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linear fuzzy space-time fractional variable order reaction-diffusion equations with
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and can be deal by using the method given in literature. To validate the high effi-
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1. Introduction

Recently the scope of variable order partial differential equations (PDEs)
is widely applied in many branch of physical science. The concepts of general-
ized calculus theory was first introduced by Abel and Liouville. The calculus
theory in which the concept of any arbitrary order differentiation and inte-
gration is discussed that can be a generalization of classical calculus theory.
The ordinary differentiation (integer order) is used to characterize the systems
of short term memory, to extend the application of derivative to long term
systems the fractional order derivative of constant order are being in used.
This generalized calculus theory (fractional calculus) has diverse and widely
spreaded in applied mathematical sciences, engineering, fluid mechanics, elec-
tromagnetic etc. and increasingly applied to mathematical modeling of several
complex physical phenomena viz., fluid flow, viscoelasticity, dynamical sys-
tems, control, groundwater contamination, transports of molecules via pores
etc. Due to its wide application and feasibility fractional calculus seeks the
attention of many researchers, scientists, engineers and applied mathemati-
cians[1,2].
Many definitions of the fractional derivatives and integer order derivatives are
known. Besides of several definitions of derivatives, the application of non-
local operators has seeks the attentions in many field of physical sciences.
Many definitions of the fractional derivatives and the variable order fractional
derivatives of any arbitrary order are given viz., Caputo’s fractional derivatives,
Caputo-Fabrizio derivatives[3], Riemann-Liouville’s derivatives for variable or-
der, Yang-Srivastava-Machado derivatives[4]. and Grünwald-Letinkov’s deriva-
tives for variable order etc. Atangana and Baleanu are defined the generalized
Riemann-Liouville and generalized Caputo derivatives [5,6] so these derivatives
are also known as ABC derivatives[7,8]. For the mean square displacement the
Caputo-Fabrizio and ABC derivative shows the crossover property where as the
Riemann-Liouville fractional order derivative is a scalar invariant derivative.

The diverse application of fractional calculus theory leads us to deal with
the fractional differential and partial differential equations[9–11]. To find the
the exact solution of fractional PDEs is a very tough task as the exact solution
of many fractional PDEs do not exist. To overcome the lack of exact solution
many researchers developed various techniques for the approximate analytical
solution of fractional PDEs. Few of these numerical techniques can also used
in to find the numerical solution of integro-differential equations and integral
equations. Many numerical schemes have been developed to find the approx-
imate numerical solution of fractional order PDEs[12–14]. Few of very com-
monly used numerical schemes are based on differential transform technique
[15], homotopy perturbation method [16], Adomain decomposition scheme [17]
etc. Some researchers have been developed the operational matrix technique
to find the numerical solution of fractional PDEs. These techniques basically
based on the Chebyshev wavelets[18], sin wavelets[19], Haar wavelets[20], Leg-
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endre wavelets[21] etc. Few operational matrix are developed on polynomials
such as Genocchi polynomial[22], Chebyshev polynomial, Laguerre polynomial
[23], Luca polynomial, Fibonacci polynomials etc.

Many properties and definitions of variable order integration and differen-
tiation have been given by authors. When we extend the concept of constant
fractional order derivatives to a space and time depending fractional derivatives
then later arise as a very interesting concept in fractional calculus. This new
concept of fractional calculus can be applied to several aspects of mathematical
physics, signal and control processing, mechanics etc[24–26]. To find the nu-
merical solution of variable order derivatives is little bit tough task as compared
to constant order fractional derivatives because the variable order fractional
operator have complex kernels for variable powers. In the article [27], a collo-
cation method based on domain type radial basis function has been applied to
a constant and variable order derivative to find an approximate solution. Chen
et al. [28], presented a new approach of collocation method based on boundary
type radial basis function to find the the numerical solution of fractional order
diffusion equation. To find the numerical solution of variable order fractional
differential equation a finite difference scheme has been proposed in [29] with
stability and convergence analysis of scheme. Moreover there are many numer-
ical scheme have been proposed to find the numerical solution of variable order
fractional differentiation viz., B-linear spline technique[30], integro quadratic
spline interpolations techniques [31], finite difference method [32], cubic spline
technique [33], discretization technique [34], spectral collocation technique [35]
etc.

Fractional PDEs can be utilized in modeling many linear and non-linear
physical processes. Although there are wide application of fractional PDEs
but the accurate mathematical model of many complex physical processes can
not be found. Zadeh developed the concept of fuzzy theory to overcome this
lackness of fractional PDEs and the application of fuzzy theory with fractional
PDEs can be able to mathematical modeling of such complex physical process.
Fuzzy analytic theory has a very useful and significant part as fuzzy differential
equations (DEs). Fuzzy DEs are very efficient tools which explain the many dy-
namical process accurately where the nature of dynamical process is uncertain
with vague information[36]. The applications of fuzzy fractional differential
equations fuzzy fractional PDEs are rapidly spread in last few years because
of its wide presence in modeling the several physical industrial processes like
mass and heat transfer, bio-mechanics, electromagnetic fields etc. Many re-
searchers have been developed some numerical scheme for the approximate
solutions of fractional fuzzy PDEs[37–39]. Although there are many numerical
schemes are available but the field of fractional fuzzy PDEs yet to be tackled
more accurately and needs some more efficient and valid numerical schemes.

In the present article, we have proposed an accurate and efficient numer-
ical technique to solve variable order fractional order fuzzy reaction-diffusion
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equation with Mittag-Leffler kernel arising in porous media as

ABCD
µ(x,t)
t ζ̃(x, t) = d̃

∂2ζ̃(x, t)

∂x2
+ γ̃(

∂ζ̃(x, t)

∂x
)a + f̃(ζ̃(x, t)) + h̃(x, t), (1.1)

with initial and boundary conditions

ζ̃(0, t) = h̃1(t), ζ̃(x, 0) = h̃2(x), ζ̃(1, t) = h̃3(t). (1.2)

where 0 ≤ x, t ≤ 1, µ(x, t) denotes the fractional variable order of fuzzy deriva-
tive. The field variable ζ̃(x, t) denotes a fuzzy values function w.r.to the crisp

variables x, t. The fractional order derivatives ABCD
µ(x,t)
t ζ̃(x, t) is considered

w.r.to the Hukuhara derivatives. The constant coefficients viz., d̃ and γ̃ denotes
some fixed fuzzy numbers. The unknown functions viz., f̃(ζ̃(x, t)), h̃(x, t) and
known functions h̃

′
is represents some known fuzzy valued functions.

In the research paper, our main purpose is to develop a most powerful
and highly efficient scheme viz., shifted fifth-kind Chebyshev fuzzy operational
matrix method to find more accurate approximate numerical solution of the
considered non-linear fuzzy space-time fractional reaction-diffusion equations
with Mittag-Leffler kernel. The Chebyshev spectral collocation scheme is very
efficient tool in handling the non-linear fuzzy PDEs over other known schemes.
Allahviranloo [40] developed a method for the solution of system of fuzzy
algebraic equations. This method is being used to solve the non-linear fuzzy
algebraic system of equations during the process of our proposed scheme. This
proposed scheme is applied to many non-linear fuzzy fractional mathematical
models to show the high convergence and efficiency of the proposed scheme.
As per the best analysis and knowledge, the Chebyshev spectral techniques is
first of its kind to find the approximate numerical solution of non-linear fuzzy
fractional PDEs with Mittag-Leffler kernel.

This paper is organized as: basic concepts and properties of fuzzy set
theory, fuzzy fractional derivatives in ABC sense is discussed in section 2.
Section 3 contains definitions and fundamental results of shifted fifth-kind
Chebyshev polynomials. The approximation of unknown fuzzy valued functions
in terms of Chebyshev polynomials is given in section 4. The derivation of
novel fuzzy operational matrix for fractional order and proposed algorithm of
the present scheme are discussed in section 5 and section 6 respectively. Few
test examples are carried out in order to validate the capability and efficiency
of the numerical scheme in section 7. The outcomes of the scientific work is
given in conclusion section.
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2. Preliminaries and Notations

This part of the work contains some basic introduction and properties of
fuzzy calculus and fuzzy set theory. The definitions of fractional fuzzy deriva-
tives and integrals are given in ABC sense which can be further used in the
manuscript.

2.1 Motivation behind ABC derivatives

Here we are going to provide the main motivations behind the use of
ABC fractional derivatives in this manuscript. The main purpose of using the
ABC fractional derivative as a basic tool in modeling of the dynamics fluid
in porous media is to describe and encounter the crossover behavior of model
and non-local and non-singularity of its kernel where as other type of fractional
derivatives which do not posses the these important properties are may be not
able to accurate analysis and simulation of concerned physical model.

The definitions of general RiemannLiouville fractional derivatives and Ca-
puto fractional derivatives are given by:

RL
0D

µ
t ζ(t) =

d

dt

∫ t

0
p(t− x)ζ(x)dx =

d

dt
p ? ζ, (2.1)

and
C

0D
µ
t ζ(t) =

∫ t

0
p(t− x)

d

dx
ζ(x)dx = p ?

d

dt
ζ. (2.2)

There are generally two special types of kernels viz., the kernel which generates
the fractional derivatives with power kernel law p(t−x) = 1

Γ(1−µ)
(t−x)−µ and

second one is the kernel which generates fractional derivatives with properties
of Dirac-Delta function with Mittag-Leffler law, this type of fractional deriva-
tives commonly known as AB fractional derivatives[5]. The first type of kernel
generally describes the fitting of a large portion of wealth to a small part of
population using Pareto distribution where as the second one derivative (ABC
derivatives) is corresponds to the Mittag-Leffler distribution. Due to its non-
commutative property, the AB fractional derivatives can be applied to chaotic
problems, fractal models and in dealing with the phase space in quantum me-
chanics and brillouin zone in quantum hall effect.

Some of the very important properties of fractional derivatives are:

• It can be used in certain even where the waiting time is independent of
elapsed time.
• Due to comparable with Brownian motion, the AB fractional derivatives is
stochastic.
• The AB distribution has crossover from Gaussian to non-Gaussian.
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• The AB derivatives has asymptotic behavior due to which it match the be-
havior of power law and can relate the fading memory with the non-singular
kernels.

2.2 Fuzzy Set Theory:

The idea of fuzzy sets has been introduced by L. Zadeh[41] in 1965 to
tackle the uncertainty arises because of imprecision and vagueness. Consider
a nonempty set Z which is called as base a set and every member z ∈ Z is
associated to a membership grade ζ(z). A nonempty subset of Z × [0, 1] is
considered as a fuzzy subset of Z by L. Zadeh.
The definition of a fuzzy set B is given as: B ⊂ {(z, ζ(z)) : z ∈ Z} where ζ
is a function from Z to [0, 1]. The symbol ζ is commonly used for the notation
of the fuzzy set B.

Definition 1. (Fuzzy Numbers): Now we are going to provide the defi-
nition of a fuzzy number ω̃. A real valued function ω̃ from R to unit interval
[0, 1] i.e. ω̃ : R −→ [0, 1] is said to be a fuzzy number if it satisfies the following
basic properties:

• The function ω̃ should be upper semi-continuous.
• The function ω̃ should satisfy the normality properties i.e., ∃ a real number
z0 such that ω̃(z0) = 1.
• The convexity property should be satisfied by the function ω̃ i.e., ∀k ∈ [0, 1]
and ∀z1, z2 ∈ R, we have

ω̃(kz1 + (1− k)z2) ≥ min{ω̃(z1), ω̃(z2)}. (2.3)

• The closure set of the support of function ω̃ is a compact set. The support
of the function ω̃ is defined as supp(ω̃) = {z ∈ R : ω̃(z) > 0}.

Definition 2. (v-Level Set of Fuzzy Numbers): Consider the collection
of all fuzzy numbers defined on set of real number R is denoted by RF . Let the
fuzzy number ω̃ ∈ RF for some v ∈ [0, 1] then for every v ∈ [0, 1] the v-level
set of fuzzy number [ω̃v] is defined as

[ω̃] =

{z ∈ R : ω̃(z) ≤ v}, v ∈ (0, 1]

closure(supp(ω̃)), v = 0.
(2.4)

From the above definition we can find that the v−level set [ω̃] is a closed
and bounded set. Let ω̃−(v) and ω̃+(v) are the end points of the v-level fuzzy
interval then we can write the v-level fuzzy interval as [ω̃] = [ω̃−(v), ω̃+(v)].
The following definition of the fuzzy number can be very useful in embedding
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the set of real number to the set of fuzzy number for all z, y ∈ R:

ω̃(y) =

1, y = z

0, y 6= z.
(2.5)

Definition 3. (Parametric Interval Form): For any fuzzy number ω̃ ∈ RF ,
the parametric interval form can be given as:

ω̃[v] = [ω̃l(v), ω̃u(v)], v ∈ [0, 1]. (2.6)

The above form of the fuzzy number satisfies the following properties:

• For every v ∈ [0, 1] The functions ω̃u(v) and ω̃l(v) satisfy the inequality
ω̃l(v) ≤ ω̃u(v).
• The function ω̃u(v) is a non-increasing and left continuous function of v.
• The function ω̃l(v) is a non-decreasing and left continuous function of v.

The arithmetic operations i.e. vector addition and scalar multiplication of any
two arbitrary fuzzy numbers ω̃1(v) and ω̃2(v) are defined for v ∈ [0, 1] as:

(ω̃1 ⊕ ω̃2)[v] = [ω̃1l + ω̃2l(v), ω̃1u + ω̃2u(v)],

(k � ω̃)[v] =

[kω̃l(v), kω̃u(v)], k ≥ 0,

[kω̃u(v), kω̃l(v)], k < 0.

(2.7)

Definition 4. (gH-difference): Let M and N are two nonempty compact
set then there gH-difference (generalized Hukuhara difference) as the compact
set P is given as:

M 	gH N = P ⇔

 (a) M = N + P

or (b) N = M − P.
(2.8)

Definition 5. (gH-derivatives): Here we will provide the definition of fuzzy
derivatives (gH-derivatives) of any arbitrary fuzzy valued function. Consider a
point z0 in (l,m) and a fuzzy valued function ζ such that ζ : (l,m) −→ RF .
Then the function ζ is H-differentiable at point z0 and is equal to a fuzzy
number ζ

′
(z0) if it is satisfy the following equations:

(i) Case 1: if the H-difference for two fuzzy number ζ(z0 + h 	 ζ(z0)) and
ζ(z0)	 ζ(z0 − h) exists then we have:

ζ
′
(z0) = lim

h→0+

ζ(z0 + h	 ζ(z0))

h
= lim

h→0+

ζ(z0)	 ζ(z0 − h)

h
. (2.9)

This definition of differentiation is called as 1-differentiation of function ζ at
(l,m).
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(ii) Case 2: if the H-difference for two fuzzy number ζ(z0 	 ζ(z0 + h)) and
ζ(z0 − h)	 ζ(z0) exists then we have:

ζ
′
(z0) = lim

h→0+

ζ(z0 	 ζ(z0 + h))

−h
= lim

h→0+

ζ(z0 − h)	 ζ(z0)

−h
. (2.10)

This definition of differentiation is called as 2-differentiation of function ζ at
(l,m).
The gH-derivative can also be given in same manner as:

ζ
′
(z0) = lim

h→0

ζ(z0 + h	gH ζ(z0))

h
. (2.11)

In order to establish the fractional derivatives in Caputo and Riemann-Liouville
we are going to provide the definition of Lebesgue integration of any function
ζ
′
(t) in parametric fuzzy interval form as:

[
∫ t

0
ζ
′
(z)dz]v =

∫ t

0
[ζ
′
(z)]vdz =

[
∫ t

0 ζ
′
−(z; v)dz,

∫ t
0 ζ
′
+(z; v)dz], for case-1,

[
∫ t

0 ζ
′
−(z; v)dz,

∫ t
0 ζ
′
+(z; v)dz], for case-2.

(2.12)

2.3 Fuzzy Fractional Derivatives

Here we are going to present fuzzy fuzzy fractional derivatives of a fuzzy
differential function ζ(t). The fuzzy fractional derivatives are the generaliza-
tion of classical fractional differentiation in crisp sense.

Definition 6. (Caputo fractional g-derivatives:) The fractional g-derivatives
of any fuzzy valued measurable continuous function ζ(t) of any arbitrary frac-
tional order in Caputo sense at point t is given as:

gDµ
a+ζ(t) = lim

h→0

λ(t+ h)	g λ(t)

h
, (2.13)

where the function λ is given by

λ(t) =
1

Γ(1− µ)

∫ t

a
(t− ρ)−µζ(ρ)dρ. (2.14)

Let the function ζ(t) is absolutely continuous fuzzy valued function then Ca-
puto fractional fuzzy derivatives is defined for both previously cases as:

[Ca+D
i,µ
t ζ(t)] = [Ca+D

i,µ
t ζ−(t; v), Ca+D

i,µ
t ζ+(t; v)] for case-1,

[Ca+D
ii,µ
t ζ(t)] = [Ca+D

ii,µ
t ζ+(t; v), Ca+D

ii,µ
t ζ−(t; v)] for case-2.

(2.15)
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where [Ca+D
i,µ
t ζ−(t; v), Ca+D

i,µ
t ζ+(t; v)], [Ca+D

ii,µ
t ζ−(t; v) and C

a+D
ii,µ
t ζ+(t; v)] are given

by the following equations:

C
a+D

i,µ
t ζ−(t; v) =

1

Γ(1− µ)

∫ t

a
(t− ρ)−µζ

′

−(ρ)dρ,

C
a+D

i,µ
t ζ+(t; v) =

1

Γ(1− µ)

∫ t

a
(t− ρ)−µζ

′

+(ρ)dρ,

C
a+D

ii,µ
t ζ+(t; v) =

1

Γ(1− µ)

∫ t

a
(t− ρ)−µζ

′

+(ρ)dρ,

C
a+D

ii,µ
t ζ−(t; v) =

1

Γ(1− µ)

∫ t

a
(t− ρ)−µζ

′

−(ρ)dρ.

(2.16)

Definition 7. (Variable order fuzzy ABC derivative) Here we are going
to define variable order fractional fuzzy ABC derivatives of an absolutely con-
tinuous fuzzy valued function ζ(t). Then variable order fractional fuzzy ABC
derivatives of order µ(x, t) is defined for both previously cases as:

[ABCD
i,µ(x,t)
t ζ(t)] = [ABCD

i,µ(x,t)
t ζ−(t; v), ABCD

i,µ(x,t)
t ζ+(t; v)] for case-1,

[ABCD
ii,µ(x,t)
t ζ(t)] = [ABCD

ii,µ(x,t)
t ζ+(t; v), ABCD

ii,µ(x,t)
t ζ−(t; v)] for case-2.

(2.17)

where [ABCD
i,µ(x,t)
t ζ−(t; v), ABCD

i,µ(x,t)
t ζ+(t; v)], [ABCD

ii,µ(x,t)
t ζ−(t; v) and

ABCD
ii,µ(x,t)
t ζ+(t; v)] are given by the following equations:

ABCD
i,µ(x,t)
t ζ−(t; v) =

M(µ(x, t))

1− µ(x, t)

∫ t

0
Eµ(x,t)[

−µ(x, t)

1− µ(x, t)
(t− ρ)µ(x,t)]ζ

′

−(x, ρ)dρ,

ABCD
i,µ(x,t)
t ζ+(t; v) =

M(µ(x, t))

1− µ(x, t)

∫ t

0
Eµ(x,t)[

−µ(x, t)

1− µ(x, t)
(t− ρ)µ(x,t)]ζ

′

+(x, ρ)dρ,

ABCD
ii,µ(x,t)
t ζ+(t; v) =

M(µ(x, t))

1− µ(x, t)

∫ t

0
Eµ(x,t)[

−µ(x, t)

1− µ(x, t)
(t− ρ)µ(x,t)]ζ

′

+(x, ρ)dρ,

ABCD
ii,µ(x,t)
t ζ−(t; v) =

M(µ(x, t))

1− µ(x, t)

∫ t

0
Eµ(x,t)[

−µ(x, t)

1− µ(x, t)
(t− ρ)µ(x,t)]ζ

′

−(x, ρ)dρ.

(2.18)

In the above definitions 0 < µ(x, t) < 1.

3. Basic Properties and Definitions of the Fifth-kind Chebyshev
Polynomials

Now a days the Chebyshev polynomials are world wide useful in various
area of applied and engineering mathematics[42,43]. The lth degree fifth-kind
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Chebyshev polynomials are defined in the interval [-1,1] as:

ωl(x) =
1√
δl

Ῡl
−3,2,−1,1

(x),−1 ≤ x ≤ 1; (3.1)

In the definition of fifth-kind Chebyshev polynomials Ῡl
−3,2,−1,1

(x) is given by
following general formula

Ῡl
f,g,h,i

(x) = (

b l
2
c−1∏
s=0

(2s+ (−1)l+1 + 2)i+ g

(2s+ (−1)l+1 + 2b l
2
c)h+ f

)Υf,g,h,i
l (x), (3.2)

and

Υf,g,h,i
l (x) =

b l
2
c∑

u=0

(

(
b l

2
c
u

)
(

b l
2
c−u−1∏
s=0

(2s+ (−1)l+1 + 2b l
2
c)h+ f

(2s+ (−1)l+1 + 2)i+ g
)xl−2u). (3.3)

The other constant δl in the equation (3.1) is given by the following expression:

δl =


π(l+2)
l22l+1 , when l is odd,
π

22l+1 , when l is even.
(3.4)

The collection of Chebyshev polynomials ωl(x) form an orthonormal set over
the interval [-1,1] i.e.

∫ 1

−1

x2

√
1− x2

ωk(x)ωl(x) =

0, when k 6= l,

1, when k = l.
(3.5)

Now the lth degree shifted fifth-kind Chebyshev polynomials are defined in the
interval [0,1] as:

Ωl(x) = ωl(2x− 1). (3.6)

The collection of shifted fifth-kind Chebyshev polynomials Ωl(x) form an or-
thonormal set over the interval [0,1] i.e.

∫ 1

0

(2x− 1)2

√
x− x2

Ωk(x)Ωl(x) =

0, when k 6= l,

1, when k = l.
(3.7)

Moreover the shifted fifth-kind Chebyshev polynomials are bounded over the
unit interval [0,1] i.e.,

| Ωl(x) |≤
√

2/π(l + 2),∀t ∈ [0, 1] and l ≥ 0. (3.8)

We can rewrite Ωl(x) in series form as

Ωl(x) =
l∑

p=0

λp,lx
p, (3.9)
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where λp,l is given by

λp,l =
22p+3/2

√
π(2p)!


1√
l(l+2)

∑ l−1
2

ε=b p
2
c

(−1)
l+1
2 +ε−p+(2ε+1)2(2ε+p)!

(2ε−p+1)!
, when l is odd ,

2
∑ l

2

ε=b p+1
2
c

(−1)
l
2+ε−pεθε(2ε+p−1)!

(2ε−1)!
, when l is even ,

(3.10)
and θε is;

θε =

1, ε > 0,

1/2, ε = 0.
(3.11)

The matrix form shifted fifth-kind Chebyshev polynomials can be written as

ϑ(x) = M.Pl(x), (3.12)

where ϑ(x) = [Ω0(x),Ω1(x), ...,Ωl(x)]T , Pl(x) = [1, x, x2, ..., xl]T and M is a
lower triangular matrix as:

M =



λ0,0 0 0 . . . 0

λ1,0 λ1,1 0 . . . 0

λ2,0 λ2,1 λ2,2 . . . 0
...

...
...

. . .
...

λl,0 λl,1 λl,2 . . . λl,l


. (3.13)

From the structure of matrix M it is clear that M is an invertible matrix i.e.,
|M |6=0.

4. Approximation of the function ζ(x, t)

Since the set of shifted fifth-kind Chebyshev polynomials forms a complete
basis in the Hilbert space L2[0, 1] therefore each function ζ(x) ∈ L2[0, 1] can
be expressed in terms of this polynomials as:

ζ(x) ' ζr(x) =
r∑

g=0

bgΩg(x) = BT .ϑ(x), (4.1)

where the unknown constants matrix BT = [bg] is known as shifted fifth-kind
Chebyshev coefficients.
Similarly a function of two variable ζ(x, t) ∈ L2[0, 1] can be expressed in terms
of Chebyshev polynomials as:

ζ(x, t) ' ζr(x, t) =
r∑

g=0

r∑
h=0

bg,hΩg(x)Ωh(t) = ϑ(x)T .B.ϑ(t), (4.2)

11



where the unknown constants matrix B = [bg,h] is known as shifted fifth-kind
Chebyshev coefficients. These coefficients can be determine by using the initial
and boundary conditions.

4.1 Approximation of fuzzy valued function ζ̃(x, t)

Here we use the shifted fifth-kind Chebyshev polynomial in order to ap-
proximate a fuzzy valued measurable and continuous function ζ̃(t). The ap-
proximation of the fuzzy valued function in terms of shifted fifth-kind Cheby-
shev polynomials is given as:

ζ̃(x) ' ζ̃r(x) =
r∑

g=0

b̃g � Ωg(x) = B̃T � ϑ(x), (4.3)

where the unknown constants matrix B̃T = [b̃g] is known as Chebyshev coeffi-
cients.
Similarly a function of two variable ζ̃(x, t) ∈ L2[0, 1] can be expressed in terms
of Chebyshev polynomials as:

ζ̃(x, t) ' ζ̃r(x, t) =
r∑

g=0

r∑
h=0

b̃g,h � Ωg(x)� Ωh(t) = ϑ(x)T � B̃ � ϑ(t), (4.4)

where the unknown constants matrix B̃ = [b̃g,h] is known as Chebyshev coef-
ficients. Here also the summation is taken in accordance with fuzzy algebraic
addition ⊕ and � denotes the fuzzy scalar multiplication. The unknown fuzzy
coefficients matrix B̃ = [b̃g,h] can be calculated later where all the operation
will be taken as fuzzy set algebra.

5. Operational Matrix of ABC Derivative for Variable Order

In this section of the manuscript we are going to derive the operational
matrix for the variable order derivative. From the equation (3.12), we can write
the derivative of vector ϑ(t) as

ABCD
µ(x,t)
t ϑ(t) = ABCD

µ(x,t)
t M.Pr(t) = M.ABCD

µ(x,t)
t



1

t
...

tr


. (5.1)
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Or,

ABCD
µ(x,t)
t ϑ(t) =M.[0,

M(µ(x, t))

1− µ(x, t)

∞∑
s=0

(−µ(x, t))stµ(x,t)s+1

(1− µ(x, t))sΓ(µ(x, t)s+ 2)
, · · · ,

M(µ(x, t))

1− µ(x, t)

∞∑
s=0

(−µ(x, t))sΓ(r + 1)tµ(x,t)s+r

(1− µ(x, t))sΓ(µ(x, t)s+ r + 1)
]T .

(5.2)

After simplification above equation can be written as:

ABCD
µ(x,t)
t ϑ(t) = M.Ξ.Pr(t), (5.3)

where Ξ is given by the expression:

Ξ = [apq](r+1)×(r+1) =

0, elsewhere,
M(µ(x,t))
1−µ(x,t)

∑∞
s=0

(−µ(x,t))sΓ(q+1)tµ(x,t)s

(1−µ(x,t))sΓ(µ(x,t)s+q+1)
,when p = q ≥ g.

(5.4)
In view of equation (3.12) and(5.3), we can write

ABCD
µ(x,t)
t ϑ(t) = M.Ξ.M−1.ϑ(t), (5.5)

where M.Ξ.M−1 is operational matrix of ABC derivative for variable fractional
order w.r.to time. Similarly we can find the operational matrix for variable
order ABC derivative w.r.to x. Now collocating the our concerned model (1.1)
with give initial and boundary conditions (1.2), we find a system of non-linear
algebraic equation. After solving this non-linear algebraic equation, we can get
the arbitrary constant matrix B̃ in the approximation (4.4).

6. Proposed Algorithm

In this section of the article we investigate the concerned fuzzy model
under the environment of fuzzy calculus theory. Our variable order fractional
fuzzy advection-diffusion equation is

ABCD
µ(x,t)
t ζ̃(x, t) = d̃

∂2ζ̃(x, t)

∂x2
+ γ̃(

∂ζ̃(x, t)

∂x
)a + f̃(ζ̃(x, t)) + h̃(x, t), (6.1)

with initial and boundary conditions

ζ̃(0, t) = h̃1(t), ζ̃(x, 0) = h̃2(x), ζ̃(1, t) = h̃3(t). (6.2)
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After the fuzzyfication above equation can be written for v ∈ [0, 1] as

[ζ̃(x, t)]v = [ζ−(x, t, v), ζ+(x, t, v)],

[ABCD
µ(x,t)
t ζ̃(x, t)]v = [ABCD

µ(x,t)
t ζ−(x, t, v), ABCD

µ(x,t)
t ζ+(x, t, v)],

[
∂2ζ̃(x, t)

∂x2
]v = [

∂2ζ−(x, t, v)

∂x2
,
∂2ζ+(x, t, v)

∂x2
],

[
∂ζ̃(x, t)

∂x
]v = [

∂ζ−(x, t, v)

∂x
,
∂ζ+(x, t, v)

∂x
],

[h̃(x, t)]v = [h−(x, t, v), h+(x, t, v)].

(6.3)

Now we can rewrite concerned model in upper and lower approximations as

ABCD
µ(x,t)
t ζ+(x, t, v) = d+

∂2ζ+(x, t, v)

∂x2
+ γ+(

∂ζ+(x, t, v)

∂x
)a

+ f+(ζ+(x, t, v)) + h+(x, t, v),
(6.4)

with initial and boundary conditions as

ζ+(0, t) = h1+(x), ζ+(x, 0) = h2+(t), ζ+(1, t) = h3+(t). (6.5)

and

ABCD
µ(x,t)
t ζ−(x, t, v) = d−

∂2ζ−(x, t, v)

∂x2
+ γ−(

∂ζ−(x, t, v)

∂x
)a

+ f−(ζ−(x, t, v)) + h−(x, t, v),
(6.6)

with initial and boundary conditions as

ζ−(0, t) = h1−(x), ζ−(x, 0) = h2−(t), ζ−(1, t) = h3−(t). (6.7)

On solving above equation we can find the numerical solution of this non-linear
variable order fuzzy PDE for both upper and lower approximations.

7. Test Examples

This section of the article is mainly devoted find the approximate nu-
merical solution of few test examples. Here the fuzzy fractional variable order
operational matrix method based on Chebyshev spectral collocation method
has been applied to some linear and non-linear variable order fuzzy fractional
reaction-diffusion equation with Mittag-Leffler kernel and demonstration of
absolute errors. In order to show the capability and efficiency of the present
numerical scheme for fuzzy fractional PDEs the absolute error is reported for
test examples.
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Example 1: Consider the following non-linear variable order fuzzy advection-
diffusion equation with ABC derivative for some particular values of constant
coefficients in the concerned model (1.1) as

ABCD
µ(x,t)
t ζ̃(x, t) =

∂2ζ̃(x, t)

∂x2
− ∂ζ̃(x, t)

∂x
+ h̃(x, t), (7.1)

The exact solution for this non-linear variable order fractional fuzzy PDE is
ζ̃(x, t; v) = ω̃(v)e−x

3txµ(x,t), where ω̃(v) = [v−1, 1− v]. The initial and bound-
ary conditions can be obtain from the exact solution. The plot of exact solution
and numerical solution is shown through the Fig. 1 for variable fractional or-
der µ(x, t) = 1.25 + 0.35sin(3πxt) at t = 0.5, which ensures the high accuracy
and efficiency of the proposed numerical scheme. The behavior of field vari-
able ζ̃(x, t) w.r.to the crisp value v can be seen from the Fig. 2 for different
value of the variable fractional order µ(x, t) at x = t = 0.5 for the order of
approximation r = 6.

Figure 1 (a-b)
Figure 2 (a-b)

The absolute error is also computed to show the high accuracy of proposed
numerical scheme for both upper and lower approximations. The variation
of absolute error can be seen from the Table 1 for different values of x at
t = v = 0.5 for the order of approximation r = 7.

Table 1

Example 2: Consider the following non-linear variable order fuzzy advection-
diffusion equation with ABC derivative for some particular values of constant
coefficients in the concerned model (1.1) as

ABCD
µ(x,t)
t ζ̃(x, t) =

∂2ζ̃(x, t)

∂x2
− ∂ζ̃(x, t)

∂x
+ ζ̃(x, t)(1− ζ̃(x, t)) + h̃(x, t), (7.2)

The exact solution for this non-linear variable order fractional fuzzy PDE is
ζ̃(x, t; v) = ω̃(v)(xt)µ(x,t), where ω̃(v) = [0.9 + 0.1v, 1.1 − 0.1v]. The initial
and boundary conditions can be obtain from the exact solution. The plot of
exact solution and numerical solution is shown through the Fig. 3 for variable
fractional order µ(x, t) = 1.25 + 0.35sin(3πxt) at t = 0.5, which ensures the
high accuracy and efficiency of the proposed numerical scheme. The behavior
of field variable ζ̃(x, t) w.r.to the crisp value v can be seen from the Fig. 4 for
different value of the variable fractional order µ(x, t) at x = t = 0.5 for the
order of approximation r = 6.

Figure 3 (a-b)
Figure 4 (a-b)

The absolute error is also computed to show the high accuracy of proposed
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numerical scheme for both upper and lower approximations. The variation
of absolute error can be seen from the Table 2 for different values of x at
t = v = 0.5 for the order of approximation r = 7.

Table 2

Example 3: Consider the following non-linear variable order fuzzy advection-
diffusion equation with ABC derivative for some particular values of constant
coefficients in the concerned model (1.1) as

ABCD
µ(x,t)
t ζ̃(x, t) =

1

2

∂2ζ̃(x, t)

∂x2
− ∂ζ̃(x, t)

∂x
+ ζ̃(x, t)(1− ζ̃2(x, t)) + h̃(x, t), (7.3)

The exact solution for this non-linear variable order fractional fuzzy PDE is
ζ̃(x, t; v) = ω̃(v)cos(t)e−5xxµ(x,t), where ω̃(v) = [0.75 + 0.25v, 1.25 − 0.25v].
The initial and boundary conditions can be obtain from the exact solution.
The plot of exact solution and numerical solution is shown through the Fig. 5
for variable fractional order µ(x, t) = 1.25 + 0.35sin(3πxt) at t = 0.5, which
ensures the high accuracy and efficiency of the proposed numerical scheme. The
behavior of field variable ζ̃(x, t) w.r.to the crisp value v can be seen from the
Fig. 6 for different value of the variable fractional order µ(x, t) at x = t = 0.5
for the order of approximation r = 6.

Figure 5 (a-b)
Figure 6 (a-b)

The absolute error is also computed to show the high accuracy of proposed
numerical scheme for both upper and lower approximations. The variation
of absolute error can be seen from the Table 3 for different values of x at
t = v = 0.5 for the order of approximation r = 7.

Table 3

The above three numerical examples shows a high accuracy of the pro-
posed numerical scheme for finding the numerical solution of variable order
non-linear fractional fuzzy partial differential equations with Mittag-Leffler
kernel. The variation of the solute profile ζ̃(x, t) w.r.to the crisp value is shown
from the Fig. 2, Fig. 4 and Fig. 6 for the different variable fractional order.
The advancement of solute variable for fractional order system can be easily
seen from these figures and from figures Fig. 1, Fig. 3 and Fig. 5. From these
figures it can be seen that the numerical solution of the given test examples
satisfies the double parametric form of fuzzy number system by achieving the
convex triangular fuzzy number shape for v ∈ [0, 1].
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8. Conclusion

In this paper the shifted fifth-kind Chebyshev polynomials is utilized for
development of a numerical technique to find the approximate analytical solu-
tion of non-linear variable order fractional fuzzy partial differential equations
with ABC derivative. The theory of fuzzy calculus has been discussed and we
approximated the fuzzy valued function in terms of Chebyshev polynomials.
The variable order fuzzy operational matrix is developed and with the help
of this matrix we analyze the space-time fractional non-linear fractional vari-
able order fuzzy reaction-advection-diffusion model with ABC derivative for
the first time. The numerical solution which is very close to exact solution is
obtained after the fuzzyfication concerned model with proper crisp points. The
feasibility and efficiency of proposed numerical scheme is shown from few test
examples by comparing the computed numerical solution with the existing ex-
act solution. The proposed method can be utilized to investigate the behavior
of system of fractional fuzzy PDEs.
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Table 1
Absolute error for upper and lower approximations of ζ̃(x, t; v)

µ(x, t) = 1.25 + 0.35sin(3πxt) µ(x, t) = 1.45 + 0.35sin(2πxt)

x Lower case error Upper case error Lower case error Upper case error

0.2 2.473 ×10−04 6.585 ×10−05 2.445 ×10−04 1.204 ×10−04

0.4 2.394 ×10−05 9.654 ×10−05 4.478 ×10−06 7.361 ×10−05

0.6 1.758 ×10−07 4.689 ×10−06 2.033 ×10−06 1.941 ×10−06

0.8 3.594 ×10−07 4.390 ×10−07 1.300 ×10−07 6.439 ×10−06

1 2.310 ×10−07 4.347 ×10−07 4.304 ×10−07 5.495 ×10−07

Table 2
Absolute error for upper and lower approximations of ζ̃(x, t; v)

µ(x, t) = 1.65 + 0.35sin(πxt) µ(x, t) = 1.45 + 0.35sin(2πxt)

x Lower case error Upper case error Lower case error Upper case error

0.2 3.403 ×10−04 7.595 ×10−04 3.504 ×10−04 2.009 ×10−05

0.4 5.438 ×10−04 1.483 ×10−05 2.963 ×10−05 2.475 ×10−05

0.6 4.012 ×10−05 9.784 ×10−05 1.308 ×10−06 5.843 ×10−05

0.8 1.384 ×10−05 3.574 ×10−05 1.043 ×10−06 7.574 ×10−05

1 9.840 ×10−06 1.491 ×10−06 5.675 ×10−06 8.839 ×10−07

Table 3
Absolute error for upper and lower approximations of ζ̃(x, t; v)

µ(x, t) = 1.65 + 0.35sin(πxt) µ(x, t) = 1.45 + 0.35sin(2πxt)

x Lower case error Upper case error Lower case error Upper case error

0.2 4.358 ×10−05 3.474 ×10−05 1.394 ×10−05 2.483 ×10−04

0.4 3.480 ×10−05 7.659 ×10−05 6.549 ×10−05 5.584 ×10−05

0.6 3.630 ×10−06 1.382 ×10−06 6.489 ×10−06 6.785 ×10−06

0.8 1.394 ×10−07 3.484 ×10−06 5.474 ×10−07 7.592 ×10−06

1 8.695 ×10−07 1.403 ×10−07 8.605 ×10−07 1.495 ×10−06

21



Figure Captions

1-Plot of ζ̃(x, t;ϑ) for exact and numerical cases vs. x, v at t = 0.5.

2-Plot of ζ̃(x, t;ϑ) for exact and numerical cases vs. v at x = t = 0.5.

3-Plot of ζ̃(x, t;ϑ) for exact and numerical cases vs. x, v at t = 0.5.

4-Plot of ζ̃(x, t;ϑ) for exact and numerical cases vs. v at x = t = 0.5.

5-Plot of ζ̃(x, t;ϑ) for exact and numerical cases vs. x, v at t = 0.5.

6-Plot of ζ̃(x, t;ϑ) for exact and numerical cases vs. v at x = t = 0.5.
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