0
µf̂ |

p
p+2 |K0

µe
p
2

Φ(ξ)û(0, ξ)|
2
p+2 ‖2

=

∫ +∞

−∞
|K0

µf̂ |
2p
p+2 |K0

µe
p
2

Φ(ξ)û(0, ξ)|
4
p+2dξ

≤
(∫ +∞

−∞
|K0

µf̂ |2dξ
) p
p+2
(∫ +∞

−∞
|K0

µe
p
2

Φ(ξ)û(0, ξ)|2dξ
) 2
p+2

≤ 2
p
p+2

(∫ +∞

−∞
|K0

µ|2(|f̂ − f̂ δ|2 + |f̂ δ|2)dξ
) p
p+2

E
4
p+2

= 2
p
p+2 (‖K0

µ(f̂ − f̂ δ)‖2 + ‖K0
µf̂

δ‖2)
p
p+2E

4
p+2

≤ (2τ2 + 2)
p
p+2 δ

2p
p+2E

4
p+2 ,

then we have

‖ûµ(x, ξ)− û(x, ξ)‖ ≤ (2τ2 + 2)
p

2(p+2) δ
p
p+2E

2
p+2 . (4.32)

Combining (4.30), (4.31) and (4.32), we obtain

‖uδµ(x, t)− u(x, t)‖ ≤ C2δ
xE1−x,

where C2 = (τ − 1)
− 2
p+2 + (2τ2 + 2)

p
2(p+2) .

The proof of theorem has been completed. �

5 Analysis of optimal approximation

In this section, we will analyze the optimality of the error estimates obtained by this regularization

method.

Table 1: Error estimation coefficient value for different x.

Parameter selection rules the priori the posteriori

0 < x < 1, p = 0 1 (τ − 1)x−1 + (2τ 2 + 2)
x
2

x = 0, p > 0 1 (τ − 1)−
2
p+2 + (2τ 2 + 2)

p
2(p+2)

For 0 < x < 1, we choose ‖u(0, t)‖M0(R) = ‖u(0, t)‖L2(R) =
( ∫ +∞
−∞ |û(0, ξ)|2dξ

) 1
2 ≤ E as a priori

bound, i.e., let p = 0 in (2.6). From Table 1 and Theorem 3.2, we know that the priori error

estimate obtained by using a modified kernel method is optimal and the posteriori error estimate is
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order-optimal. When x = 0, we choose ‖u(0, t)‖Mp(R) =
( ∫ +∞
−∞ epΦ(ξ)|û(0, ξ)|2dξ

) 1
2 ≤ E as a priori

bound, where p > 0. According to Theorem 3.2 and Table 1, we obtain that the priori error estimate

is optimal and the posteriori error estimate is order-optimal.

From the above analysis, under given priori bound (2.6), the modified kernel method is effective.

Next, we will give some numerical examples to verify the effectiveness of this method.

6 Numerical examples

In this section, we give numerical examples to illustrate the efficiency and stability of the method.

It is a well-posed problem to compute the function u(1, t) = f(t) by solving a direct problem when

the initial data u(0, t) = g(t) of the problem (1.1) at x = 0 is known. Therefore, its solution at x = 1

is given by

f(t) = u(1, t) =
1√
2π

∫ +∞

−∞
e−θ(ξ)ĝ(ξ)eiξtdξ. (6.1)

In the numerical implementation, we give the data g(t) of N+1 equidistant grid points on the domain

[0, T ] and perform the discrete Fourier transform. Then the data f(t) is obtained by (6.1) and the

inverse discrete Fourier transform is performed to generate the noise data f̂ as follows:

f̂ δ = f̂ + ε · randn(size(f̂)),

where ε represents the relative error level. This absolute error level δ is expressed as

δ =

√√√√ 1

N + 1

N+1∑
i=1

(f̂i − f̂ δi )2.

To see the accuracy of numerical solutions, we compute the relative root mean square errors by

ε(u) =
( n∑
i=1

(uδµ(x, ti)− u(x, ti))
2/

n∑
i=1

u(x, ti)
2
)1/2

,

where n is the total number of test points.

We know that the priori regularization parameters are based on the smoothness condition of

the exact solution, which is actually difficult to give in advance. Therefore, the following examples

are based on the posteriori regularization parameters to verify the effectiveness of the regularization

method.

Choosing N = 100, T = 2, we give the following three examples.

Example 1. Consider a smooth function u(0, t) := g(t) = e−2πit − 1.

Example 2. Consider a piecewise smooth function

u(0, t) := g(t) =

{
(π + i)t, 0 ≤ t < 1,

(π + i)(2− t), 1 ≤ t ≤ 2.
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Example 3. Consider a non-smooth function

u(0, t) := g(t) =


0, 0 ≤ t < 1

2 ,

1− i, 1
2 ≤ t < 1,

i− 1, 1 ≤ t < 3
2 ,

0, 3
2 ≤ t ≤ 2.

Table 2: The relative root mean square errors of real parts between the exact and approximate

solutions of Example 1 for various values of x and α.

x 0 0.1 0.3 0.5 0.7 0.9

α = 0.1 ε = 0.1 4.0195 0.8544 0.6285 0.4372 0.2651 0.0927

ε(u) ε = 0.01 4.0162 0.8528 0.6275 0.4371 0.2645 0.0918

ε = 0.001 4.0152 0.8526 0.6274 0.4370 0.2644 0.0917

α = 0.5 ε = 0.1 5.0843 0.7553 0.6390 0.4943 0.3187 0.1155

ε(u) ε = 0.01 5.0777 0.7550 0.6388 0.4936 0.3185 0.1133

ε = 0.001 5.0776 0.7550 0.6387 0.4935 0.3184 0.1133

α = 0.8 ε = 0.1 5.1256 0.8383 0.7376 0.5967 0.4037 0.1524

ε(u) ε = 0.01 5.1203 0.8380 0.7374 0.5956 0.4031 0.1509

ε = 0.001 5.1201 0.8380 0.7372 0.5955 0.4030 0.1508

α = 0.9 ε = 0.1 5.0314 0.8526 0.7571 0.6189 0.4247 0.1619

ε(u) ε = 0.01 5.0281 0.8525 0.7569 0.6185 0.4244 0.1613

ε = 0.001 5.0281 0.8524 0.7568 0.6184 0.4243 0.1613

Figure 1-8 show the real parts and the imaginary parts of the exact solution and its approximation

solution under the modified kernel method for Example 1 with α = 0.1, 0.5, 0.8, 0.9 by taking ε =

0.1, 0.01, 0.001. Table 2 and Table 3 show the relative root mean square errors of the real parts and

the imaginary parts between the exact and approximate solutions of Example 1 with various values

x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and α = 0.1, 0.5, 0.8, 0.9.

Figure 9-16 show the real parts and the imaginary parts of the exact solution and its approxi-

mation solution under the modified kernel method for Example 2 with α = 0.1, 0.5, 0.8, 0.9 by taking

ε = 0.1, 0.01, 0.001. Table 4 and Table 5 show the relative root mean square errors of the real parts

and the imaginary parts between the exact and approximate solutions of Example 2 with various

values x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and α = 0.1, 0.5, 0.8, 0.9.

Figure 17-24 show the real parts and the imaginary parts of the exact solution and its approxi-

mation solution under the modified kernel method for Example 3 with α = 0.1, 0.5, 0.8, 0.9 by taking

ε = 0.1, 0.01, 0.001. Table 6 and Table 7 show the relative root mean square errors of the real parts

and the imaginary parts between the exact and approximate solutions of Example 3 with various

values x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and α = 0.1, 0.5, 0.8, 0.9.
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Table 3: The relative root mean square errors of imaginary parts between the exact and ap-

proximate solutions of Example 1 for various values of x and α.

x 0 0.1 0.3 0.5 0.7 0.9

α = 0.1 ε = 0.1 3.2720 0.9775 0.8962 0.7647 0.5568 0.2290

ε(u) ε = 0.01 3.2541 0.9767 0.8957 0.7641 0.5565 0.2288

ε = 0.001 3.2540 0.9767 0.8957 0.7641 0.5565 0.2288

α = 0.5 ε = 0.1 2.9031 1.0925 1.0423 0.9297 0.7072 0.3040

ε(u) ε = 0.01 2.8993 1.0917 1.0420 0.9292 0.7068 0.3038

ε = 0.001 2.8987 1.0917 1.0419 0.9288 0.7067 0.3037

α = 0.8 ε = 0.1 4.3805 1.0682 1.0263 0.9246 0.7137 0.3119

ε(u) ε = 0.01 4.3763 1.0678 1.0259 0.9239 0.7128 0.3116

ε = 0.001 4.3753 1.0678 1.0259 0.9239 0.7128 0.3116

α = 0.9 ε = 0.1 4.7722 1.0209 0.9758 0.8765 0.6767 0.2967

ε(u) ε = 0.01 4.7640 1.0205 0.9756 0.8761 0.6762 0.2965

ε = 0.001 4.7631 1.0204 0.9756 0.8761 0.6762 0.2965

Table 4: The relative root mean square errors of real parts between the exact and approximate

solutions of Example 2 for various values of x and α.

x 0 0.1 0.3 0.5 0.7 0.9

α = 0.1 ε = 0.1 2.9848 0.6230 0.5351 0.4250 0.2849 0.1104

ε(u) ε = 0.01 2.9776 0.6221 0.5346 0.4236 0.2828 0.1051

ε = 0.001 2.9772 0.6221 0.5345 0.4235 0.2827 0.1050

α = 0.5 ε = 0.1 3.6806 0.7210 0.6229 0.4579 0.3068 0.1147

ε(u) ε = 0.01 3.6723 0.7200 0.6223 0.4569 0.3043 0.1130

ε = 0.001 3.6721 0.7199 0.6222 0.4568 0.3043 0.1129

α = 0.8 ε = 0.1 3.9022 0.7324 0.6414 0.5190 0.3549 0.1375

ε(u) ε = 0.01 3.8986 0.7321 0.6406 0.5181 0.3545 0.1356

ε = 0.001 3.8982 0.7321 0.6405 0.5181 0.3544 0.1356

α = 0.9 ε = 0.1 3.9983 0.7481 0.6580 0.5357 0.3689 0.1428

ε(u) ε = 0.01 3.9916 0.7478 0.6576 0.5349 0.3685 0.1422

ε = 0.001 3.9915 0.7478 0.6575 0.5349 0.3684 0.1421
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Table 5: The relative root mean square errors of imaginary parts between the exact and ap-

proximate solutions of Example 2 for various values of x and α.

x 0 0.1 0.3 0.5 0.7 0.9

α = 0.1 ε = 0.1 10.9124 0.5150 0.4045 0.2918 0.1176 0.0604

ε(u) ε = 0.01 10.9066 0.5147 0.4042 0.2917 0.1175 0.0604

ε = 0.001 10.9066 0.5147 0.4042 0.2917 0.1175 0.0604

α = 0.5 ε = 0.1 13.4920 0.6434 0.5433 0.4249 0.2795 0.1025

ε(u) ε = 0.01 13.4898 0.6433 0.5432 0.4248 0.2795 0.1025

ε = 0.001 13.4897 0.6433 0.5431 0.4248 0.2795 0.1025

α = 0.8 ε = 0.1 15.0883 0.7072 0.6136 0.4913 0.3322 0.1254

ε(u) ε = 0.01 15.0860 0.7071 0.6135 0.4912 0.3321 0.1254

ε = 0.001 15.0859 0.7071 0.6135 0.4912 0.3321 0.1254

α = 0.9 ε = 0.1 15.1149 0.7297 0.6373 0.5143 0.3508 0.1337

ε(u) ε = 0.01 15.1143 0.7296 0.6372 0.5143 0.3507 0.1337

ε = 0.001 15.1142 0.7296 0.6371 0.5142 0.3507 0.1337

Table 6: The relative root mean square errors of real parts between the exact and approximate

solutions of Example 3 for various values of x and α.

x 0 0.1 0.3 0.5 0.7 0.9

α = 0.1 ε = 0.1 4.2159 1.1307 1.0848 0.9390 0.6604 0.2456

ε(u) ε = 0.01 4.2090 1.1306 1.0846 0.9389 0.6587 0.2441

ε = 0.001 4.2087 1.1305 1.0845 0.9389 0.6586 0.2440

α = 0.5 ε = 0.1 4.3197 1.0781 1.0307 0.9039 0.6581 0.2608

ε(u) ε = 0.01 4.3167 1.0780 1.0306 0.9036 0.6577 0.2603

ε = 0.001 4.3164 1.0780 1.0306 0.9036 0.6576 0.2602

α = 0.8 ε = 0.1 4.6048 1.0743 1.0447 0.9363 0.7003 0.2874

ε(u) ε = 0.01 4.6034 1.0741 1.0446 0.9362 0.7000 0.2867

ε = 0.001 4.6032 1.0741 1.0446 0.9361 0.6999 0.2866

α = 0.9 ε = 0.1 4.6601 1.0761 1.0539 0.9525 0.7192 0.2986

ε(u) ε = 0.01 4.6563 1.0759 1.0538 0.9524 0.7187 0.2975

ε = 0.001 4.6562 1.0748 1.0537 0.9524 0.7186 0.2974
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Table 7: The relative root mean square errors of imaginary parts between the exact and ap-

proximate solutions of Example 3 for various values of x and α.

x 0 0.1 0.3 0.5 0.7 0.9

α = 0.1 ε = 0.05 3.5342 1.0440 0.9220 0.7499 0.5362 0.2300

ε(u) ε = 0.01 3.5301 1.0435 0.9215 0.7490 0.5349 0.2294

ε = 0.001 3.5297 1.0434 0.9214 0.7489 0.5348 0.2294

α = 0.5 ε = 0.05 4.8627 1.0460 0.9890 0.8732 0.6627 0.2873

ε(u) ε = 0.01 4.8602 1.0458 0.9888 0.8724 0.6622 0.2870

ε = 0.001 4.8598 1.0458 0.9888 0.8723 0.6621 0.2870

α = 0.8 ε = 0.05 5.2484 1.0736 1.0544 0.9698 0.7631 0.3386

ε(u) ε = 0.01 5.2442 1.0736 1.0540 0.9692 0.7626 0.3383

ε = 0.001 5.2436 1.0736 1.0540 0.9692 0.7626 0.3383

α = 0.9 ε = 0.05 5.3040 1.0788 1.0711 0.9978 0.7946 0.3551

ε(u) ε = 0.01 5.3036 1.0787 1.0708 0.9972 0.7936 0.3548

ε = 0.001 5.3028 1.0787 1.0707 0.9971 0.7935 0.3547

According to the above three examples, it can be proved that for a given x and ε, ε(u) increases

with the increase of α, i.e., the larger α, the more serious the problem is. And for a given α and ε, ε(u)

decreases with the larger x, that is, the smaller x is, the more serious the problem is. Furthermore, for

different functions, the fitting effect of functions with good properties is better than that of functions

with poor properties.

7 Conclusion

In this paper, we study an inverse time-fractional Schrödinger problem of potential-free field. This

problem is a serious ill-posed. Under a priori assumption, we obtain the optimal error bound result.

A modified kernel method is introduced to prove the convergence estimate obtained under the priori

regularization parameter selection rule is optimal, and the convergence estimate obtained under the

posteriori regularization parameter selection rule is order-optimal. Three numerical examples are given

to illustrate the effectiveness, stability and superiority of this method.
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Figure 1: The real part of the exact solution and its approximation solution for Example 1

with α = 0.1 and ε = 0.1, 0.01, 0.001.
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Figure 7: The real part of the exact solution and its approximation solution for Example 1

with α = 0.9 and ε = 0.1, 0.01, 0.001.
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Figure 8: The imaginary part of the exact solution and its approximation solution for Example

1 with α = 0.9 and ε = 0.1, 0.01, 0.001.
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Figure 9: The real part of the exact solution and its approximation solution for Example 2

with α = 0.1 and ε = 0.1, 0.01, 0.001.
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Figure 10: The imaginary part of the exact solution and its approximation solution for Example

2 with α = 0.1 and ε = 0.1, 0.01, 0.001.
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Figure 11: The real part of the exact solution and its approximation solution for Example 2

with α = 0.5 and ε = 0.1, 0.01, 0.001.
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(d) x = 0.9

Figure 12: The imaginary part of the exact solution and its approximation solution for Example

2 with α = 0.5 and ε = 0.1, 0.01, 0.001.
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Figure 13: The real part of the exact solution and its approximation solution for Example 2

with α = 0.8 and ε = 0.1, 0.01, 0.001.
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Figure 14: The imaginary part of the exact solution and its approximation solution for Example

2 with α = 0.8 and ε = 0.1, 0.01, 0.001.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

-60

-50

-40

-30

-20

-10

0

10

T
he

 e
xa

ct
 s

ol
ut

io
n 

re
al

(u
(0

,t)
) 

an
d 

its
 a

pp
ro

xi
m

at
io

ns

Exact
ǫ=0.1
ǫ=0.01
ǫ=0.001

(a) x = 0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

-200

-150

-100

-50

0

50

T
he

 e
xa

ct
 s

ol
ut

io
n 

re
al

(u
(x

,t)
) 

an
d 

its
 a

pp
ro

xi
m

at
io

ns

Exact
ǫ=0.1
ǫ=0.01
ǫ=0.001

(b) x = 0.1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

-120

-100

-80

-60

-40

-20

0

20

T
he

 e
xa

ct
 s

ol
ut

io
n 

re
al

(u
(x

,t)
) 

an
d 

its
 a

pp
ro

xi
m

at
io

ns

Exact
ǫ=0.1
ǫ=0.01
ǫ=0.001

(c) x = 0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

t

-80

-70

-60

-50

-40

-30

-20

-10

0

10

T
he

 e
xa

ct
 s

ol
ut

io
n 

re
al

(u
(x

,t)
) 

an
d 

its
 a

pp
ro

xi
m

at
io

ns

Exact
ǫ=0.1
ǫ=0.01
ǫ=0.001

(d) x = 0.9

Figure 15: The real part of the exact solution and its approximation solution for Example 2

with α = 0.9 and ε = 0.1, 0.01, 0.001.
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(d) x = 0.9

Figure 16: The imaginary part of the exact solution and its approximation solution for Example

2 with α = 0.9 and ε = 0.1, 0.01, 0.001.
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Figure 17: The real part of the exact solution and its approximation solution for Example 3

with α = 0.1 and ε = 0.1, 0.01, 0.001.
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Figure 18: The imaginary part of the exact solution and its approximation solution for Example

3 with α = 0.1 and ε = 0.1, 0.01, 0.001.
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Figure 19: The real part of the exact solution and its approximation solution for Example 3

with α = 0.5 and ε = 0.1, 0.01, 0.001.
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(d) x = 0.9

Figure 20: The imaginary part of the exact solution and its approximation solution for Example

3 with α = 0.5 and ε = 0.1, 0.01, 0.001.
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Figure 21: The real part of the exact solution and its approximation solution for Example 3

with α = 0.8 and ε = 0.1, 0.01, 0.001.
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(b) x = 0.1
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(d) x = 0.9

Figure 22: The imaginary part of the exact solution and its approximation solution for Example

3 with α = 0.8 and ε = 0.1, 0.01, 0.001.
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(d) x = 0.9

Figure 23: The real part of the exact solution and its approximation solution for Example 3

with α = 0.9 and ε = 0.1, 0.01, 0.001.
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Figure 24: The imaginary part of the exact solution and its approximation solution for Example

3 with α = 0.9 and ε = 0.1, 0.01, 0.001.
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