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Abstract 

The prediction of protein-protein interfaces requires both the identification of interface residues 

and the proper spatial orientation of the component proteins. Many methods have been 

developed to identify interface residues, often using relative interface propensity (RIP), the 

enrichment of a particular amino acid type at the interface compared to the rest of the protein 

surface. We aimed to improve RIP for interface identification by incorporating the solvent 

accessibility of each amino acid. We studied the surface residues of 290 unbound structures 

corresponding to components of protein complexes and compared the relative solvent accessible 

surface area (rSASA) distributions of residues that end up in the interface and those that do not. 

Our results show that the side-chains of amino acids that become interface residues are more 

solvent exposed than non-interface surface residues on the unbound protein structure. Using this 

knowledge, we created an rSASA-dependent probability of becoming an interface residue for 

each amino acid type. Our results show that the solvent accessible surface area of residues should 

be taken into account when identifying interface residues and can be applied to other interface 

prediction techniques that use RIP to improve their results. 

 

Introduction 

When proteins bind to each other to form a complex, interactions occur between their residues at 

the binding interface, and residues that were previously solvent exposed become solvent 

excluded. The ability to predict which residues will become buried in a protein-protein 

interaction allows for enhanced interface prediction, mutagenesis to confirm complex structure, 

and targeted drug discovery.1 Despite the development of numerous algorithms, the prediction of 

the residues that are involved in the binding process remains a difficult problem.1–3 One 
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commonly used parameter in these algorithms is the relative interface propensity (RIP),4 which 

measures the observed enrichment of amino acid types at the interface relative to the protein 

surface in general. The use of RIP as a predictor for interface residues is, however, intrinsically 

limited as it only considers the type of the amino acid and is unable to distinguish between 

residues that share that type. Therefore, RIP is typically used in combination with other features, 

and in that way has shown varying degrees of success.4–11  

 

In this work, we show that residues which are more solvent-exposed in the unbound component 

proteins are more likely to be found in the interface, but the exact relationship depends strongly 

on the amino acid type. We use this knowledge to redefine RIP as linearly dependent on the 

solvent-accessible surface area (SASA) of residues. While prior papers have explored SASA-

dependent RIP, there has been no analysis of the improvement of including SASA in the 

calculations. For example, Liang et al. used an accessible surface area dependent propensity 

based on deviations from the average accessibility of an amino acid type and combined this with 

a side-chain energy score and conservation score to predict surface residues.6 Hwang et al. 

weighted RIP values by a probability value for residues in specific SASA ranges and used the 

weighted propensity with other variables to predict surface patches.11 In both of these works, 

interface residues were identified with improved accuracy from prior methods but the impact of 

the SASA-dependent RIP cannot be distinguished from the other scoring variables. In this work, 

we show that the new SASA-dependent formalism is a better predictor than standard RIP, and 

we envision that the performance of interface prediction algorithms can be improved by 

incorporating our SASA-dependent RIP equations. 
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Methods: 

Dataset:  

To avoid potential bias, we created a subset of proteins from docking benchmark 5.012 for 

training our models. The docking benchmark contains 230 complexes with NMR or X-ray 

crystal structures of the bound and unbound components. We first excluded the NMR structures 

and the small set of legacy antibody-antigen cases that had no unbound structures for the 

antibodies. Next, we identified component structures with more than 90% sequence identity to 

remove redundancy—for each set of structures with high sequence identity, we kept the highest-

resolution structure and excluded the remaining from subsequent analysis. To limit our studies to 

amino acid side-chains with similar backbone conformations in the bound and unbound state, we 

removed complexes with an interface RMSD ≥ 2.5Å between the bound and unbound structures. 

This resulted in 290 component proteins from 185 complexes with 6,618 interface residues and 

53,907 non-interface surface residues. We used this subset of proteins for training our models 

and tested the models on the entire set of 230 complexes. 

 

We calculated the solvent-accessible surface area (SASA) for each residue in each unbound 

structure using FreeSASA.13 To obtain SASA values with high accuracy and independent of 

structure orientation, FreeSASA was run with a resolution of 200 slices per atom (default is 20). 

Before calculating SASA for each complex, small molecule ligands were removed, nonstandard 

amino acids were modified to the closest standard amino acid, and residues with missing 

backbone atoms were removed from the structure. To calculate the relative solvent accessibility 

(rSASA), we used a reference dataset of 792 high-resolution protein structures14,15 to find the 

maximum SASA value of each amino acid type (see Table S1). Outliers with large SASA values 
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due to nearby missing atoms, unusual backbone configurations and other reasons were removed. 

We also calculated rSASASC and rSASABB, the relative side-chain and backbone solvent 

accessibility, using the maximum side-chain and backbone SASA values in the same dataset.  

 

Interface residues were defined as all residues with a change in SASA ≥ 1Å between the 

component proteins in the complex and separated. For each amino acid type, we created two 

subsets: interface surface residues and non-interface surface residues, where surface residues 

have rSASA ≥ 0.1 in the unbound component protein. Duplicate residues from proteins 

containing multiple identical chains were removed. 

 

Analysis of SASA distributions: 

We investigated the difference between the rSASA distributions of interface and non-interface 

surface residues, for residues of any type and for each residue type specifically, using a two-

sample Kolmogorov-Smirnov test to determine the significance. Significance values were 

assessed after controlling the FDR to be below 0.05 using the Benjamini-Hochberg procedure.16 

We repeated this analysis for rSASASC and rSASABB.  

 

To ensure that the observed differences between interface and non-interface rSASA distributions 

were not caused by secondary structure, we further divided the residues by loop, α-helix or β-

sheet backbone secondary structure assignment by DSSP.17,18 The rSASA distributions were 

compared for each backbone category as described above. 
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SASA-dependent interface probability 

We tested several different methods for predicting interface residues. We began by calculating 

the probability of being a surface residue for each amino acid type in our dataset by using the 

RIP equations from Yan 2008 and Dong 2007.19,20 For amino acid type i, let Ni be the total 

number of interface surface residues and Mi be the number of non-interface surface residues 

across all proteins in our dataset. Among all surface residues of type i, the fraction that are at the 

interface (ni) or surface (mi) is calculated as 

𝑛"	 = 	
%&

'(	%(
	   (1) 

𝑚" = 	
*&

'(*(	
	   (2) 

where 𝛴,is summed over all 20 types of amino acids. The relative interface propensity of amino 

acid type i is then defined as 

 𝑅𝐼𝑃" 	= 	
0&
1&

  (3) 

Furthermore, the probability of a surface residue of amino acid type i to be an interface (I) 

residue is defined as 

𝑃"(𝐼) 	= 	
%&

%&4	*&
  (4) 

When 𝑁" << 𝑀", 𝑅𝐼𝑃" and 𝑃"(𝐼)are correlated: 

 𝑃"(𝐼) 	≈ 	
'(	%(
'(	*(

𝑅𝐼𝑃"  (5) 

In our dataset, Ni is always much less than Mi, resulting in a linear correlation between 𝑅𝐼𝑃" and 

𝑃"(𝐼) (Figure S4 and Table S3). Nonetheless, Pi(I) is a probability and thus more convenient to 

work with than RIPi. 
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We hypothesized that the interface propensity of a particular amino acid is correlated to its 

solvent accessibility and that SASA in the unbound component protein could be used to improve 

interface prediction. To test this, we calculated the probability, P(I) at a specific SASA, rSASA, 

or rSASASC value, across all amino acid types, as well as by amino acid type. To construct the 

functions, we grouped the residues in ten bins, covering the range from zero to the maximum 

observed value of SASA, rSASA or rSASASC for the residue type. Bins containing fewer than 5 

interface residues or 20 total surface residues were discarded. We then determined the 

probability of being an interface residue for each bin and fit a linear function to obtain the 

following equations: 

 

𝑃9:;:;(𝐼) = 𝑃(𝐼) + 0.10 ∗ 𝑟𝑆𝐴𝑆𝐴	 − 0.058	  (6) 

 

𝑃:;:;(𝐼) = 𝑃(𝐼) + 	0.073 ∗ :;:;
IJJ

		+ 0.066  (7) 

 

where P(I) = 0.158, the overall probability of a surface residue being found at an interface. This 

process was repeated to obtain amino acid dependent equations Pi, rSASA(I), and Pi, SC (I), as 

summarized in Table 1, where Pi,SC(I) is the rSASASC dependent probability. For amino acids 

without a significant difference in interface and non-interface surface rSASA (or rSASASC) 

distributions (Figure 1; amino acids Asn, Asp, Gln, Gly, and Ser for rSASA and Ala, Asn, Asp 

Glu, Gln, Gly, and Ser for rSASASC), the equations for Pi, rSASA(I) or Pi, SC (I) were set to a 

constant value of Pi(I).  
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Testing prediction accuracy: 

We tested the ability of various equations to identify interface residues using the entire dataset of 

230 protein complexes. For each equation shown in Table 1, probability values were calculated 

for all surface residues in the unbound component proteins. Surface residues of each protein 

were ranked by probability and the top T residues selected (T = 1, 2, …, 10). If multiple residues 

had the same value, they were chosen in a random order. A prediction was considered successful 

if one or more top residues was a true interface residue in the complex structure. This was 

repeated for all complexes and the success rate was compared between the probability equations. 

As a control, T surface residues were also randomly chosen, and the success rate calculated. This 

process was repeated 50 times and the average success rate and standard deviations were 

calculated. 

 

Comparison to existing work: 

To allow for comparison with prior work, we implemented the methods of Liang et al. and 

Hwang et al. and used them to predict interface residues in our dataset. For Liang et al., the 

residue interface propensity, RIPL was calculated using 

𝑅𝐼𝑃L 	= 𝐶" ∗ 𝑟𝑆𝐴𝑆𝐴  (8) 

where Ci is the natural log of the relative interface propensity divided by the average rSASA for 

residue i and is given in Table 1 in ref. Liang 2006.6 For Hwang et al., RIPH was calculated using 

𝑅𝐼𝑃N = 𝑝𝑟𝑜𝑝𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑃",9:;:;(𝐼)N       (9) 

where the propensity and probability values were taken from Figure 1 in ref. Hwang 2016.11  
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Results and Discussion 

The side-chains of interface surface residues are more solvent exposed than non-interface surface 

residues 

Interface forming residues are more solvent exposed in the unbound proteins than other surface 

residues (Figure 1A). All nonpolar residues except Gly showed a significant shift in rSASA 

distribution of interface residues towards higher rSASA values. Most charged and polar residues 

had significant shifts in the same direction except for Asn, Asp, Gln, and Ser, for which no 

significant difference was detected. When the distributions were split by side-chain and 

backbone rSASA, it became clear that the increase in rSASA was due to an increase in side-

chain exposure (Figure 1B and Figure S1). Interface residues had a similar shift to higher 

rSASASC values as seen for rSASA, with statistically significant shifts for all amino acids seen in 

the rSASA distributions except for Ala, Gln, and Glu. Gly was omitted in the rSASASC analysis. 

In contrast, interface and non-interface surface residues have similar distributions of rSASABB 

values for most residues (Figure S1). 

 

The increase in solvent exposure of interface residues is not due to an enrichment of residues in a 

particular secondary structure. Protein-protein interfaces were reported to have different 

secondary structure composition than the rest of the protein surface, although different studies 

reported different secondary structure enrichment.21,22 We split our dataset by backbone type (α-

helix, β-sheet, and loop) using DSSP secondary structure assignments (see Methods).17,18 We 

observed that interface residues were enriched in loops (Table S2, p < 0.00001). Because 

different secondary structures can be more solvent exposed than others, we tested whether the 

higher rSASA values observed in our dataset were due to the enrichment of loops. We observed 
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a strong difference in rSASA distributions between interface and non-interface surface residues 

across all three secondary structure types, although some of these shifts were not statistically 

significant due to small counts for some amino acid types in certain secondary structures, 

especially β-sheet (Figure S2).  

 

The probability of being an interface residue is dependent on both amino acid type and solvent 

accessibility 

The relative interface propensity of amino acids in our dataset shows that interfaces are enriched 

in large nonpolar and aromatic residues and depleted in some polar and charged amino acids 

(Figure 2A). This agrees well with prior work, and a comparison is provided in Figure 

S3.5,6,8,9,11,19,20,23–26 Although each prior study found a different set of residues to be enriched at 

the interface, there are some common themes across all studies. Met, Phe, Trp and Tyr are 

consistently found to be enriched at the interface while Ala, Asp, Glu, Lys, Pro, Ser and Thr are 

almost never enriched. Moreover, Arg is found by most studies to be enriched in the interface 

despite being a charged residue, while the other positively charged residue Lys is not found 

enriched by any of the studies (Figure S3). 

 

To facilitate the use of SASA to improve interface prediction, we have chosen to work with Pi(I), 

the probability of a residue (i) being found at the interface, instead of directly with RIPi (Figure 

2B). For datasets where 𝑁",the number of interface surface residues of type i, is much smaller 

than 𝑀", the number of non-interface surface residues of type i, RIPi and Pi(I) are linearly related, 

as follows from EQ5 and shown in Figure S4. Because interface residues are shifted to higher 

rSASA values (Figure 1), we began by calculating rSASA- and SASA-dependent interface 
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probabilities across all amino acids: PrSASA(I) and PSASA(I). As seen in Figure 3, there is a clear 

relationship between rSASA or SASA and the probability of being at an interface. When we 

consider both amino acid type and solvent accessibility, Pi, rSASA (I) and Pi, SC (I), the probability 

of an aromatic or large nonpolar residue being found at the interface is strongly dependent on 

rSASA while small or charged residues have a very weak relationship (Figure 4). (Note: in 

Figure 4, all lines are plotted, even those without a statistically significant shift in Figure 1. 

However, for predicting interface residues, the equations for these insignificant amino acids will 

be set to a constant value of Pi(I)). 

 

SASA-dependent interface probability results in improved prediction of interface residues by 

creating a spread of probability values 

Using the probability of interface equations as shown in Table 1 and Table 2, we predicted 

interface residues from the unbound component structures in docking benchmark 5.0 (Figure 

5A).12 The best results were obtained using the Pi, SC (I) equations, for which a true interface 

residue was selected as the highest-ranking residue 46% of the time. For comparison, randomly 

selecting a surface residue identifies an interface residue 15% of the time and SASA-independent 

P(I) calculations 28% of the time. Our new equations result in an increased success rate for all 

values of T, the number of predicted interface residues. Using rSASASC resulted in a slight 

improvement over rSASA. The slope and intercept values for each rSASASC equation are listed 

in Table 2 and can be easily implemented to predict interface residues in other proteins.  

 

In contrast to using a SASA-independent RIP or Pi(I), using Pi, SC (I) creates a spread of 

probability values for each amino acid type (Figure 6). The spread of Pi, rSASA(I) or Pi, SC (I) is 
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typically centered on the rSASA-independent Pi(I) value with a long tail towards high 

probability values. By creating a rSASA-dependent probability, residues that have a low 

interface propensity but a high rSASA value can be correctly identified as interface residues 

which would not occur using rSASA-independent Pi(I). In fact, using rSASA-independent Pi(I) 

results in almost exclusive selection of Tyr as the most likely interface residue while the rSASA-

dependent methods select a wider variety of amino acid types with some variety between 

methods (Figure 7). The variety in amino acid type, along with the spread of SASA-dependent 

probability values, improves interface prediction and will likely outperform standard RIP 

methods when used in conjunction with more complex interface prediction software. 

 

When we compare our results to those obtained using two previously published methods 

(Methods), we find similar prediction accuracies (Figure 5B and 7).6,11 For all three rSASA 

dependent-equations, prediction accuracy is substantially better than SASA-independent RIP. 

Liang et al. is similar to our approach, creating an rSASA dependent equation. The key 

difference is that our work uses a linear correction to the SASA-independent equation while 

Liang et al. directly scale the propensity. As a result, our equations have a variety of Y-intercepts 

and slopes, while Liang’s equations all start at the origin. In practice, both approaches result in 

similar accuracy in predicting an interface residue in the top 1 to 10 interface residues (Figure 

5B) but the different approaches may impact the results of algorithms that use more than the top 

10 residues, such as those that create surface patches. In this work, we show that an rSASA-

dependent approach outperforms SASA-independent RIP, validating the use of the equations in 

Liang et al. The equation by Hwang et al. is nonparametric (i.e., it tabulates by bin of SASA), so 

it can be more accurate with more training data. However, it needs more parameters and it is 
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coarse grain (bins), so some accuracy may be lost, and the bins with few residues yield less 

reliable statistics. Our approach assumes a linear relationship between Pi(I) and rSASA, yielding 

equal performance with much fewer parameters.  

 

In conclusion, our analysis of rSASA distributions of amino acids shows that interface surface 

residues are, on average, more solvent exposed in the unbound complex than the rest of the 

protein surface. This finding is independent of backbone secondary structure and seen most 

strongly in large nonpolar and aromatic amino acids. By studying side-chains and backbones 

separately, we show that the difference in rSASA of interface residues is due to the exposure of 

side-chain atoms. Our side-chain rSASA-dependent equations for predicting interface residues 

obtain higher accuracy than standard RIP methods, although the performance of our equations 

are about the same as two other rSASA-dependent methods.6,11 While these equations are not 

sufficient to predict protein complexes, they provide a substantial improvement to the typical 

relative interface propensity equations used in existing methods.  
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Tables: 

Table 1: Probability equations created to identify interface residues. 

Probability of being 
at the interface 

Amino acid 
dependent? 

SASA 
dependent? 

Slope values 
(F: figure; T: table) 

Pi (I) Yes No Pi (I) values: 0.11 to 0.25, see F2 and T2 

PrSASA(I) No Yes 0.10, see F3 

PSASA(I) No Yes 0.073 / 100 Å2, see F3 

Pi, rSASA(I) Yes Yes 0 to 0.52, see F4 

Pi, SC (I) Yes Yes 0 to 0.49, see F4 and T2 

Random No No none 
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Table 2:  Equations for Pi(I) and Pi, SC (I) 

  Pi, SC (I) Equations 

 Pi(I) slope y-intercept 

ALA 0.107 0 0 

ARG 0.155 0.213 -0.085 

ASN 0.150 0 0 

ASP 0.125 0 0 

CYS 0.118 0.274 -0.045 

GLN 0.132 0 0 

GLU 0.123 0 0 

GLY 0.136 0 0 

HIS 0.160 0.055 -0.013 

ILE 0.156 0.257 -0.066 

LEU 0.152 0.364 -0.097 

LYS 0.112 0.107 -0.051 

MET 0.189 0.326 -0.076 

PHE 0.188 0.287 -0.075 

PRO 0.114 0.152 -0.058 

SER 0.112 0 0 

THR 0.127 0.086 -0.022 

TRP 0.222 0.494 -0.107 

TYR 0.250 0.421 -0.113 

VAL 0.122 0.186 -0.051 
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Figure Legends: 

 

Figure 1:  rSASA distributions of amino acids on the protein non-interface surface (blue) and 

interface surface (red) (intersection between distributions in violet) for (A) full residues and (B) 

side-chains on unbound protein structures. Asterisks indicate statistically significant differences 

between non-interface and interface residues. Although we restricted our study to surface 

residues with rSASA ≥ 0.1, rSASASC values can range from 0 to 1. 

 

Figure 2: Interface propensity of surface amino acids. (A) Relative interface propensity for each 

amino acid type as defined by EQ3. (B) Probability of being an interface residue, Pi(I), as 

defined by EQ4. 

 

Figure 3: Relationship between (A) SASA and (B) rSASA and the probability of being an 

interface residue across all amino acid types. 

 

Figure 4: Relationship between probability of being an interface residue and (A) rSASA and (B) 

rSASASC for each amino acid type. Amino acids are grouped by slope. 

 

Figure 5: Success rate of identifying the true interface by selecting the top T residues after 

ranking residues by their probability using various interface prediction methods. When two or 

more residues have the same probability values, they are randomly ranked. The error bars show 

the standard deviation over 50 runs with different random number seeds. 
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Figure 6: Distribution of probability values for surface residues (blue) using (A) rSASA and (B) 

rSASASC dependent equations compared to standard Pi(I) values (black). Amino acids without 

blue values have a predicted Pi, rSASA(I) or Pi, SC (I) set to Pi(I). 

 

Figure 7: Distribution of amino acid types in the top 1 or top 5 predicted interface residues for 

Pi, SC (I), Pi(I) and using data from Ref. 11 and Ref. 6. 
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Figures 

 

Figure 1:  rSASA distributions of amino acids on the protein non-interface surface (blue) and 

interface surface (red) (intersection between distributions in violet) for (A) full residues and (B) 

side-chains on unbound protein structures. Asterisks indicate statistically significant differences 

between non-interface and interface residues. Although we restricted our study to surface 

residues with rSASA ≥ 0.1, rSASASC values can range from 0 to 1. 
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Figure 2: Interface propensity of surface amino acids. (A) Relative interface propensity for each 

amino acid type as defined by EQ3. (B) Probability of being an interface residue, Pi(I), as 

defined by EQ4. 
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Figure 3: Relationship between (A) SASA and (B) rSASA and the probability of being an 

interface residue across all amino acid types. 

  



24 

 

Figure 4: Relationship between probability of being an interface residue and (A) rSASA and (B) 

rSASASC for each amino acid type. Amino acids are grouped by slope. 
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Figure 5: Success rate of identifying the true interface by selecting the top T residues after 

ranking residues by their probability using various interface prediction methods. When two or 

more residues have the same probability values, they are randomly ranked. The error bars show 

the standard deviation over 50 runs with different random number seeds. 
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Figure 6: Distribution of probability values for surface residues (blue) using (A) rSASA and (B) 

rSASASC dependent equations compared to standard Pi(I) values (black). Amino acids without 

blue values have a predicted Pi, rSASA(I) or Pi, SC (I) set to Pi(I). 

 

 



27 

 

Figure 7: Distribution of amino acid types in the top 1 or top 5 predicted interface residues 

for Pi, SC (I), Pi(I) and using data from Ref. 6 and Ref. 11. 
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Supporting Information 

 

Figure S1: rSASABB distribution of amino acids in unbound monomers on the protein non-

interface surface (blue) and interface surface (red). Asterisks indicate statistically significant 

differences between non-interface and interface distributions. Although we restricted our study to 

surface residues with rSASA ≥ 0.1, rSASABB values can range from 0 to 1. 
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Table S1: Maximum SASA, SASASC and SASABB values (Å2) found for each amino acid type 

in a dataset of 792 high resolution structures after removing outliers. 

 SASA SASASC SASABB 

ALA 122.26 70.28 59.01 

ARG 252.47 213.40 49.71 

ASN 168.76 130.26 55.78 

ASP 163.89 121.36 54.70 

CYS 127.27 100.28 43.21 

GLN 197.95 157.59 49.83 

GLU 191.60 153.29 51.36 

GLY 97.38 — 97.38 

HIS 197.27 164.55 45.43 

ILE 189.75 154.52 41.85 

LEU 197.51 157.40 42.54 

LYS 217.46 177.37 51.97 

MET 185.35 163.53 42.22 

PHE 202.84 176.31 45.82 

PRO 154.06 114.05 51.01 

SER 134.22 83.82 58.02 

THR 152.62 113.89 44.41 

TRP 206.28 180.28 45.71 

TYR 228.69 196.37 41.00 

VAL 164.76 130.39 44.91 
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Table S2: The fraction of each backbone type on the non-interface surface and interface of 

proteins in our dataset. 

 Loop α-helix β-sheet 

Surface 0.41 0.32 0.27 

Interface 0.53 0.28 0.19 
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Figure S2: rSASA distribution of amino acids in unbound structures on the protein non-interface 

surface (blue) and interface surface (red) split by backbone type: (A) loop, (B) α-helix and (C) β-

sheet. Asterisks indicate statistically significant differences between non-interface and interface 

distributions. Residues with fewer than 25 interface residues in a given backbone type (Cys for 

α-helix and Cys and Pro for β-sheet) were excluded. 
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Figure S3: Amino acids identified with enrichment at the protein interface versus the protein 

surface, calculated using relative interface propensity 
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Figure S4: Relationship between Pi(I) and relative interface propensity. 
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Table S3: Values of Ni and Mi for each amino acid type 

Amino Acid  Ni  Mi 

ALA 263 2187 

ARG 405 2201 

ASN 358 2031 

ASP 397 2773 

CYS 56 418 

GLN 299 1961 

GLU 446 3189 

GLY 410 2613 

HIS 170 893 

ILE 197 1063 

LEU 337 1873 

LYS 421 3327 

MET 113 486 

PHE 197 852 

PRO 275 2139 

SER 397 3151 

THR 384 2628 

TRP 116 406 

TYR 362 1086 

VAL 229 1643 
 


