Acknowledgements
The authors gratefully acknowledge the funding of this research by the
Vienna Business Agency (Wirtschaftsagentur Wien) [grant number
1898413] and the TU Wien Bibliothek for financial support through its
Open Access Funding Program.
References
Arneborg, N., Salskov-Iversen, A., & Mathiasen, T. (1993). The effect
of growth rate and other growth conditions on the lipid composition ofEscherichia coli . Applied Microbiology and Biotechnology,
39 (3), 353-357. doi:10.1007/bf00192091
Bäcklund, E., Reeks, D., Markland, K., Weir, N., Bowering, L., &
Larsson, G. (2008). Fedbatch design for periplasmic product retention inEscherichia coli . Journal of Biotechnology, 135 (4),
358-365. doi:10.1016/j.jbiotec.2008.05.002
Balasundaram, B., Harrison, S., & Bracewell, D. G. (2009). Advances in
product release strategies and impact on bioprocess design. Trends
in Biotechnology, 27 (8), 477-485. doi:10.1016/j.tibtech.2009.04.004
Bentley, W. E., Mirjalili, N., Andersen, D. C., Davis, R. H., &
Kompala, D. S. (1990). Plasmid-encoded protein: The principal factor in
the “metabolic burden” associated with recombinant bacteria.Biotechnology and Bioengineering, 35 (7), 668-681.
doi:10.1002/bit.260350704
Bienick, M. S., Young, K. W., Klesmith, J. R., Detwiler, E. E., Tomek,
K. J., & Whitehead, T. A. (2014). The interrelationship between
promoter strength, gene expression, and growth rate. PLoS ONE,
9 (10). doi:10.1371/journal.pone.0109105
Bower, D. M., & Prather, K. L. J. (2009). Engineering of bacterial
strains and vectors for the production of plasmid DNA. Applied
Microbiology and Biotechnology, 82 (5), 805-813.
doi:10.1007/s00253-009-1889-8
Chatel, A., Hoare, M., Kumpalume, P., Molek, J. R., Reck, J. M., &
Weber, A. D. (2014). International Publication No.
WO2014118220A1 . Geneva, Switzerland: World Intellectual Property
Organization,.
Chen, C., Wong, H. E., & Goudar, C. T. (2018). Upstream process
intensification and continuous manufacturing. Current Opinion in
Chemical Engineering, 22 , 191-198. doi:10.1016/j.coche.2018.10.006
Chen, Z. Y., Cao, J., Xie, L., Li, X. F., Yu, Z. H., & Tong, W. Y.
(2014). Construction of leaky strains and extracellular production of
exogenous proteins in recombinant Escherichia coli .Microbial Biotechnology, 7 (4), 360-370.
doi:10.1111/1751-7915.12127
Cheng, J., Wu, D., Chen, S., Chen, J., & Wu, J. (2011). High-level
extracellular production of α-cyclodextrin glycosyltransferase with
recombinant Escherichia coli BL21 (DE3). Journal of
Agricultural and Food Chemistry, 59 (8), 3797-3802.
doi:10.1021/jf200033m
de Marco, A. (2009). Strategies for successful recombinant expression of
disulfide bond-dependent proteins in Escherichia coli .Microbial Cell Factories, 8 (26). doi:10.1186/1475-2859-8-26
DeLisa, M. P., Li, J., Rao, G., Weigand, W. A., & Bentley, W. E.
(1999). Monitoring GFP-operon fusion protein expression during high cell
density cultivation of Escherichia coli using an on-line optical
sensor. Biotechnology and Bioengineering, 65 (1), 54-64.
doi:10.1002/(sici)1097-0290(19991005)65:1<54::Aid-bit7>3.0.Co;2-r
Farewell, A., & Neidhardt, F. C. (1998). Effect of temperature on in
vivo protein synthetic capacity in Escherichia coli .Journal of Bacteriology, 180 (17), 4704-4710.
Hoffmann, F., & Rinas, U. (2001). Plasmid amplification inEscherichia coli after temperature upshift is impaired by
induction of recombinant protein synthesis. Biotechnology Letters,
23 (22), 1819-1825. doi:10.1023/A:1012718200638
Jia, B., & Jeon, C. O. (2016). High-throughput recombinant protein
expression in Escherichia coli : current status and future
perspectives. Open Biology, 6 (8), 160196-160196.
doi:10.1098/rsob.160196
Kateja, N., Agarwal, H., Hebbi, V., & Rathore, A. S. (2017). Integrated
continuous processing of proteins expressed as inclusion bodies: GCSF as
a case study. Biotechnology Progress, 33 (4), 998-1009.
doi:10.1002/btpr.2413
Klein, T., Heinzel, N., Kroll, P., Brunner, M., Herwig, C., & Neutsch,
L. (2015). Quantification of cell lysis during CHO bioprocesses: Impact
on cell count, growth kinetics and productivity. Journal of
Biotechnology, 207 , 67-76. doi:10.1016/j.jbiotec.2015.04.021
Kleiner-Grote, G. R. M., Risse, J. M., & Friehs, K. (2018). Secretion
of recombinant proteins from E. coli . Engineering in Life
Sciences, 18 (8), 532-550. doi:10.1002/elsc.201700200
Lemmerer, M., Mairhofer, J., Lepak, A., Longus, K., Hahn, R., &
Nidetzky, B. (2019). Decoupling of recombinant protein production fromEscherichia coli cell growth enhances functional expression of
plant Leloir glycosyltransferases. Biotechnology and
Bioengineering, 116 (6), 1259-1268. doi:10.1002/bit.26934
Liu, Y., & Huang, H. (2018). Expression of single-domain antibody in
different systems. Applied Microbiology and Biotechnology,
102 (2), 539-551. doi:10.1007/s00253-017-8644-3
Mairhofer, J., Scharl, T., Marisch, K., Cserjan-Puschmann, M., &
Striedner, G. (2013). Comparative transcription profiling and in-depth
characterization of plasmid-based and plasmid-free Escherichia
coli expression systems under production conditions. Applied and
Environmental Microbiology, 79 (12), 3802-3812. doi:10.1128/AEM.00365-13
Mairhofer, J., Striedner, G., Grabherr, R., & Wilde, M. (2016).European Patent No. EP3289088B1 . Munich, Germany: European Patent
Office,.
Mergulhão, F. J. M., & Monteiro, G. A. (2007). Periplasmic Targeting of
Recombinant Proteins in Escherichia coli . In (pp. 47-61). Totowa,
NJ: Humana Press.
Mergulhão, F. J. M., Summers, D. K., & Monteiro, G. A. (2005).
Recombinant protein secretion in Escherichia coli .Biotechnology Advances, 23 (3), 177-202.
doi:10.1016/j.biotechadv.2004.11.003
Müller, J. M., Wetzel, D., Flaschel, E., Friehs, K., & Risse, J. M.
(2016). Constitutive production and efficient secretion of soluble
full-length streptavidin by an Escherichia coli ’leaky mutant’.Journal of Biotechnology, 221 , 91-100.
doi:10.1016/j.jbiotec.2016.01.032
Neidhardt, F. C., & Umbarger, H. E. (1996). Chemical Composition ofEscherichia coli . In F. C. Neidhardt (Ed.), Escherichia
coli and Salmonella: Cellular and Molecular Biology . Washington, D.C.:
ASM Press.
Orr, V., Scharer, J., Moo-Young, M., Honeyman, C. H., Fenner, D.,
Crossley, L., . . . Chou, C. P. (2012). Integrated development of an
effective bioprocess for extracellular production of penicillin G
acylase in Escherichia coli and its subsequent one-step
purification. Journal of Biotechnology, 161 (1), 19-26.
doi:10.1016/j.jbiotec.2012.05.013
Rinas, U., & Hoffmann, F. (2004). Selective leakage of host-cell
proteins during high-cell-density cultivation of recombinant and
non-recombinant Escherichia coli . Biotechnology Progress,
20 (3), 679-687. doi:10.1021/bp034348k
Rodríguez-Carmona, E., Cano-Garrido, O., Dragosits, M., Maurer, M.,
Mader, A., Kunert, R., . . . Vázquez, F. (2012). Recombinant Fab
expression and secretion in Escherichia coli continuous culture at
medium cell densities: Influence of temperature. Process
Biochemistry, 47 (3), 446-452. doi:10.1016/j.procbio.2011.11.024
Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein
expression in Escherichia coli : Advances and challenges.Frontiers in Microbiology, 5 (APR), 1-17.
doi:10.3389/fmicb.2014.00172
Rosano, G. L., Morales, E. S., & Ceccarelli, E. A. (2019). New tools
for recombinant protein production in Escherichia coli : A 5‐year
update. Protein Science, 28 (8), 1412-1422. doi:10.1002/pro.3668
Shin, C. S., Hong, M. S., Bae, C. S., & Lee, J. (1997). Enhanced
production of human mini-proinsulin in fed-batch cultures at high cell
density of Escherichia coli BL21(DE3)[pET-3aT2M2].Biotechnology Progress, 13 (3), 249-257. doi:10.1021/bp970018m
Shin, H. D., & Chen, R. R. (2008). Extracellular recombinant protein
production from an Escherichia coli lpp deletion mutant.Biotechnology and Bioengineering, 101 (6), 1288-1296.
doi:10.1002/bit.22013
Shokri, A., Sanden, A. M., & Larsson, G. (2002). Growth rate-dependent
changes in Escherichia coli membrane structure and protein
leakage. Applied Microbiology and Biotechnology, 58 (3), 386-392.
doi:10.1007/s00253-001-0889-0
Stargardt, P., Feuchtenhofer, L., Cserjan-Puschmann, M., Striedner, G.,
& Mairhofer, J. (2020). Bacteriophage inspired growth-decoupled
recombinant protein production in Escherichia coli . ACS
Synthetic Biology . doi:10.1021/acssynbio.0c00028
Ukkonen, K., Veijola, J., Vasala, A., & Neubauer, P. (2013). Effect of
culture medium, host strain and oxygen transfer on recombinant Fab
antibody fragment yield and leakage to medium in shaken E. colicultures. Microbial Cell Factories, 12 , 73.
doi:10.1186/1475-2859-12-73
Vind, J., Sorensen, M. A., Rasmussen, M. D., & Pedersen, S. (1993).
Synthesis of proteins in Escherichia coli is limited by the
concentration of free ribosomes. Expression from reporter genes does not
always reflect functional mRNA levels. Journal of Molecular
Biology, 231 (3), 678-688. doi:10.1006/jmbi.1993.1319
Voulgaris, I., Finka, G., Uden, M., & Hoare, M. (2015). Enhancing the
selective extracellular location of a recombinant Escherichia
coli domain antibody by management of fermentation conditions.Applied Microbiology and Biotechnology, 99 (20), 8441-8453.
doi:10.1007/s00253-015-6799-3
Wang, L., Chen, S., & Wu, J. (2018). Cyclodextrin enhanced the soluble
expression of Bacillus clarkii γ-CGTase in Escherichia
coli . BMC Biotechnology, 18 (1), 72.
doi:10.1186/s12896-018-0480-8
Wurm, D. J., Marschall, L., Sagmeister, P., Herwig, C., & Spadiut, O.
(2017). Simple monitoring of cell leakiness and viability inEscherichia coli bioprocesses—A case study. Engineering
in Life Sciences, 17 (6), 598-604. doi:10.1002/elsc.201600204
Wurm, D. J., Slouka, C., Bosilj, T., Herwig, C., & Spadiut, O. (2017).
How to trigger periplasmic release in recombinant Escherichia
coli : A comparative analysis. Engineering in Life Sciences,
17 (2), 215-222. doi:10.1002/elsc.201600168
Yoon, S. H., Kim, S. K., & Kim, J. F. (2010). Secretory Production of
Recombinant Proteins in Escherichia coli . Recent Patents on
Biotechnology, 4 (1), 23-29. doi:10.2174/187220810790069550
Zhou, Y., Lu, Z., Wang, X., Selvaraj, J. N., & Zhang, G. (2018).
Genetic engineering modification and fermentation optimization for
extracellular production of recombinant proteins using Escherichia
coli . Applied Microbiology and Biotechnology, 102 (4), 1545-1556.
doi:10.1007/s00253-017-8700-z
List of Figures
Figure 1 Biomass yield in cultivations of X-press (A) and
BL21(DE3) (B) producing SpA.
Figure 2 Intra- and extracellular soluble SpA titer in
cultivations of X-press (A) and BL21(DE3) (B). Annotations above the
columns represent leakiness in percent.
Figure 3 Cell lysis in cultivations of the X-press strain
producing SpA.