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Abstract. This paper is devoted to study the global attractors of the periodic
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existence of global attractors, the Hausdorff dimension and fractal dimension
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1 Introduction and main results

The purpose of the present paper is to consider the following periodic initial value
problem for the Landau-Lifshitz—Bloch-Maxwell system

Zy=ANZ+7 x (AZ+H)—k(1+u|Z]*)2Z,
VxH=F+0FE,

V x E = —H, — 87, — 6H,
V-H+pV-Z=0, V-E=0,
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with periodic conditions

Z(x +2Le;, t) = Z(x,t), H(x+2Le;, t) = H(x,1),
E(x+2Le;,t) = E(z,t), z€Q, t>0,i=1,23, (1.5)
Z(x,0) = Zy(x), H(x,0) = Ho(x), E(z,0) = Ey(z), = € Q, (1.6)

where Z = (Zy, Zy, Z3) is the vector of magnetization, H = (H;, Hy, H3) is the magnetic
field, E = (Fy, Es, E3) is the electric field. z + 2Le; = (21, 21, @ + 2L, Ti1, -+, Xy),
1=1,2,3,L>0, k>0, >0, 0>0, >0, §>0.

System (1.1)-(1.4) arises in the study of the Landau-Lifshitz—Bloch (LLB) system which
well describes the magnetization dynamics of ferromagnets at high temperature (6 > 0.,
0.—~Curie value). Before that, the first thing people studied was the low temperature (6 < 6,.)
which was called the Landau—Lifshitz (LL) system. The evolution of spin fields in continuum
ferromagnets around the effective field H.s¢ is described by the Landau-Lifshitz-Gilbert
(LLG) equation as follows:

Zt =14 X Heff — gl X (Z X Heff)7 (17)

where Z(z,t) = (Z1(x,t), Zo(z,t), Z3(x,t)) is magnetization functional vector. ay,as > 0.
”x” denotes the vector outer product. The saturation magnetization |Z| = 1 and the
effective field H.¢y = —&g—éz). The Landau energy

1
aa(Z):a/ |VZ|2dx+/cp(Z)dx—|——/ |Vu|2dx—/ < H,Z >pn dux,
Q 0 2 JRn 0

where « [, [VZ|*dx is the exchange energy with o > 0, [, ¢(Z)dx is the anisotropy energy,
%fRn |Vu|?dz is the magnetostatic energy from the stray field, —Vu satisfies div(—poVu +
Zxq) = 0in R™ for the vacuum permeability ;o = 1 and yq is the characteristic function.
It is widely known that the LLG equation is hard to analyze mathematically because of its
strongly coupled degenerated quasi-linear parabolic system. So many researchers usually
restrict the exchange of energy contributions in the effective field as the reduced effective
field Heyy = AZ, and many important results have been obtain. A.Visintin gave the first
existence results for the LLG equation in [2]. In [3] and [4], the authors prove the globally
existence solutions via the valid energy law. For more relevant results, one can see [1] and
the literatures in it.

However, there is an interesting phenomenon. The LLG equation only gives a good de-
scription about the magnetization dynamics of ferromagnets at low temperatures, when the
temperature is higher than the Curie temperature (Curie value 6.), the modulus of mag-
netization change and the LLG equation is dissatisfactory. From the physical background,
materials are classified as paramagnetic or ferromagnetic according to there different reac-
tions to the presence of an external magnetic field. This reaction can be affected by many
different factors such as temperature. When the temperature overcome as the critical value
6., the material is paramagnetic [5].

In order to describe the dynamics of magnetization vector Z in a ferromagnetic body
for a wide range of temperatures, in 1990 Garanin [8,9] derived the Landau—Lifshitz—Bloch

2



(LLB) equation from statistical mechanis with the mean field approximation. However, at
high temperature (6 > 0., §.—Curie value), LLB model is satisfactory. In [10], A. Berti et. al.
also pointed that from the paramagnetic to the ferromagnetic state is modeled as a second
order phase transition. It is necessary to consider equation of the temperature 6.

The LLB equation is given as follows

Ly
|1Z|?

L,

Z :—’}/ZXHeff‘l‘ ’Z’Q

(Z - Hepp)Z — —5 2 X (Z X Hey), (1.8)
where ~ are constants, Ly, Ls are the longitudinal and transverse damping parameters
depend on the temperature. H.y is the effective field. By using method in [6] [7], We can

also rewrite (1.8) as follows

T ay

7 = Z x H, —
TV Heds Tz Tz

—=7 X (Z X Heff) (19)

where ya = Ly, yai = Ly. Here | and a, are dimensionless damping parameters depend
on the temperature. It can be write as follows [11]

0
A , if 6 < 6.
(@) = 225 al(0) = < 396) 1
H 30 )
¢ a”(@), lf 8 Z ‘98,

where A > 0 is a constant. From the calculations above, we can see that when the tempera-
ture is greater than ¢, we obtain o) = ;. We can rewrite (1.8) as

Zy = —yZ X Hepp +yoy Hepy

by using the vector triple product.
In [12], the author get

Z % (Z % Heyp) = (Z - Hegs)Z — |Z|*Heyy
according to the vector triple product identity
X (bxc)=bla-c)—cla-b)
moreover points that if L; = Lo, (1.8) can be reduced as follows
Zy=NZ+7ZxNANZ—k|Z|*Z, (k>0) (1.10)

and the existence of weak solution for the equation (1.10) has been obtained.

For the convenience of formulating our results, we set some notations on the functional
settings. We give function spaces and some notation. L?(§2) represents the Hilbert space
equipped with the inner product

(u,v):/Qude, | = /(o w),
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to describe the theorems accurately , we denote the L?(Q)-norm by ||-||2 , denote the LP(£2)-
norm by || - ||, H?(2) represents the sobolev space {u € L*(Q2), DXu € L*(Q), K < ¢}, and
as usual, HE(Q) = WEK2(Q). CK(1,9Q) represents the space of continuous functions from
the interval I to a Banach space 2. Throughout this paper, the Sobolev embedding theorem
will be used frequently. We choose the definition domains of the Laplacian A as follows:

D(A) = H*(Q)

We can essentially prove the following result with generalizes the work given by Galerkin’s
approximation in [1].

Theorem 1.1 (Local ezistence of the smooth solution)

Assume the initial data (Zo(x), Ho(z), Eo(z)) € (H*(Q), H*1(Q), H*"1(Q)), k > 1+ [4],
QCRY d=1,2. V- Ey=0, V- (Hy+ Zy) = 0. Then there exists a constant Ty > 0 such
that the periodic initial value problem (1.1)-(1.6) admits a local smooth solution

k
Z(x,t) € N2 W2 (0, Ty; H2(2)), (1.11)
H(z,t) € NFZJWE (0, Ty; HF*71(Q)), (1.12)
E(z,t) € N{ZgW2,(0, To; H*71(Q)). (1.13)

It is natural to consider the global existence of the smooth solution, and the first result of
the present paper is stated in the following theorem.

Theorem 1.2 (Global ezistence of the smooth solution)

Assume that the conditions in Lemma 2./ are satisfied, and the initial data (Zo(x), Ho(z), Eo(x)) €
(H*(Q), H*1(Q), H* (), k > 1+ [4], Q@ C R? is a bounded domain and 1 < d < 2.
V-Ey=0,V-(Hy+BZy) =0. When d = 2, assume that || Zo(z)| n2() < 61, where 6, is a
small constant, then there exists a unique global smooth solution of the periodic initial value
problem (1.1)-(1.6) satisfies

Z(w.1) € AW, (0,7; H=(Q)), (1.14)
H(x.1) € NZ3WE(0,T; HY 7 (), (1.15)
E(x,t) € NZW2(0,T; H**71(Q)). (1.16)

In the following, we denote D by the set of smooth solutions of (1.1)-(1.6), d represents the
metric of D. The semigroup operator which is continuous of (1.1)-(1.6) is given by

S(t):D— D,S(t+T)=5(r)-S(T),(¥Vr,T > 0),5(0) = I.

Definition 1.1 By C D is an attracting set, if for all bounded sets B C D we have
d(S(T)B, By) — 0(1 — 00), where d(A, B) is the semidistance defined by

(A, B) = supyeain fyepd(z,y)



Definition 1.2 Define the w—Ilimit set of a bounded attracting set By C D at time T as

Ay =w(By) = ﬂ U S(7)By

s>071>s

Definition 1.3 The set A C D s called a global attractor if
(7). A is compact and invariant: S(t)A = A for all t > 0;
(7). dist(S(t)B,A) — 0(t — o0) for every bounded set B C D.

Then the second result of the present paper is stated in the following theorem.

Theorem 1.3 Assume that the conditions of Theorem 1.2 hold. Then there exists an at-
tractor A of the periodic initial value problem (1.1)-(1.6) satisfies

(1) A is weakly compact in H*(2) x H'(Q) x H(Q),

(11) S(t)A = A,

(iii) limy_o dist(S(t)B, A) = 0 for any bounded set B C D C H?*(Q) x HY(Q) x H'(Q),
where

D ={(Z B, H)c H Q) x H\(Q) x H(Q),V-E =0,V - (H + Z) = 0},
dist(z,y) = sup inf ||z — y||.
ist(z,y) ig}g;gyﬂw vl
S(t)(Zy, Hy, Ey) is the semigroup formed by problem (1.1)-(1.6).

Moreover, we estimate the Hausdorff dimension and fractal dimension in Theorem 3.1 in the
end of paper.

The rest of this paper is organized as follows. In section 2, we give the proof of the existence
of the global smooth solution. In section 3, we prove the second main result, Theorem 1.3.
And the Hausdorff dimension and fractal dimension are also estimated in this section.

2 Global existence of the smooth solution

Lemma 2.1 Assume that Zy(z) € L*(Q). Then for the smooth solution of the periodic
initial value problem (1.1)-(1.6), there are

1Z( )13 < 1 Zo(2)]]3- (2.1)

Proof. Making the scalar product of Z with (1.1), we get

1d
35| ZCO + 19218+ [ (14 nlZP)|2Pde =0,
Q

Thus, we have

d
—NZ(. D2 <o.
=123

As a result, (2.1) follows.



Lemma 2.2 Assume Zy(x) € H*(Y), then we have

sup (|2, )|z < [[Zo(2)| 5> (2.2)

0<t<oo

Proof. A direct calculation yields

1d
L2l = [ 12122 Zde = [ |29z 52— b1+ 2P 2P
p Q 9)
_ / v(|2P22) - V7 - k/(l + ulZ)|ZPde < 0.
Q Q
Thus, we get

1ZC Ol < [[Zo(@)1[5-
Letting p — oo, we get (2.2).

Lemma 2.3 Assume VZy(z) € L*(Q), Ey(z) € L*(), Ho(x) € L*(). Then for the

smooth solution of the periodic initial value problem (1.1)-(1.6), we have

sup [[VZ(, )l + I1EC )3+ IH(DIE] < K, (2.3)

0<t<o0o

| iaztoja < k. 2.0
0
where the constants Ky and Ky depend only ||V Zy(x)|l2, ||Eo(x)|l2, [|[Ho(z)]2-

Proof. Making the scalar product of £ with (1.2), and making the scalar product of —H
with (1.3), and then adding these two equalities obtained, we have

(VxH)-E—(VxE)-H=E,-E+o|E*+H,-H+BZ-H+ 6 H (2.5)
By using the formula
(VxH)-E—(VxE) - H=V-(HxE) (2.6)

and integrating (2.5) with respect to x over €2, we obtain

1d
5@(!\1*7!\%HHH@+0HEH§+5HHH§+5/QZt-Hd$=0- (2.7)

Making the scalar product of (AZ + H) with (1.1) and integrating with respect to x over €2,
we get

/Zt-de:—/AZ-thx+/]AZ\Qdyﬁ—/AZ-de
Q Q Q Q

—k/(1+u|Z|2)Z-Ade—k/(1+u|Z|2)Z-Hda:. (2.8)
Q Q



Applying Young’s inequality, we have

/AZ-de
Q

‘k:/(1+u|Z|2)Z-Ade
Q

IA

1
SUAZIE+[1H]3),

IN

1
SIAZIE + el Zo(@)

IA

1
‘k/(l—%u]ZﬁZ-de gHHHg‘i‘CZHZO(x)quz.
Q

From (2.7), we get

1d
2dt

50

SNHE < (29)

B
(IE13+ IHIlz + BIVZI2) + o | Blls + SNAZIIE + (5

By using Gronwall inequality, we can get (2.3) and (2.4).

In order to get the uniform estimates with respect to ¢ for the solution (Z,FE, H) €
(H2(Q), HY(Q), H'(Q)), we first rewrite (1.2) and (1.3) as the following equivalent second

order nonlinear wave equations

Vx(VxH)—%(VxE)—FanE, (2.10)
VX(VXE):—%(VXH)—B%(VXZ)—5VXH. (2.11)
From the formula
Vx(VxH)=V(V-H)—AH=-8V(V-Z)— AH, (2.12)
we have
—BV(V-Z)—AH = %(VxEH—anE
=—-Hy—pZy— (6+0)H, — PoZ, —odH,
—AFE = —E(VXH)—ﬁg(VXZ)—(;VXH
ot ot
= —FEy—(0+0)E; —00E — B(V X Z);.
Thus, we find
Hy—AH +3Zy+ (0 +0)H + foZy +06H — pV(V - Z) =0, (2.13)
Eyw—AE+ (0 +0)E;+00E + B(V x Z), = 0. (2.14)

It is difficult to derive the uniform a priori estimates with respect to t for (Z, E, H) €
(H2(Q), HY(Q), H'(Q)) from (2.13) and (2.14). We prove instead by Lyapunov functional
containing small parameter method. We define the Lyapunov functional as follows:

1
e(t) = SUH D15+ IVEC D15+ IEC O+ IVEIS + [AZ15) +m(H, Hy) +no(E, Ey),
(2.15)



where 7; and 7, are constants to be determined. We want to prove that e(t) satisfies the

following differential inequality
de(t)

dt
where a > 0 is a constant, K independent of ¢. Then the a priori estimates can be derived.
In fact, it follows from (2.15) that

+ ae(t) < K, (2.16)

de(t)
dt

- (Hta Htt) + (VH, VHt) + (Et7 Ett) + (VE, VEt) + (AZ, AZt)
+ i (Hy, Hy) + i (H, Hy) + n2(Ey, By) + n2(E, Ey), (2.17)

in which

(H,, Hy) = (H;, AH — 8Zy — (6 + 0)H, — BoZ, — 66 H + BV(V - Z))
= (Hy, AH) — B(Hy, Zy) — (6 + 0)(Hy, Hy) — Bo(Hy, Zy)
— 00(Hy, H) + B(H;, V(V - 2)),
(VH,VH;) = —(AH, Hy),
(Ey, Bw) = (B, AE — (0 + 0)E, — 60 E — B(V x Z),)
= (B, AE) — (0 + 0)(Ey, Ey) — do(Ey, E) — B(E:, (V X Z)y),
(VE, VEt) = _(AE> Et>7
(AZ,AZ) = (AZ,N°Z) + (AZ,A(Z x AZ)) + (AZ,A(Z x H))
— k(AZ, A1+ ul21)Z)),

m(H,Hy) = m(H,AH — 3Zy — (6 +0)H, — foZy — 0dH + BV (V - 7))
= —m|VH|3 = Bm(H, Zy) — (8 + o)m(H, Hy) — Bom(H, Z,)
—odm || H|5 + Bm(H,V(V - Z)),
m(E, Ey) = m(E,AE — (0 +0)E, — dcE — B(V x Z),)
= —1||VE|; — (0 + 8)na(E, Er) — dom|| B3 — Bna(E, (V X Z),).

Hence, we have

de(t)
dt

= —(0+o—m)|H; = 0+ —=m)El;—m|VH|; = nlVE|3
—adm||H|3 — adna|| |5 — B (H, Zu) — (6 + o)ym + o6)(H, Hy)
—Bom(H, Z;) — (0 + 6)na + 06)(E, Ey) — Bna(E, (V X Z)y)
+B(Hy, V(V - 2)) + B (H,V(V - Z)) — B(Hy, Zu) — Bo(Hy, Z)
—B(E, (V % Z),) = IV* 2|3+ (AZ,A(Z x AZ))
+HAZ,A(Z x H)) — k(AZ,A((1+ p|Z)*)2)). (2.18)



However, we have

(H, Zu) = (H,Zy), — (Hi, Z4),
(Hy, Zu) = (Hy, Z4)e — (AH — BZy — (6 + 0)Hy — BoZy — o0 H + BV/(V - Z), Zy)

= (Hy, Zy)e + g(Zt; Zi)e — (AH, Zy) + (6 + o) (Hy, Zy) + BUHZtHg

+o0(H, Z) + B(V(V - Z), Z,),
B(E,, (V % Z);) = B(E,V x Z); — B(AE — (0 + 8)Ey — 60 E — B(V x Z),V x Z)

2

= B(E,V x Z) + %(v x 2,V x Z),+ B(VE,V(V x Z))
4 B0+ 6)(Ey, V x Z) + 00B8(E,V x Z),
5772(E7 (V X Z)t) = BUZ(Eav X Z)t - 5772(Et7V X Z)

Set
er(t) = %G(t) +R(1), (2.19)
where
G(t) = | Bl + 1HA + [VEI; + [VHIS + 1AZ]3
= 2¢(t) — 2m(H, H,) — 2n3(E, Ey), (2.20)
and

2 2
R(t) = B(H, Z;) + ?HZtHg + B(E, V X Z) + 7”V X Z“g

1 1
~mB(E,Y x 2)+ soml| HI3 + Lom| ]} (2.21)
+meB(E, NV X Z)+ne(E, Ey) +m1(H, Hy).

Then we have

D | o m) LI+ (o~ m)L B3 + o 3
+ml[VH|3 + 02| VE|; + [VAZ|3 + o 8% 2213
= — (208 —mB)(Zi, Hy) + B(Zi, AH) — (0 —m2) B(E, V X Z) (2.22)
—B(VE,V(V X Z)+ (A(Z x AZ),AZ)+ (A(Z x H),AZ)
—opBm(H, Z) + B(H, V(V - 2)) + pm(H,V(V - Z))

+ B2,V (V- Z)) — k(AZ,A(1 + p|Z|*Z)).

In the sequel, we estimate every term of the right hand side of (2.22).
(1) Estimate of the first term

\Z)? <|AZP +|Z x (AZ + H)[* + K*|(1 + | Z]?) Z )2



0—1"

| = (208 —mpB)(Z, Hy)| < L5 + Call Zell:

2
O‘_
< TR H + Gol|AZI + dy
og— 1
< TSR + S IVAZ|3 + de

(2) Estimate of the second term. Acting V on (1.1), we get

V7 =VAZ+VZx (AZ+H)+Z x (VAZ + VH) — kV[(1 + u|Z*)Z).

B(Zy, AH) = —B(VZ,VH) = —B(AVZ,VH) — B(VZ x (AZ + H),VH)

—B(Z x (VAZ),VH) + Bk(V[(1+ pl|Z|*)Z],VH)

+(Z x (VAZ),VH)| + k| Z|SIZ 21V H 2
p
< SUAVZI5+ [IVHIE) + BCIZILIVZ]LIVH]»)

+BIIVZI | H [ VH]2 + B Z]|o| (VAZ, VH)

p
2

+BIH L VHIS 1219215
< (5 + 20121 + B 21 ) (19°Z0 + IV I
< Co(|IV*Z]l2 + [IVHIJ3).
(3) Estimate of the third term
(0 +m2)B(E, V x Z)| < 2| Exll; + CLIVZ|; < el | Elz + Co
(4) Estimate of the forth term
| = B(VE,V(V x 2))| < &;|[VAZ|; + Cil|E|l; < es| VAZ]; + Co.

(5) Estimate the fifth term

(A(Z x AZ),AZ)| < (V(Z x AZ),VAZ)| < 4| VAZ|; + [AZ]l3-

(6) Estimate the sixth term

(A(Z x H),AZ)| = [(V(Z x H),V°Z)|
< [V Z]loc[|H || VAZls + [VH|[VAZ]]2

1
< sllVAZ[s + S(IVHS + [[VAZ]S).

(7) Estimate of the seventh term

| —oBm(H, Zy)| < er||H|2l| Zil|2 < e2|| AZ]|2 + dy < 6| VAZ]|3 + do.

10

< (— + 25HZH§O> (IAVZI; + (IVH2) + BIV Zal H || VH 5

(2.23)

(2.24)

p
< SUAVZIS+ IVHIE) + BIVZILAZIsIVH|2 + 8I(VZ x H,VH)|

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)



(8) Estimate of the eighth term
B(H:, V(V - Z))| < BIHANAZ]2 < erl| Hell; + eslVAZ]I; + Ch. (2.31)
(9) Estimate of the ninth term
B (H,V(VZ)| < mPBIH|2|AZ]|l2 < es||[VAZ|; + C1. (2.32)
(10) Estimate of the tenth term
8%(Z:, V(V - 2))| < B AZI; + C1 < 2o VAZ]; + Co. (2.33)

Choosing [ suitable small, there exists a constant a > 0 such that

d€1 (t)
dt

+a([Hlls + 2] + IVHI; + IVEI; + [[H5 + [[VAZ]3) < C, (2.34)

where C'is independent of ¢. Since AZ(x,t) is periodic with respect to z, fOQD AZdx =
By Poincaré inequality, we have

IAZ])5 < 8[[VAZ][3. (2.35)

Choosing dy = min(a, a/dy), we have from (2.34) that

deé( ) + 2pe1(t) < C+250R(t) < C + 25gsup R(t). (2.36)
t
Hence, we have
e1(t)e? < e1(0) + (% + sup R(t )) (e* —1). (2.37)
0 t
Moreover,
C
e1(t) < e1(0) + 5 +sup [ R(1) (239)
0
that is,
G(t) < 2Cy + 2(sup |R(t)| — R(t)) < 2Cy + 4sup | R(1)]. (2.39)
t t

it follows from (2.21) that

2
R(t) < BIZANHol + 1213 + BI Bl IV 21l + i | H |V Bl
2
Al BB, + -1V 213

1 1
+omllH; + §0n2||E||3 + Bl | E2[IV Z ]2

5+62
1 Z4I5 + (HHt||§+IIEtH%+||VEH§>+CI

&
< (B+B)AZ]5 + S (IHlls + 1B + IV EIZ) + Co. (2.40)

11



Taking < % and 8+ 8% < }l, we have
ag = 4max{§, 6+ 6%} <1 (2.41)
It follows from (2.40) that
IR < ool Ll + 1B + IVEIR + 1AZI3) < faoG(). (242

Substituting (2.42) into (2.39), we have

G(t) < 2¢o + agsup G(t), (2.43)
t
that is,
260
sup G(t) < = dp. (2.44)
t 1 —ag

We can prove the following existence theorem by using the above estimates.

Lemma 2.4 Assume that Z(z,t), H(x,t), E(x,t) are smooth solutions of (1.1)-(1.6),
(Zo(x), Ho(x), Eo(x)) € (H*(Q), H'(Q), HY(Q)), Q@ Cc R 1 < d < 2 and satisfying the
following conditions

(1)m >0, 72 >0, o >m+n+1,

(i) 0< B <L B+p%<q,

(iii) When d =2, || Zo(x)||32 < A with A = X\(B) is a small constant, we have

SltlpU|Z(',t)|h2H2(Q) +HIHC )7 + 1EC O @) < K, (2.45)
where the K is a constant only depends on || Zo(x)||32(qy» 1 Ho(2) I3 s |1 Eo(2) |51 (), and ds
independent of t.

Next the Theorem 1.2 can be obtained by using the induction method.

3 Global attractors and the Hausdorff dimension and

fractal dimension

From Theorem 1.2 we obtain that problem (1.1)-(1.6) has a semigroup operator S(t)(Zo, Ho, Fo)
which is continuous by [13,14]. Taking the subset D such that

D={(Z E,H)ec H* Q) x H(Q) x H'(Q),V-E =0,V - (H + 32) =0},
it follows from Lemma 2.2 that the operator S(t) : D — D is bounded and

A= {V-E=0,V-(H+B2)=0,2(-t) € HAQ), H(-.t) € H'(Q), E(-,1) € H\(Q),
1Z (- )72y + 1HC DT @) + 1EC D) < K}

is a bounded absorbing set in D, then we get A = w(A) is a weakly compact attractor of
the periodic initial value problem (1.1)-(1.6). This completes the proof of the Theorem 1.3.
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Lemma 3.1 The smooth solution (Z(z,t), H(x,t), E(x,t)) of problem (1.1)-(1.6) is contin-
uwously dependent on the initial data.

Proof. Let (Z;(z,t), Hi(z,t), E;(z,t)) (i = 1,2) be smooth solution of (1.1)-(1.6) with initial
conditions Z;(z,0) = Zy;(x), H;(x,0) = Hy;(z), Ei(x,0) = Ey;(z) (i = 1,2). Let
Z(x,t) = Zy(x,t) — Zy (2, 1),
H(z,t) = Hy(z,t) — Hy(z,1t),
E(z,t) = Ey(z,t) — Ey(z,1),
then we get that (Z(x,t), H(z,t), E(z,t)) satisfies
Zi =N+ Z XNy +Zy x AZ+Z x Hy+Zy x H
M2+ W22+ |2l — 1 20) 20),
E, =V xH-0E,
H,=-V x E—(3Z,—H,
V- (H+p3Z)=0, V-E=0.
Z(x+ D,t)=Z(x— D,t), H(zx+ D,t)=H(x — D,t),

E(x+ D,t) = E(x — D, 1), (3.4)
Z(x,0) = Zy(x), H(x,0) = Hy(x), E(z,0) = Ey(z).
V- (Hy+ BZy) =0, V-Ey=0. (3.5)

We may establish inequality as follows

OilggTHIVZ(wt)H% HIHC DI+ 1EC,OI12) < CUIVZo(@)I + [1Ho(2)3 + [ Eo(2)I2], (3.6)

where C'is an absolute constant. It is clear if (3.6) holds, then the conclusion of Lemma 3.1
is proved.
In fact, taking the inner product of (3.1) with AZ, we have
1d
2dt
:—/ZXAZg-Ade—/ZXHg-AZdI—/ZlXH-Ade
Q Q Q

/ VZPdz + |AZ]2
Q

+k:/Z-Ade+kru/ |Z1|2Z-Ade+ku/(|Zg|2— |Z11*)Zy - AZdx,
where ' ' "
|—/QZ><AZQ-Ade| _ |/QZ><VAZ2-Vde] < IVAZ||| 2111V Z s
< C(|12115 + IV Z]13),
= [ 2ty 8200 = | | 2% VHy ¥ 200] < |V Hallel| 211019211
< G(l1Z2115 + IV Z][3),
|/<?M/Q 12127 - AZdzx| < || 241212112118 Z |2 < C5(112]15 + [1AZ]13),
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then we get

35t [ IV2Pae + 18213+ [ 2% H-AZdo < Cu(1215 + 1AZIE + IV ZIB). (1)

Multiplying (3.2) by E and multiplying (3.3) by H and integrating with respect to = over

(), we have

2dt/|E|2dx—/V><H de—a/|E|2dx

2dt/|H|dx— /VXE de—ﬂ/Zt de—5/|H|2dx

By using the formula

(VxH)-E—(VxE)-H=V-(HXE),

we obtain
sgar [0BE =+ 1#Pyaw+ S Bl + S = — [ 22 ar
28dt Jq B 2B 2 0
From (3.7) and (3.8), we get
S (V2P + %UEF +[H)da + [|AZ]]; + %quH% + 0l Hl1)

_/(Zt'H+ZI x H - AZ)dz + Cs(||Z|[; + [|AZ][; + IV Z[2)-
Q

Taking the inner product of (3.1) with H, we have

/(Zt-H+Zl><H-AZ)dx g|/(Z><AZQ+ZxH2)-de|+|/AZ-de|
Q Q Q

+\k/Z-de|+|ku/ Z1[2Z - Hda
Q Q

ku / (12> — 12,7 2, - Hdal
Q
< Co(I1ZI3 + IAZIE + IV ZIE + | ).
Then

T (IVZ\2 (\E|2+!H|2))dx§07(||ZH§+HVZH%HHH%),

and the lemma is proved.

In order to prove that the operator semigroup S(t) is Frechet differentiable, we consider

a linear variational problem of (1.1)-(1.6) as follows
= Aw+w x (AZy+ H) + Z; x (Aw + 1) — k(1 4 p|Z,H)w
V xI=F+0oF,
VXxF=—-I, — Pw +dl,
V-(H+BE)=0, V-FE =0,
(w(t), (1), F(¢))|e=0 = (Zo, Ho, Eq),
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where (Zb H17 El) = S(t)(ZOl, H017 E01> is a solution of (11)—(16) with initial data (ZOI; H017 E(n).
Set

(ZaI:[>E) = (Z,H, E) - (’LU,I,F) = S(t)<2017H01aE01)
—S(t)<Z07 H(), E()) — DS(t)(ZOl, H()l, E()l)(ZQ, H(), Eo) (314)

Hence

Zy =7 x (AZy + Hy) — w(AZy + Hy) + AZ,

+Zyx (AZ+H)—Z x (Aw+1), (3.15)
VxH=E+0FE,
VxFE=—H—32Z —6H (3.16)
V-(H+BZ)=0, V-E=0, (3.17)
(Z,H,E)|i— = 0. (3.18)
Rewrite (3.15) as follows
Zy=Zx (AZy+ H\)+Zx (AZ+ H)+ Z, x (AZ + H) + AZ,. (3.19)
It follows from (3.19) that
%%HZH% +IV2il5 < edllZ15 + (12115 + [1H 15 + (| BlI3)*. (3.20)

This implies
t
1Z(®)I3 < \IZ(0)|\3601t+/0 ey (1 Z(s)II3 + IH ()5 + 1B(s)]13)°ds

t
: / e ([ Z(s)ll2 + 1H ()2 + [1E(s) [l2) ds. (3.21)
0
It follows from Lemma 3.1 that for 0 <t < T
1Z(@)ll2 < CUIZoll3 + | Holl3 + [l Zoll3)*.
Similarly, we can estimate || H(t)]|2, ||[E(t)|2. And we give the following lemma.

Lemma 3.2 If solution of problem (1.1)-(1.6) are properly smooth, then S(t) : (Zoy, Ho, Eo) —
(Z(t), H(t), E(t)) is uniformly differentiable. Its differential at (Zy, Hy, Fo) belong to A and

DS(t)(Zo, Ho, Eo) = (w(t), I(t), F(1)) (3.22)
is a solution of (3.9)-(3.13).

Now we estimate the Hausdorff dimension and fractal dimension of A. To this aim we
consider the linear variational problem of problem (1.1)-(1.6)

=M+ Zx N2+ Zxh—(AZ+H)xz—k(1+p|Z*)ez, (3.23)

e, = V x h —oe, (3.24)

hy = =V x e — Bz + oh, ( )

2(0) = 2z, h(0) = hg, e(0) = ey. (3.26)
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Simply write (3.23)-(3.26) as operator form
vy = —L(u)v, v(0) = vy, (3.27)

where v = (z,e,h), u = (Z,E, H), vo = (20, €0, ho), z,e,h, Z, £, H are all three dimensional
vector valued functions.

Since the periodic initial value problem (1.1)-(1.6) has smooth solution, the coefficients
of linear system (3.23)-(3.26) admits global smooth solution. Denote its solution operator
by G(t), that is, v(t) = G(t)vy. Moreover, we can prove that the semigroup operator S(t)ug
is differential in L?(Q2) and the Frechet differential S’(t)uy = G(t)vo.

Now we estimate the Hausdorff dimension and fractal dimension of A. Rewrite (3.23)-
(3.25) as

2+ f(2, V2, Az, b Z,VZ,ANZ, H) =0, (3.28)
et +oe—V xh=0, (3.29)
he + Bz +V x e = §h. (3.30)

where

f(z,V2,Az, h; ZNZ,AZ, H)
=-Az—ZxAz—ZXh+(AZ+H) X z+k(1+ p|Z]?)z. (3.31)
Choosing periodic orthogonal function basis (p;(x), e;(z), hj(z)) such that
(1) Ap; = =Ajwj,
(i) llpsll2 = llejlla = [125]la = 1. We have
IVesllz = 1Al [Ags]l2 = Aj.

From the definition, we have

Trac[L(u(t)) - Q;(t)] = Z {( (0, Vi, Apj h;; Z,NZ,AZ, H)a%’)
( X hj,e;) + (V xej, h;) —(hj, hj)
—p

( (0, Vj, Apj hy; ZNZ,AZ H), h; )}
+o(ej, ;). (3.32)

Since
—(V x hj,ej) + (V x €j, h; /V ;)dz =0,
we only need to estimate the following two terms in (3.32)
(f(soj, Vj Mgy, hyi 2,V Z,AZ, H), soj)
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and

(f((pj, VQD]‘,ASO]', h], Z, VZ, AZ, H), h])

From (3.31) we have

(f(@j,VSOj,ASOj,hj;Z, VZ,AZ, H)?@J) = _<A(10j7(10j) - (Z X A@j,(ﬁj)

—(Z x hj,0;) + (AZ + H) x @j, ;)
+(k(1 + 1l Z)*)ej, ¢5)

in which

Hence,

—(Apj,0) = XS,
(Z x Apj, )| = [(Vo;, VZ x 0)| < IV@;l2lleil2llVZ ] oo = [NV Z]lco,
(Z % by 0)] < [Bjll2llesll21 2]l = | 2]l < 1| Z0]|12,
(((AZ + H) x pj5,0))| [(AZ x @5, 05) + |(H X @5, 05)|
<IVe;ll2lle;ll2lV Z oo + || Hllsoll05115
= NIIVZ]|oo + [|H]]oo
(kL + 1215, 09| < Elloills + k| ZI 2 eill5 = k + kul| Z| 12,

<f(90jvv(10j7A90j>hj;Za VZ7 AZa H)?@]) > )\? - ’/\]‘HVZHOO - HZOHH2 (333)

Similarly, it follows

—/3<f(s0j,V80j,A90j7hj;Z, VZ,AZ, H),hj) = B(Apj, h;) + B(Z x Apj, hy)
—B((AZ + H) x @, hy)
—B(k(1 4 plZ1*)p;, hy)

in which
| = BU(AZ + H) x p;,h;)| < BIIAZ + Hl[oolljll2]|Pjll2 = BIIAZ + H|o,
1B(Ag;, hj)| < Bl Ap;lallh;ll2 = BAT,
18(Z x Ay, hy)| < BXZ|loe < BN Z0]| 12
Hence,

_B(f@tpjvv@j?Asojahj;Z? VZa AZa H)ah])

> =] = B Zolluz A} — BIIAZ + H oo (3.34)
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On the other hand, we have
U(ej7€j> =0,
o(ej,e5) =,
[(V x by, e5)] < [[Vhllallesllz = [, (3.35)
[(V xej, hy)| < [[Vejllallhzllz = [Ay]-

Substituting (3.33), (3.34) and (3.35) into (3.32), we have

J
Trac[L(u( =Y (1 — B(1 + || Zo|l2) >A2+Z 2~ IVZ]l) Nl
7j=1
+H(=BIAZ + Hljoo + 0 = 6 — || Zo||112) J- (3.36)

Let 8 be a small value such that 3(1 + || Zo||n,) < 1,
setting

6 =1— B0+ |Zo|lu2), (Zv) ,
0 =2—|[VZ|ls, b= =BIAZ + Hllsc + 0 = 0 — || Z0||1,-
Noting that
J J .
STinls (%)
=1 j=1
(3.36) can be rewrote as

J2\?  4bs; — a2
2) LT (3.37)

Trac[L(u(t)) - Qs(t)] > 6 X* — aJ?X +bJ =6 (X - —
9 46,

when 4b6; — a® < 0 we have

a+ v a? _451bjé> <X— a—+/a? _451bjé)

Trac[L(u(t)) - Qs(t)] > 61 (X - 20, 20,

Let J satisfy

Jz (3.38)

and estimate \; as in [15] as follows

X2 > {(j_l)d—l] :%(j_l)i_(j—l)éjtl,

2
that is
1 1. 3.9
L |- mire= gt d=1,
Aj 2 1 : 1 .3 . 1 (3:39)
JU-D -G -Di+l=i+ - (@G-, d=2



v

DA

J J
Jj= j=

j=1
e -2+ 2
24 4 4
1y 8, 3T
T TR AR ¥

In order to (3.38), choose Jy such that

1 5 8 5, [37T a++a®—46b
—Jg - = — — 4
12J0 5J0—|— o 17 Jo >0, (3.40)
that is,
6 Va2 —461b)?
22— 157, + 37— 2T 0;21 S oo,
i
15, 71 3(a+ Va®—46:b)*
When
15 71 3(a+ Va? —461D)?
(Jo— =)+ — — > 0,
4 16 52
that is
(a++/a? — 461b)* < 26, (3.41)

we may choose Jy = 1.
When

(CL + a? — 461[))2 Z 2(51,

we may choose

3(a+ va?—461b)2 71 15
J0>\/< = 19) -t (3.42)
1
(i) d = 2
J 1 J J )
IUESPWEETEDIEIE
7=1 7=1 7=1
3 &
:—(J+1)J+ZJ—ZP
j=1
J—1
JE+7J 1
> — - EVi=1
j=1
2
ST V2
- 8 2



In order to (3.38), choose Jy such that

Jo+T7T V2 %>(a+\/a2—451b)2

_ve 4
8 2 0 463 ’ (3.43)
that is,
1 Ja2 — 2
(JZ —2v2)2 — (1+2<“+ C; 451b) > >0,
1
Vo 2752
J0>{2\/§+[1+<a+ Cg 4511)” } > 0.
1

We have from the above results the following theorem.

Theorem 3.1 Let Q C R? (1 < d <2) be bounded set and assume
(i) 0 > BIIAZ + H||oo + 0 + || Zo]| 2,
(’I;’I;)O<ﬂ<m,ﬁ<%,ﬁ+52<i,
(1ii) when d = 2, || Zo|| gz << 1.
Then there exist an attractor A = w(A) of the periodic initial value problem (1.1)-(1.6)
with
A={(2,H,E) € (H(Q), H(Q), H(). | Z]| gz + | H||m + | Ell i < K} (3.44)

1s a bounded absorbing set. The Hausdorff dimension and Fractal dimension of A are finite
and satisfy
(1) if a®* — 46:b < 0, then

dy(A) <1, dp(A) <2 (3.45)
(2) if a* — 46:b > 0,
(a) when d =1 and a + v/a®> — 46,b < 24y, then

dy(A) <1, dp(A) <2, (3.46)
when d =1 and a + v/a? — 40,0 > 201, then
dy(A) < Ji, dp(A) <2J5, (3.47)

where Ji is the smallest integer satisfies

o \/3(a+\/a2—461b)2 115
1

5 61
(b) when d = 2, then
dy(A) < Ja,  dp(A) < 2Js, (3.48)
where Jy is the smallest integer satisfies

oo e o (T

in which
0 =1=004Zllg2), a=2-|VZ||ew, b=0c—B|AZ+ Hl|lec— 39— ||Z0|| 12
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