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Abstract: Determining the conversion efficiency of thermal exergy into the work of separation is of great importance for distillation process. In this study, an ideal thermodynamic efficiency equation not containing physical property data was proposed for calculating the thermodynamic efficiency of the continuous distillation process of ideal binary mixture. Benzene-toluene mixture was taken as an ideal binary mixture, and the accurate and approximate thermodynamic efficiencies of the continuous distillation of benzene-toluene ideal mixture were calculated by the thermodynamic efficiency equation based on the relevant physical property data and the proposed ideal thermodynamic efficiency equation, respectively. The results showed that the difference between the calculated thermodynamic efficiencies was less than 5%, demonstrating the feasibility of calculating the thermodynamic efficiency of the continuous distillation process of ideal binary mixture using the ideal thermodynamic efficiency equation.
Keywords: distillation; constant molal flow; exergy; thermodynamic efficiency; ideal thermodynamic efficiency equation
1. Introduction
Distillation, a unit operation that utilizes the difference in volatility of components to separate a homogeneous mixture of liquids, is the most widely used separation technology and also one of the most energy-intensive unit operations in chemical industries.
 ADDIN EN.CITE 
1, 2
 The distillation process converts thermal exergy into work of separation, which is accompanied by exergy loss.3 Therefore, estimating the conversion efficiency is of great importance for distillation process. The exergy loss analysis of distillation column, which can provide useful insights for improving the design of distillation system, has attracted intense interest in the past decades.4 Atkinson5 developed a method to provide a graphical representation of thermodynamic efficiency and losses in a distillation column. Taprap and Ishida6 divided the overall exergy loss on one plate of a column into six kinds of exergy losses and presented the results on energy-utilization diagrams, which can be used to analyze the energy transformation and exergy losses in a distillation column. Agrawal and Herron3 identified the optimal thermodynamic feed conditions for distillation of ideal binary mixture through analyzing the thermodynamic efficiency of distillation columns.
Despite the abundant literature on analyses of exergy losses in distillation columns,
 ADDIN EN.CITE 
7-19
 there are few equations not containing the basic physical property data that can be used to calculate the thermodynamic efficiency of continuous distillation process, even for the continuous distillation process of ideal binary mixture. When calculating the continuous distillation process of ideal binary mixture, it is generally assumed that the relative volatility of the ideal binary mixture is constant and the molal flow of vapor and liquid in each section of the column is constant (constant molal overflow), so as to simplify the mathematical description and calculation of the process.20 Because of the above simplifications, the relevant physical property data are no longer needed during the calculation of the distillation process of ideal binary mixture. However, without the relevant physical property data, it is difficult to calculate the thermodynamic efficiency of the distillation process of ideal binary mixture. 
In this study, an ideal thermodynamic efficiency equation not containing the basic physical property data of ideal binary mixture was derived for calculating the thermodynamic efficiency of the continuous distillation process of ideal binary mixture. The thermodynamic efficiency of the continuous distillation of benzene-toluene ideal binary mixture calculated by using the proposed ideal thermodynamic efficiency equation was compared with that calculated by using the thermodynamic efficiency equation containing the relevant physical property data, and the results showed that the thermodynamic efficiencies calculated by the two equations were very close and the difference was less than 5%. The results supported the feasibility to calculate the thermodynamic efficiency of the continuous distillation process of ideal binary mixture by using the ideal thermodynamic efficiency equation.   
2 Mathematical description of the continuous distillation process of binary mixture

The continuous distillation process of binary mixture is complicated. In order to simplify the mathematical description and calculation of the process, the following simplifying assumptions are made. (1) The binary mixture is an ideal binary mixture. (2) Each plate is a theoretical plate. (3) Reboiler is equivalent to a theoretical plate. (4) The equipment has good thermal insulation properties and the heat loss is negligible. (5) The pressure difference between the theoretical plates is negligible. (6) The vapor phase in the overhead condenser is completely condensed. (7) The feed is liquid feed. (8) The temperature of the reflux at the top of the column is at the bubble point. Under these assumptions, the thermodynamic efficiency of the distillation process can be calculated by using the relevant physical property data. Notably, under these assumptions, the molal overflow is not constant (non-constant molal overflow). 
2.1
Calculation equations for physical property data of ideal binary mixture

2.1.1 Relative volatility of ideal binary mixture
According to Raoult's law, the relative volatility of light component A with respect to heavy component B is
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2.1.2 Molar enthalpy of ideal binary mixture
Assuming at 
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2.1.3 Molar entropy of ideal binary mixture in liquid state

Assuming at 
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The molar entropy of ideal binary mixture 
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The values of 
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2.2 Equations for the continuous distillation process of ideal binary mixture
2.2.1 Phase equilibrium equation
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2.2.2 Material balance equation
Overall 
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Condenser 
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Rectifying section 
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Stripping section
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Reboiler 
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2.2.3 Heat balance equation
Overall 
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Rectifying section 
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Stripping section
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Reboiler 
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2.2.4 Operating line equation for rectifying section
Substituting equations (15) and (16) into equation (23) gives

[image: image50.wmf],1,,1,

1

,,,,

()()

()()

(1,2,,1)

CVjLDVjLjD

jj

CLjLDCLjLD

QDIIDIIx

yx

QDIIQDII

jm

++

+

----

=+

------

=-

LL

        (26)

2.2.5 Operating line equation for stripping section
Substituting equations (11), (12), (17), and (18) into equation (24) gives[image: image51.emf] 
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3 Derivation of ideal thermodynamic efficiency equation
3.1 Approximate relationship between the molar heat of vaporization and the relative volatility of ideal binary mixture
In order to use the Clausius-Clapeyron equation to describe the relationship between the saturated vapor pressure of a pure component with temperature, the following assumptions should be made.21 (1) The molar volume of the liquid phase is negligible as compared with that of the vapor phase. (2) The vapor phase can be regarded as ideal gas. (3) The molar heat of vaporization does not change with temperature. According to Kirchhoff's law, the temperature-dependent molar heat of evaporation of component 
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It can be seen from equation (28) that when 
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Assuming that when pressure is 
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, the boiling point of light component A is 
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The assumptions for the continuous distillation of binary mixture with constant molal overflow are as follows:20 (1) the difference in molar heat of vaporization of each component is negligible; (2) the sensible heat and the heat of mixing effects are negligible; and (3) the equipment has good thermal insulation property and the heat loss is negligible. 
When 
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Equation (32) was also derived by Agrawal and Herron.3
3.2 Approximate relationship between the bubble point and the mole fraction of light component of ideal binary mixture
When 
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, on the basis of Raoul's law, Dalton's law, and equations (30) and (31), equation (33) can be obtained.
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Expand 
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Substituting equations (34) and (35) into (33) gives 
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Since 
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3.3 Conditions for constant molal overflow 

When the relative volatility of ideal binary mixture is constant, it can be seen from the process of deriving equation (32) that
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When the continuous distillation of ideal binary mixture has constant molal overflow, then


[image: image81.wmf] (1,2,,1)

j

LRDjm

==-

LL

                       (38)


[image: image82.wmf](1) (1,2,,1)

j

VRDjm

=+=-

LL

                   (39)

Substituting equations (2), (3), (4), (5), (22), (37), (38), and (39) into (23) gives
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Since 
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In summary, the conditions for the continuous distillation of ideal binary mixture with constant molal overflow are as follows: (1)
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; and (3) the equipment has good thermal insulation property and the heat loss is negligible. 
3.4 Derivation of the ideal thermodynamic efficiency equation
The thermodynamic efficiency of the continuous distillation process of ideal binary mixture is 22

[image: image90.wmf]id

a

idL

W

WW

h

=

+

                           (42)

At 
[image: image91.wmf]0

T

, the ideal power of separating 
[image: image92.wmf]F

 into 
[image: image93.wmf]D

 and 
[image: image94.wmf]W

 is


[image: image95.wmf]()()()

0,,,

()

mimimi

idLDLWLF

WTDsWsFs

=-+-

            (43)

The total entropy production in the continuous distillation process of ideal binary mixture is
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According to the Gouy-Stodola equation,23 the rate of total exergy loss during the continuous distillation process of ideal binary mixture is
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Substituting equations (9), (43), (44), and (45) into equation (42) gives
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This study refers to equation (46) as the thermodynamic efficiency equation, which can be used to calculate the accurate thermodynamic efficiency value of continuous distillation process of ideal binary mixture through computer simulation. When the continuous distillation process of ideal binary mixture has liquid feed, constant relative volatility and constant molal overflow, it can be deduced from equations (2), (3), (4), (5), (21), (22), (32), (38), (39) and (41) that
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It can be deduced from equation (36) that
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Combining equations (49) and (50) yields
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From equations (6), (7) and (41) it can be derived that 
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Substituting equations (47), (48), (51), and (52) into equation (46) gives
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Substituting equations (11) and (12) into equation (53) gives
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This study refers to equation (54) not containing the relevant physical property data as the ideal thermodynamic efficiency equation, and the feasibility of calculating the thermodynamic efficiency of the continuous distillation process of ideal binary mixture using this equation was explored.
4 Verification of the ideal thermodynamic efficiency equation 
    During the derivation of the ideal thermodynamic efficiency equation, some variables were approximated according to the thermodynamic and mathematical principles. Benzene-toluene mixture is generally considered to be a typical example of ideal binary mixture. Herein, the continuous distillation of benzene-toluene mixture was used to test the feasibility of calculating the thermodynamic efficiency of this distillation process using the proposed ideal thermodynamic efficiency equation. The thermodynamic efficiencies for the continuous distillation of benzene-toluene mixture were calculated by equations (54) and (46), and the two thermodynamic efficiencies obtained were compared. 
4.1 Relevant physical property data of benzene and toluene
In the benzene-toluene mixture, benzene is the light component A, and toluene is the heavy component B. The normal boiling points of benzene and toluene are 353.3 and 383.8 K, respectively, and the molar heats of vaporization of benzene and toluene at the normal boiling points are 30.76 and 33.18 kJ/mol, respectively.24
The temperature-dependent vapor pressures of benzene and toluene can be represented by the following Antoine equations,21
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where 
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 is in kPa, and T is in K.

The molar heat capacities of benzene and toluene at constant pressure are25
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where 
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C

 is in J/mol·K, and T is in K.

When
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The average relative volatility of benzene-toluene mixture over the entire concentration range is
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When
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 kJ/mol can be obtained from equation (32). For benzene-toluene mixture, it can be seen from Fig. 1 that the molar heat of vaporization at bubble point calculated from equation (61) decreases as 
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 increases. The average molar heat of vaporization at the bubble point over the entire concentration range is 32.051 kJ/mol, which is close to 33.666 kJ/mol calculated from equation (32), indicating that the molar heat of vaporization of ideal binary mixture can be approximated by the equation (32).
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FIGURE 1. 
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FIGURE 2. Relationship between 
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4.2 Calculation method of thermodynamic efficiency of continuous distillation process of ideal binary mixture 
For the continuous distillation process of ideal binary mixture, it can be seen from equation (46) that its thermodynamic efficiency can be calculated after the calculation of the distillation process. On the basis of the modified McCabe-Thiele method,26 the program steps for calculating the accurate thermodynamic efficiency of the continuous distillation process of ideal binary mixture with saturated liquid feed (q=1) are as follows:
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The detailed calculation process is as follows: calculate 
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(Ⅰ) If it converges to the specified accuracy, go to step (16);
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, return to the main program.
When the continuous distillation of ideal binary mixture has constant molal overflow, its minimum reflux ratio 
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FIGURE 3. Variation of 
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Theoretically, 
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FIGURE 4. Degree of error accumulation in calculation results.

4.3 Calculation of thermodynamic efficiency 
For the continuous distillation process of benzene-toluene mixture, its accurate thermodynamic efficiency (
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) and approximate thermodynamic efficiency (
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)  were calculated by equations (46) and (54), respectively. As can be seen from Fig. 5, 
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 are very close to each other, and the difference between them is less than 5%, demonstrating that the ideal thermodynamic efficiency equation can well calculate the thermodynamic efficiency of the continuous distillation process of ideal binary mixture.
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FIGURE 5  
[image: image237.wmf]()

id

a

h

 and 
[image: image238.wmf]a

h

 vary with 
[image: image239.wmf]1

N

+


5 Conclusions
Simplified assumptions were made to study the thermodynamic efficiency of the continuous distillation process of ideal binary mixture. On the basis of Clausius-Clapeyron equation, an approximate relationship between the bubble point and the mole fraction of the light component of ideal binary mixture was derived. The conditions for the continuous distillation of ideal binary mixture with constant molal overflow were discussed. The ideal thermodynamic efficiency equation for the continuous distillation process of ideal binary mixture with liquid feed, constant relative volatility and constant molal overflow was derived. On the basis of the modified McCabe-Thiele method, the program steps for calculating the thermodynamic efficiency of the continuous distillation process of ideal binary mixture were described. The accurate and approximate thermodynamic efficiencies of the continuous distillation process of benzene-toluene idea mixture were calculated by the thermodynamic efficiency equation based on the relevant physical property data and the ideal thermodynamic efficiency equation, respectively. A comparison of the two calculated thermodynamic efficiencies indicates that the difference between them is less than 5%, indicating that the ideal thermodynamic efficiency equation can be used to calculate the thermodynamic efficiency of the continuous distillation process of ideal binary mixture. 
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	——
	Molar heat capacity at constant pressure, J/mol·K
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	——
	Molar flow rate of distillate, feed and bottom product, mol s-1

	
[image: image241.wmf]e


	——
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	Thermodynamic efficiency and ideal thermodynamic efficiency

	Subscripts
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	——
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	Superscripts
	
	

	(km)
	——
	km-th iteration of main program 
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	——
	ks-th iteration of subprogram 
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