
Received <day> <Month>, <year>; Revised <day> <Month>, <year>; Accepted <day> <Month>, <year>

DOI: xxx/xxxx

ARTICLE TYPE

Critical exponent for semi-linear structurally damped wave
equation of derivative type

Tuan Anh Dao1,2 | Ahmad Z. Fino*3

1School of Applied Mathematics and
Informatics, Hanoi University of Science
and Technology, No.1 Dai Co Viet road,
Hanoi, Vietnam

2Faculty for Mathematics and Computer
Science, TU Bergakademie Freiberg,
Prüferstr. 9, 09596, Freiberg, Germany

3Department of Mathematics, Faculty of
Sciences, Lebanese University, P.O. Box
826, Tripoli, Lebanon

Correspondence
*A.Z. Fino, Department of Mathematics,
Faculty of Sciences, Lebanese University,
P.O. Box 826, Tripoli, Lebanon.
Email: ahmad.fino01@gmail.com;
afino@ul.edu.lb

Abstract

The main purpose of this paper is to study the following semi-linear structurally
damped wave equation with nonlinearity of derivative type:

utt − Δu + �(−Δ)�∕2ut = |ut|
p, u(0, x) = u0(x), ut(0, x) = u1(x),

with � > 0, n ≥ 1, � ∈ (0, 2] and p > 1. In particular, we are going to prove the
non-existence of global weak solutions by using a new test function and suitable sign
assumptions on the initial data in both the subcritical case and the critical case.
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1 INTRODUCTION

This paper is concerned with the Cauchy problem for semi-linear structurally damped wave equation with the power nonlinearity
of derivative type (powers of the first order time-derivatives of solutions as nonlinear terms) as follows:

{

utt − Δu + �(−Δ)�∕2ut = |ut|p, x ∈ ℝn, t > 0,
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ ℝn,

(1)

where � > 0, � ∈ (0, 2], n ≥ 1 and p > 1. Here (−Δ)�∕2 is the fractional Laplacian defined as in Definition 1 below when
� ∈ (0, 2), and when � = 2 it is the classical Laplacian.
Our main goal is to investigate the critical exponent for (1). By critical exponent pc = pc(n, �) we mean that global (in time)

weak solutions cannot exist (it sometimes called blow-up in some cases), under suitable sign assumption on the initial data, in
the subcritical case 1 < p < pc and in the critical case p = pc as well, whereas small data global (in time) solutions exist in the
supercritical case p > pc .
Regarding the structurally damped wave equation (1) with the power nonlinearity |u|p, the critical exponent has been investi-

gated by D’Abbicco and Reissig [7], where they proposed to distinguish between “parabolic like models" in the case � ∈ (0, 1],
the so-called effective damping, and “hyperbolic like models" in the remaining case � ∈ (1, 2], the so-called non-effective damp-
ing according to expected decay estimates (see more in detail [3]). In the effective case � ∈ (0, 1], they proved the existence of
global (in time) solutions when

p > p0(n, �) ∶= 1 +
2

(n − �)+
for the small initial data and low space dimensions 2 ≤ n ≤ 4 by using the energy estimates. Here we denote (r)+ ∶= max{r, 0}
as its positive part for any r ∈ ℝ. Afterwards, D’Abbicco and Ebert [2] extended their global existence results to higher space
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dimensions by usingLr−Lq estimates for solutions to the corresponding linear equation. On the other hand, the authors indicated
in [7] the non-existence of global (in time) solutions, just when � = 1, if the condition

p ≤ p0(n, 1) = 1 +
2

n − 1
holds by using the standard test function method via the non-negativity of the fundamental solution (see also [6]). In these cited
papers, one should recognizes that the assumptions

u0 = 0 and u1 ≥ 0

come to guarantee the non-negativity of the fundamental solution, which cannot be expected for any � ∈ (0, 1]. Quite recently,
the global non-existence result for any � ∈ (0, 1] has been completed by Dao and Reissig [10] when p ≤ p0(n, �) and for all
n ≥ 1 by using a modified test function which deals with sign-changing data condition, namely

u0 = 0 and u1 ∈ L1 satisfying ∫
ℝn

u1(x)dx > 0.

Again, we can see that assuming the first data u0 = 0 is necessary to require. It seems that the previous used approaches do not
work so well if we assume L1 regularity for u0 with no need of any additional sign condition for u0. For the non-effective case
� ∈ (1, 2], the global existence results were also shown by [7] only for p > 1 + (1 + �)∕(n − 1) with n ≥ 2, while the blow-up
of solutions has been obtained by [10] when p ≤ 1 + 2∕(n − 1). Unfortunately, there appears a gap between the two exponents
1 + (1 + �)∕(n − 1) and 1 + 2∕(n − 1). This is naturally due to the hyperbolic like structure of the problem which seems not
suitable to use the test function method in the proof of blow-up results.
Let us come back our interest to consider the structurally damped wave equation with the power nonlinearity of derivative

type (1). At present, there do not seem to be so many related manuscripts. D’Abbicco and Ebert [4] proved the global (in time)
existence of small data solutions for any

p > p1(n, �) ∶= 1 +
�
n

in the case of � ∈ (0, 1) and lower space dimensions, as well as for any

p > p1(n, 1) = 1 +
1
n

in the case of � = 1 and all n ≥ 1. For the purpose of looking for the global (in time) existence of small data Sobolev solutions
to (1), with � ∈ (0, 1), from suitable function spaces basing on Lq spaces, with q ∈ (1,∞), we address the interested readers to
the new papers of Dao and Reissig [8]. When � ∈ (1, 2], the only global existence results known up to our knowledge can be
found in [9] for any p > p̄, where p̄ are a suitable exponent, under small initial data in Sobolev space. From these observations,
it still keeps an open problem so far to indicate a non-existence result for (1) in all cases � ∈ (0, 2].
For this reason, our main motivation of this paper is to fill this lack. Especially, we would like to face up to dealing with the

fractional Laplacian (−Δ)�∕2, the well-known nonlocal operators, where � is supposed to be a fractional number in (0, 2). As
we can see, this case was not included in [4] since the standard test function method seems difficult to be directly applied to
these fractional Laplacian. To overcome this difficulty, the application of a new modified test function developed by Dao and
Fino in the recent work [5], and mentioned in [1], comes into play. Moreover, as analyzed above, we want to point out that it is
challenging to follow the recent papers ([7, 10]) in terms of the treatment of u0 ≠ 0. Hence, the other point worthy of noticing
in the present paper is that our method can be applicable effectively to relax the limitation of the assumption for u0 = 0, which
plays an important role in the proofs of blow-up results in severval previous literatures (see, for example, [4, 6, 7, 10]).

Notations

• We denote the constant �̄ ∶= min{�, 1}, where � ∈ (0, 2].

• For later convenience, C and Ci with i ∈ ℤ stand for suitable positive constants.

• For given nonnegative f and g, we write f ≲ g if f ≤ Cg. We write f ≈ g if g ≲ f ≲ g.

Our main result reads as follows.

Theorem 1 (Blow-up). Let � ∈ (0, 2]. We assume that

(u0, u1) ∈
(

L1(ℝn) ∩H1(ℝn)
)

×
(

L1(ℝn) ∩ L2(ℝn)
)
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satisfying the following condition:

∫
ℝn

u1(x)dx > 0. (2)

If
p ∈

(

1, 1 + �̄
n

]

, (3)
then, there is no global (in time) weak solution to (1).

Remark 1. From the statement of Theorem 1, we want to underline that no need of any additional sign assumption for u0 brings
a new contribution in comparison with the previous studies [4, 6, 7, 10].

Remark 2. By Theorem 1 and Theorem 7 in [4], it is clear that pc ∶= 1 + �∕n is the critical exponent of (1) when � ∈ (0, 1]. It
is still an open problem whether 1 + 1∕n is the critical exponent of (1) when � ∈ (1, 2].

2 PRELIMINARIES

In this section, we collect some preliminary knowledge needed in our proofs.

Definition 1. [11] Let s ∈ (0, 1). Let X be a suitable set of functions defined on ℝn. Then, the fractional Laplacian (−Δ)s in
ℝn is a non-local operator given by

(−Δ)s ∶ v ∈ X → (−Δ)sv(x) ∶= Cn,s p.v.∫
ℝn

v(x) − v(y)
|x − y|n+2s

dy

as long as the right-hand side exists, where p.v. stands for Cauchy’s principal value, Cn,s ∶=
4sΓ( n

2
+ s)

�
n
2Γ(−s)

is a normalization

constant and Γ denotes the Gamma function.

Lemma 1. [5, Lemma 2.3] Let ⟨x⟩ ∶= (1+(|x|−1)4)1∕4 for all x ∈ ℝn. Let s ∈ (0, 1] and � ∶ ℝn → ℝ be a function defined by

�(x) =

⎧

⎪

⎨

⎪

⎩

1 if |x| ≤ 1,

⟨x⟩−n−2s if |x| ≥ 1.
(4)

Then, � ∈ 2(ℝn) and the following estimate holds:

|(−Δ)s�(x)| ≲ �(x) for all x ∈ ℝn. (5)

Lemma 2. [10, Lemma 2.4] Let s ∈ (0, 1). Let  be a smooth function satisfying )2x ∈ L∞(ℝn). For any R > 0, let  R be a
function defined by

 R(x) ∶=  (x∕R) for all x ∈ ℝn.
Then, (−Δ)s( R) satisfies the following scaling properties:

(−Δ)s( R)(x) = R−2s((−Δ)s )(x∕R) for all x ∈ ℝn.

Using Lemmas 1 and 2, or directly from [5, Lemma 2.5], we may conclude easily the following result.

Lemma 3. Let s ∈ (0, 1], R > 0 and p > 1. Then, the following estimate holds

∫
ℝn

(�R(x))
− 1
p−1 |

|

|

(−Δ)s�R(x)
|

|

|

p
p−1 dx ≲ R−

2sp
p−1
+n,

where �R(x) ∶= �(x∕R) and � is given in (4).

3 PROOF OF THE MAIN RESULT

Before starting our proof, we define weak solutions for (1).
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Definition 2. Let T > 0, p > 1, and (u0, u1) ∈ L2(ℝn) × L2(ℝn). A function u is said to be a global weak solution to (1) if

u ∈ L1loc
(

(0,∞), L2(ℝn)
)

satisfying
ut ∈ L

p
loc

(

(0,∞), L2p(ℝn)
)

∩ L1loc
(

(0,∞), L2(ℝn)
)

,
and the following formulation holds

∞

∫
0

∫
ℝn

|ut|
p'(t, x) dx dt + ∫

ℝn

u1(x)'(0, x) dx

= −

∞

∫
0

∫
ℝn

ut(t, x)'t(t, x) dx dt

−

∞

∫
0

∫
ℝn

u(t, x) Δ'(t, x) dx dt

+ �

∞

∫
0

∫
ℝn

ut(t, x) (−Δ)�∕2'(t, x) dx dt

for any test function ' ∈ 
(

[0,∞);H2(ℝn)
)

∩ 1
(

[0,∞);L2(ℝn)
)

such that its support in time is compact.

Proof of Theorem 1. First, we introduce the function � = �(x) as defined in (4) with s = �∕2 and the function � = �(t) having
the following properties:

1. � ∈ ∞0 ([0,∞)) and �(t) =
⎧

⎪

⎨

⎪

⎩

1 if 0 ≤ t ≤ 1∕2,
decreasing if 1∕2 ≤ t ≤ 1,
0 if t ≥ 1,

2. �−
1
p (t) |�′(t)| ≤ C for any t ∈ [1∕2, 1]. (6)

For the existence of such function, see e.g. [12, Chapter 1]. Let R be a large parameter in [0,∞). We define the following test
function:

'R(t, x) ∶= �R(t)�R(x),
where

�R(t) ∶= �
(

R−�̄t
)

and �R(x) ∶= �
(

R−1K−1x
)

for some K ≥ 1 which will be fixed later. Moreover, we introduce the function

ΨR(t) =

∞

∫
t

�R(�)d� for all t ≥ 0.

Because of supp�R ⊂
[

0, R�̄
]

, it follows suppΨR ⊂
[

0, R�̄
]

. Here we also notice that the relation Ψ′R(t) = −�R(t) holds. We
define the functionals

IR ∶=

∞

∫
0

∫
ℝn

|ut(t, x)|p'R(t, x) dxdt

=

R�̄

∫
0

∫
ℝn

|ut(t, x)|p'R(t, x) dxdt,
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and

IR,t ∶=

R�̄

∫
R�̄∕2

∫
ℝn

|ut(t, x)|p'R(t, x) dxdt,

IR,x ∶=

R�̄

∫
0

∫
|x|≥RK

|ut(t, x)|p'R(t, x) dxdt.

Let us assume that u = u(t, x) is a global weak solution to (1) according to Definition 2, then

IR + ∫
ℝn

u1(x)�R(x) dx = −

R�̄

∫
R�̄∕2

∫
ℝn

ut(t, x)�′R(t)�R(x) dx dt

+

R�̄

∫
0

∫
|x|≥RK

u(t, x) Ψ′R(t)Δ�R(x) dx dt

+ �

R�̄

∫
0

∫
ℝn

ut(t, x) �R(t)(−Δ)�∕2�R(x) dx dt.

Using integrating by parts, we conclude that

IR + ∫
ℝn

u1(x)�R(x) dx + ∫
ℝn

u0(x)ΨR(0)Δ�R(x) dx

= −

R�̄

∫
R�̄∕2

∫
ℝn

ut(t, x)�′R(t)�R(x) dx dt

−

R�̄

∫
0

∫
|x|≥RK

ut(t, x) ΨR(t)Δ�R(x) dx dt

+ �

R�̄

∫
0

∫
ℝn

ut(t, x) �R(t)(−Δ)�∕2�R(x) dx dt

=∶ −J1 − J2 + J3. (7)

Applying Hölder’s inequality with 1
p
+ 1

p′
= 1 we may estimate J1 as follows:

|J1| ≤

R�̄

∫
R�̄∕2

∫
ℝn

|ut(t, x)|
|

|

|

�′R(t)
|

|

|

�R(x) dx dt

≲
(

R�̄

∫
R�̄∕2

∫
ℝn

|

|

|

ut(t, x)'
1
p

R(t, x)
|

|

|

p
dx dt

)
1
p
(

R�̄

∫
R�̄∕2

∫
ℝn

|

|

|

'
− 1
p

R (t, x)�′R(t)�R(x)
|

|

|

p′
dx dt

)
1
p′

≲ I
1
p

R,t

(

R�̄

∫
R�̄∕2

∫
ℝn

�
− p′

p

R (t)||
|

�′R(t)
|

|

|

p′
�R(x) dx dt

)
1
p′ .
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By the change of variables t̃ ∶= R−�̄t and x̃ ∶= R−1K−1x, a straight-forward calculation gives

|J1| ≲ I
1
p

R,tR
−�̄+ n+�̄

p′ K
n
p′
(

∫
ℝn

⟨

x̃
⟩−n−� dx̃

)
1
p′

≲ I
1
p

R,tR
−�̄+ n+�̄

p′ K
n
p′ . (8)

Here we used �′R(t) = R−�̄�′(t̃) and the assumption (6). Now let us turn to estimate J2 and J3. Applying Hölder’s inequality
again as we estimated J1 leads to

|J2| ≤ I
1
p

R,x

(

R�̄

∫
0

∫
|x|≥RK

Ψp
′

R(t)�
− p′

p

R (t)�
− p′

p

R (x) ||
|

Δ�R(x)
|

|

|

p′
dx dt

)
1
p′ ,

and

|J3| ≤ I
1
p

R

(

R�̄

∫
0

∫
ℝn

�R(t)�
− p′

p

R (x) ||
|

(−Δ)�∕2�R(x)
|

|

|

p′
dx dt

)
1
p′ .

In order to control J2, we derive the following estimate:

�
− p′

p

R (t)Ψp
′

R(t) = �
− p′

p

R (t)
(

∞

∫
t

�R(�)d�
)p′

= �
− p′

p

R (t)
(

R�̄

∫
t

�R(�)d�
)p′

≤ �
− p′

p

R (t)�R(t)(R�̄ − t)p
′

≤ R�̄p′�R(t)
≤ R�̄p′ ,

where we have used the fact that �R is a non-increasing function satisfying �R ≤ 1. Then, carrying out the change of variables
t̃ ∶= R−�̄t, x̃ ∶= R−1K−1x and Lemma 3 with s = 1 we arrive at

|J2| ≲ I
1
p

R,xR
−2+�̄+ n+�̄

p′ K−2+ n
p′ . (9)

Next carrying out again the change of variables t̃ ∶= R−�̄t and x̃ ∶= R−1K−1x and employing Lemma 2, then Lemma 3, with
s = �∕2, we can proceed J3 as follows:

|J3| ≲ I
1
p

R R
−�+ n+�̄

p′ K−�+ n
p′ . (10)

Combining the estimates from (7) to (10) we may arrive at

IR + ∫
ℝn

u1(x)�R(x) dx

≤ C0
(

I
1
p

R,tR
−�̄+ n+�̄

p′ K
n
p′ + I

1
p

R,xR
−2+�̄+ n+�̄

p′ K−2+ n
p′ + I

1
p

RR
−�+ n+�̄

p′ K−�+ n
p′
)

+ ∫
ℝn

|u0(x)|ΨR(0)|Δ�R(x)| dx.

Moreover, it is clear that ΨR(0) ≤ R�̄ . By the change of variables, using Lemma 1 we can easily check that

|Δ�R(x)| ≤ R−2�R(x).

Therefore, this implies that

IR + ∫
ℝn

u1(x)�R(x) dx

≤ C0
(

I
1
p

R,tR
−�̄+ n+�̄

p′ K
n
p′ + I

1
p

R,xR
−2+�̄+ n+�̄

p′ K−2+ n
p′ + I

1
p

RR
−�+ n+�̄

p′ K−�+ n
p′
)

+ R�̄−2 ∫
ℝn

|u0(x)|�R(x) dx. (11)
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Because of the assumption (2), there exists a sufficiently large constant R1 > 0 such that it holds

∫
ℝn

u1(x)�R(x) dx > 0 (12)

for all R > R1. Since u0 ∈ L1, it implies immediately that

R�̄−2 ∫
ℝn

|u0(x)|�R(x) dx→ 0 as R→∞.

Hence, from (12) there exists there exists a sufficiently large constant R2 > 0 such that

R�̄−2 ∫
ℝn

|u0(x)|�R(x) dx <
1
2 ∫
ℝn

u1(x)�R(x) dx

for all R > R2. Now we choose R0 ∶= max{R1, R2}. Then, from (11) we have

IR +
1
2 ∫
ℝn

u1(x)�R(x) dx

≤ C0
(

I
1
p

R,tR
−�̄+ n+�̄

p′ K
n
p′ + I

1
p

R,xR
−2+�̄+ n+�̄

p′ K−2+ n
p′ + I

1
p

RR
−�+ n+�̄

p′ K−�+ n
p′
)

(13)

for all R > R0. By choosing K = 1 and noticing the relations IR,t ≤ IR and IR,x ≤ IR we may arrive, particularly, at

IR +
1
2 ∫
ℝn

u1(x)�R(x) dx ≤ C0 I
1
p

R R
−�̄+ n+�̄

p′ (14)

for all R > R0. Thanks to the following "-Young’s inequality:

ab ≤ "ap + C(")bp′ for all a, b > 0 and for any " > 0,

we conclude
C0 I

1
p

R R
−�̄+ n+�̄

p′ ≤ 1
2
IR + C1R−�̄p

′+n+�̄ .

Consequently, from (14) we derive
1
2
IR +

1
2 ∫
ℝn

u1(x)�R(x) dx ≤ C1R
−�̄p′+n+�̄ ,

which follows that

IR ≤ 2C1R−�̄p
′+n+�̄ , (15)

∫
ℝn

u1(x)�R(x) dx ≤ 2C1R−�̄p
′+n+�̄ , (16)

for all R > R0. It is clear that the assumption (3) is equivalent to

−�̄p′ + n + �̄ ≤ 0.

For this reason, let us now separate our considerations into two cases as follows.

Case 1: −�̄p′ + n + �̄ < 0, i.e. the subcritical case. Letting R→∞ in (16) we infer a contradiction to (2).

Case 2: −�̄p′ + n + �̄ = 0, i.e. the critical case. Then, we can see from (15) that IR ≤ 2C1 for all R > R0. Using Beppo Levi’s
theorem on monotone convergence, on the one hand, we derive

∞

∫
0

∫
ℝn

|ut(t, x)|p dx dt = lim
R→∞

R�̄

∫
0

∫
ℝn

|ut(t, x)|p 'R(t, x) dx dt = lim
R→∞

IR ≤ 2C1,

that is, ut ∈ Lp((0,∞) ×ℝn). By the absolute continuity of the Lebesgue integral, it follows that

IR,t → 0 and IR,x → 0 as R→∞.



8 Dao TA & Fino AZ

On the other hand, using again the fact that p = 1 + �̄∕n we obtain from (13) the following estimate:

IR +
1
2 ∫
ℝn

u1(x)�R(x) dx ≤ C0
(

I
1
p

R,tK
n
p′ + I

1
p

R,xR
−2+2�̄K−2+ n

p′ + I
1
p

RR
−�+�̄K−�+ n

p′
)

(17)

for all K ≥ 1 and all R > R0.

• If � ∈ (0, 1], then �̄ = �. As a consequence, from (17) we have

IR +
1
2 ∫
ℝn

u1(x)�R(x) dx ≤ C0
(

I
1
p

R,tK
n
p′ + I

1
p

R,xR
−2(1−�)K−2+ n

p′ + I
1
p

RK
−�+ n

p′
)

(18)

for all K ≥ 1 and all R > R0. Letting R→∞ in (18) we get

∫
ℝn

u1(x)dx ≲ K
−�+ n

p′ for all K ≥ 1. (19)

Due to p = 1+ �̄∕n = 1+ �∕n, it is clear that −� + n∕p′ = −�∕p′ < 0. Therefore, we can fix a sufficiently large constant
K ≥ 1 in (19) to gain a contradiction to (2).

• If � ∈ (1, 2], then �̄ = 1. As a result, choosing K = 1 we may conclude from (17) that

∫
ℝn

u1(x)�R(x) dx ≤ 2C0
(

I
1
p

R,t + I
1
p

R,x + I
1
p

RR
1−�

)

(20)

for all R > R0. Since � > 1, letting R→∞ in (20) we obtain a contradiction to (2) again.

Summarizing, the proof Theorem 1 is completed.
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