5) Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:894–904.
6). Tian S., Xiong Y., Liu H., Niu L., Guo J., Liao M. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod. Pathol. 2020 doi: 10.1038/s41379-020-0536-x.
7). Barton L.M., Duval E.J., Stroberg E., Ghosh S., Mukhopadhyay S. Oklahoma; USA. COVID-19 Autopsies.Am J Clin Pathol: 2020.
8). Shi S., Qin M., Shen B., Cai Y., Liu T., Yang F. China; Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan. JAMA Cardiol: 2020.
9). Guo T., Fan Y., Chen M., Wu X., Zhang L., He T. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19) JAMA Cardiol. 2020 doi: 10.1001/jamacardio.2020.1017.
10). Ruan Q., Yang K., Wang W., Jiang L., Song J. China; Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan. Intensive Care Med: 2020.
11) Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis 2020 Mar 12. doi: 10.1016/j. ijid.2020.03.017 32173574
12) Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020 Mar 25. doi: 10.1001/jamacardio.2020.0950
13). Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020 Mar 27. doi: 10.1001/jamacardio.2020.1017
14) Francesco Ferrara, Giovanni Granata, Chiara Pelliccia, Raffaele La Porta PhD, Antonio Vitiello The added value of Pirfenidone to fight inflammation and fibrotic state induced by SARS-CoV 2 European Journal of Clinical Pharmacology 27 june 2020https://doi.org/10.1007/s00228-020-02947-4
15) McTiernan CF, Lemster BH, Frye CS, et al. Interleukin 1 inhibits phospholamban gene expression in cultured cardiomyocytes. Circ Res 1997; 81: 493-503.
16) Gulick T, Chung MK, Pieper SJ, et al. Interleukin 1 and tumor necrosis factor inhibit cardiac myocyte beta-adrenergic responsiveness. Proc Natl Acad Sci USA 1989; 86: 6753-7
17) Tisoncik J.R., Korth M.J., Simmons C.P., Farrar J., Martin T.R., Katze M.G. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 2012;76(1):16–32
18) Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017;39(5):529–539.
19) Huang C., et al Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
20.) Channappanavar R., Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin. Immunopathol. 2017;39(5):529–539.
21). Zhang C., Wu Z., Li J.W., Zhao H., Wang G.Q. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int. J. Antimicrob. Agents. 2020
22). Cameron M.J., Bermejo-Martin J.F., Danesh A., Muller M.P., Kelvin D.J. Human
immunopathogenesis of severe acute respiratory syndrome (SARS) Virus Res. 2008;133(1):13–19.
23). Williams A.E., Chambers R.C. The mercurial nature of neutrophils: still an enigma in ARDS? Am. J. Physiol. Lung Cell Mol. Physiol. 2014;306(3):L217–30. [PMC free article] [PubMed]
24) Francesca Coperchini, Luca Chiovato, Laura Croce, Flavia Magri, and Mario Rotondi The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system Cytokine Growth Factor Rev. 2020 Jun; 53: 25–32. Published online 2020 May 11. doi: 10.1016/j.cytogfr.2020.05.003
25). Kumar A, Brar R, Wang P, Dee L, Skorupa G, Khadour F, Schulz R, Parrillo JE (1999) Role of nitric oxide and cGMP in human septic serum-induced depression of cardiac myocyte contractility. Am J Physiol 276:R265–R276
26) Kumar A, Paladugu B, Mensing J, Parrillo JE (2007) Nitric oxide-dependent and -independent mechanisms are involved in TNF-alpha -induced depression of cardiac myocyte contractility. Am J Physiol Regul Integr Comp Physiol 292:R1900–R1906
27) Elahi M, Asopa S, Matata B (2007) NO-cGMP and TNF-alpha counter regulatory system in blood: understanding the mechanisms leading to myocardial dysfunction and failure. Biochim Biophys Acta 1772:5–14
28) Haudek SB, Taffet GE, Schneider MD, Mann DL (2007) TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest 117:2692–2701
29) Bozkurt B, Kribbs SB, Clubb FJ Jr, Michael LH, Didenko VV, Hornsby PJ, Seta Y, Oral H, Spinale FG, Mann DL (1998) Pathophysiologically relevant concentrations of tumor necrosis factor-alpha promote progressive left ventricular dysfunction and remodeling in rats. Circulation 97:1382–1391 71.
30) Kubota T, McTiernan CF, Frye CS, Slawson SE, Lemster BH, Koretsky AP, Demetris AJ, Feldman AM (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 81:627–635
31) Haudek SB, Taffet GE, Schneider MD, Mann DL (2007) TNF provokes cardiomyocyte apoptosis and cardiac remodeling through activation of multiple cell death pathways. J Clin Invest 117:2692–2701
32) Maass DL, White J, Horton JW (2002) IL-1beta and IL-6 act synergistically with TNF-alpha to alter cardiac contractile function after burn trauma. Shock 18:360–366
33) Yu X, Kennedy RH, Liu SJ (2003) JAK2/STAT3, not ERK1/2, mediates interleukin-6-induced activation of inducible nitricoxide synthase and decrease in contractility of adult ventricular myocytes. J Biol Chem 278:16304–16309
34) Prabhu SD (2004) Cytokine-induced modulation of cardiac function. Circ Res 95:1140–1153
35) Netea MG, Kullberg BJ, Verschueren I, Van Der Meer JW (2000) Interleukin-18 induces production of proinflammatory cytokines in mice: no intermediate role for the cytokines of the tumor necrosis factor family and interleukin-1beta. Eur J Immunol 30:3057–3060
36) Olee T, Hashimoto S, Quach J, Lotz M (1999) IL-18 is produced by articular chondrocytes and induces proinflammatory and catabolic responses. J Immunol 162:1096–1100
37) Del Ry S. C-type natriuretic peptide: A new cardiac mediator. Peptides. 2013;40:93–8.
38) Leuranguer V, Vanhoutte PM, Verbeuren T, Feletou M. C-type natriuretic peptide and endothelium-dependent hyperpolarization in the guinea-pig carotid artery. Br J Pharmacol. 2008;153:57–65.
39) Del Ry S, Cabiati M, Vozzi F, Battolla B, Caselli C, Forini F, et al. Expression of C-type natriuretic peptide and its receptor NPR-B in cardiomyocytes. Peptides. 2011;32:1713–8.
40) Suda M, Tanaka K, Fukushima M, Natsui K, Yasoda A, Komatsu Y, et al. C-type natriuretic peptide as an autocrine/paracrine regulator of osteoblast. Evidence for possible presence of bone natriuretic peptide system. Biochem Biophys Res Commun. 1996;223:1–6.
41) Totsune K, Takahashi K, Murakami O, Itoi K, Sone M, Ohneda M, et al. Immunoreactive C-type natriuretic peptide in human adrenal glands and adrenal tumors. Peptides. 1994;15:287–90.
42) Obata H, Yanagawa B, Tanaka K, Ohnishi S, Kataoka M, Miyahara Y, et al. CNP infusion attenuates cardiac dysfunction and inflammation in myocarditis. Biochem Biophys Res Commun. 2007;356:60–6
43) Soeki T, Kishimoto I, Okumura H, Tokudome T, Horio T, Mori K, et al. C-type natriuretic peptide, a novel antifibrotic and antihypertrophic agent, prevents cardiac remodeling after myocardial infarction. J Am Coll Cardiol. 2005;45:608–16.
44) Bukulmez H, Khan F, Bartels CF, Murakami S, Ortiz-Lopez A, Sattar A, et al. Protective effects of C-type natriuretic peptide on linear growth and articular cartilage integrity in a mouse model of inflammatory arthritis. Arthritis Rheumatol. 2014;66:78–89.
45) Peake NJ, Pavlov AM, D’Souza A, Pingguan-Murphy B, Sukhorukov GB, Hobbs AJ, et al. Controlled release of C-type natriuretic peptide by microencapsulation dampens proinflammatory effects induced by IL-1beta in cartilage explants. Biomacromolecules. 2015;16:524–31.
46) Kimura T, Nojiri T, Hosoda H, Ishikane S, Shintani Y, Inoue M, et al. C-type natriuretic peptide attenuates lipopolysaccharide-induced acute lung injury in mice. J Surg Res. 2015;194:631–7.
47) Horio T, Tokudome T, Maki T, Yoshihara F, Suga S, Nishikimi T, et al. Gene expression, secretion, and autocrine action of C-type natriuretic peptide in cultured adult rat cardiac fibroblasts. Endocrinology. 2003;144:2279–84.
48) Li ZQ, Liu YL, Li G, Li B, Liu Y, Li XF, et al. Inhibitory effects of C-type natriuretic peptide on the differentiation of cardiac fibroblasts, and secretion of monocyte chemoattractant protein-1 and plasminogen activator inhibitor-1. Mol Med Rep. 2015;11:159–65.
49) Uchida M, Shiraishi H, Ohta S, Arima K, Taniguchi K, Suzuki S, et al. Periostin, a matricellular protein, plays a role in the induction of chemokines in pulmonary fibrosis. Am J Respir Cell Mol Biol. 2012;46:677–86.
50)Toru Kimura, Takashi Nojiri, Jun Hino, Hiroshi Hosoda, Koichi Miura, Yasushi Shintani, Masayoshi Inoue, Masahiro Zenitani, Hiroyuki Takabatake, Mikiya Miyazato, Meinoshin Okumura & Kenji Kangawa  C-type natriuretic peptide ameliorates pulmonary fibrosis by acting on lung fibroblasts in mice Respiratory Research volume 17, Article number: 19 (2016)
51) L. Mezzasoma, C. Antognelli,and V. Talesa Novel Role for Brain Natriuretic Peptide: Inhibition of IL-1𝛽 Secretion via Downregulation of NF-kB/Erk 1/2 and NALP3/ASC/Caspase-1 Activation in Human THP-1 Monocyte Mediators of Inflammation Volume 2017, Article ID 5858315, 13 pages
52) de Lemos J A, McGuire D K, Drazner M H. B‐type natriuretic peptide in cardiovascular disease. Lancet 2003362316–322.
53) Shi S, et al. Association of Cardiac Injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020. https://doi. org/10.1001/jamacardio.2020.0950.
54) Guo T, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020. https://doi.org/10. 1001/jamacardio.2020.1017.
55) Restrepo MI, Reyes LF. Pneumonia as a cardiovascular disease. Respirology. 2018;23:250–9. https://doi.org/10.1111/resp.13233
56) Chen C, Zhang XR, Ju ZY, He WF. Advances in the research of cytokine storm mechanism induced by Corona virus disease 2019 and the corresponding immunotherapies. Chinese Journal of Burns Jun 2020, 36(6):471-475 https://doi.org/10.3760/cma.j.cn501120-20200224-00088
57)Tetro JA. Is COVID-19 receiving ADE from other coronaviruses? Microbes Infect. 2020;S1286-4579(1220):30034. https://doi.org/10.1016/j.micinf.2020. 02.006. 21.
58)Wei ZY, Qian HY. Myocardial injury in patients with COVID-19 pneumonia. Zhonghua Xin Xue Guan Bing Za Zhi. 2020;48:E006. https://doi.org/10.3760/ cma.j.issn.cn112148-20200220-00106
59) Michael Weber and Christian Hamm Role of B‐type natriuretic peptide (BNP) and NT‐proBNP in clinical routine Heart. 2006 Jun; 92(6): 843–849. doi: 10.1136/hrt.2005.071233
60)Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020. https://doi.org/10. 1007/s00134-020-05985-9
61) Santos RAS, et al. The ACE2/angiotensin-(1-7)/MAS Axis of the reninangiotensin system: focus on angiotensin-(1-7). Physiol Rev. 2018;98:505–53. https://doi.org/10.1152/physrev.00023.2016.
62) Patel VB, Zhong J-C, Grant MB, Oudit GY. Role of the ACE2/Angiotensin 1–7 Axis of the Renin-Angiotensin System in Heart Failure. Circ Res. 2016;118: 1313–26. https://doi.org/10.1161/CIRCRESAHA.116.307708.
63) Lei Gao1, Dan Jiang, Xue-song Wen, Xiao-cheng Cheng, Min Sun, Bin He, Lin-na You, Peng Lei, Xiao-wei Tan, Shu Qin, Guo-qiang Cai and Dong-ying Zhang Prognostic value of NT-proBNP in patients with severe COVID-19 Respiratory Research (2020) 21:83 https://doi.org/10.1186/s12931-020-01352-w
64) Scott A. Hubers, MD and Nancy J. Brown Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition Circulation. 2016March15;133(11):1115–1124.doi:10.1161/CIRCULATIONAHA.115.018622.
65) Recinos A, 3rd, LeJeune WS, Sun H, Lee CY, Tieu BC, Lu M, Hou T, Boldogh I, Tilton RG, Brasier AR. Angiotensin II induces IL-6 expression and the Jak-STAT3 pathway in aortic adventitia of LDL receptor-deficient mice. Atherosclerosis. 2007;194:125-133.
66) Yamamoto S, Yancey PG, Zuo Y, Ma LJ, Kaseda R, Fogo AB, Ichikawa I, Linton MF, Fazio S, Kon V. Macrophage polarization by angiotensin II-type 1 receptor aggravates renal injury-acceleration of atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:2856-2864.
67) Lee YB, Nagai A, Kim SU. Cytokines, chemokines, and cytokine receptors in human microglia. J Neurosci Res. 2002;69:94-103.
68) Chen Q, Yang Y, Huang Y, Pan C, Liu L, Qiu H. Angiotensin-(1-7) attenuates lung fibrosis by way of Mas receptor in acute lung injury. J Surg Res. 2013;185:740-747.
69) Meng Y, Yu CH, Li W, Li T, Luo W, Huang S, Wu PS, Cai SX, Li X. Angiotensin converting enzyme 2/angiotensin-(1-7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-kappaB pathway. Am J Respir Cell Mol Biol. 2014;50:723 736.
70) Wang X, Ye Y, Gong H, Wu J, Yuan J, Wang S, Yin P, Ding Z, Kang L, Jiang Q, Zhang W, Li Y, Ge J, Zou Y. The effects of different angiotensin II type 1 receptor blockers on the regulation of the ACE– AngII–AT1 and ACE2-Ang(1-7)–Mas axes in pressure overload-induced cardiac remodeling in male mice. J Mol Cell Cardiol 2016;97:180–190.
71) Flesch M, Hoper A, Dell’Italia L, Evans K, Bond R, Peshock R, Diwan A, Brinsa TA, Wei CC, Sivasubramanian N, Spinale FG, Mann DL (2003) Activation and functional significance of therenin-angiotensin system in mice with cardiac restricted overexpression of tumor necrosis factor. Circulation 108:598–604
72) D.Acanfora et al Sacubitril/valsartan in COVID-19 patients: the need for trials European Heart Journal Cardiovascular Pharmacotherapy,05 May 2020 //doi.org/10.1093/ehjcvp/pvaa044
73) Soto M, Bang SI, McCombs J, Rodgers KE. Renin angiotensin system-modifying therapies are associated with improved pulmonary health. Clin Diabetes Endocrinol 2017;3:6.
74) Henry C, Zaizafoun M, Stock E, Ghamande S, Arroliga AC, White HD. Impact of angiotensin-converting enzyme inhibitors and statins on viral pneumonia. Proc (Bayl Univ Med Cent) 2018;31:419–423.