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Abstract
There are a few purely periodic phenomena in nature, which allows one to consider several other gen-
eralizations, such as almost automorphic and measure pseudo almost automorphic oscillations. In this
paper, by developing important properties on the composition of functions with reflection, using some
exponential dichotomy properties and an application of the fixed-point theorem, several new sufficient
conditions for the existence and the uniqueness of an pseudo almost automorphic solutions with measure
for some general type reflection integro-differential equations. We suppose that the nonlinear part is
measure pseudo almost automorphic and in which we distinguish the two constant and variable cases for
the lipschitz coefficients of the functions associated with this part. It is assumed that the linear part of
the equation considered admits an exponential dichotomy. Finally, an application is given on the very
interesting model of Markus and Yamabe.

Keywords Exponential Dichotomy . Pseudo-almost automorphic . Reflection . Integro-differential
equations

Mathematics Subject Classification 34K14. 35B15. 47D06

1 Introduction

Many physical, chemical, biological, economic phenomena, epidemiological findings may be more or less
periodic. Different types of equations can be used to model these phenomena: these include integral
equations, abstract operational equations, partial differential equations, difference equations, functional
equations, piecewise constant argument differential equations, to name but a few. The study of these
phenomena requires concepts that go beyond the concept of periodicity, that are relevant to the taking
into account the fact that these phenomena are not entirely periodic. In the framework of this work, we
consider a generalization of periodic functions: the functions almost automorphic. The concept of almost
periodicity was generalized by the concept of almost automorphy in 1964 by Bochner in [7]. For more
details on these last themes, one can read the two references of Veech [21] and N’Guérékata [20]. The
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notion of measure pseudo almost periodicity and automorphy [2, 3, 5, 8, 10, 17, 18, 19], is a generalization
of pseudo periodicity and weighted periodicity ( see [13, 22]).

In this paper, motivated by above mentioned works, we will consider the following semilinear equation:

V ′(s) = A(s)V (s) +B(s)V (−s) + f(s, V (s), V (−s))

+

∫ s

−s
K(s+ y)g(y, V (y), V (−y))dy (1.1)

+

∫ +∞

s

[K(y − s) +K(s+ y)]g(y, V (y), V (−y))dy.

Equation (1.1) can be rewritten in another equivalent way of the following form:

V ′(s) = A(s)V (s) +B(s)V (−s) + f(s, V (s), V (−s))

+

∫ +∞

s

[K(y − s) +K(y + s)]g(y, V (y), V (−y))dy +

∫ s

−s
K(y + s)g(y, V (y), V (−y))dy

= A(s)V (s) +B(s)V (−s) + f(s, V (s), V (−s)) +

∫ +∞

s

K(y − s)g(y, V (y), V (−y))dy

+

∫ +∞

s

K(y + s)g(y, V (y), V (−y))dy +

∫ s

−s
K(y + s)g(y, V (y), V (−y))dy

= A(s)V (s) +B(s)V (−s) + f(s, V (s), V (−s)) +

∫ +∞

s

K(y − s)g(y, V (y), V (−y))dy

+

∫ +∞

−s
K(y + s)g(y, V (y), V (−y))dy,

where the two operators A and B are square matrix of order n in N∗, K : R+ → R+ and f ; g : R3 → R
are continuous functions. During the past years, there has been an increasing interest in the integro-
differential equation which arise in some practical problem such as semilinear logistic. Some results about
pseudo almost automorphic solutions associated with this type of equation (see [1, 14, 15] ).
The plan of this work is as follows: Section 2 begins by giving definitions of exponential dichotomy
and almost automorphic functions with measure. In addition to giving examples with figures and useful
results in the following sections. Let us describe the content of this paper. In Sections 3, we give some
results on the existence and the uniqueness of µ−pseudo almost automorphic solutions of system (1.1).
In Section 4, we study the case when the Lipschitz coefficients of the functions are variable. At last, an
example is given on the very interesting model of Markus and Yamabe in Section 5.

2 Preliminaries

2.1 Exponential dichotomy

Knowing that Mn(R) is the space of the square matrix of order n ∈ N∗ with real coefficients, and J is an
interval of R, it is assumed that A is a matrix defined on J and with values in Mn(R).

Definition 2.1. [2] If X(t) is the fundamental matrix of the equation:

x′(s) = A(s)x(s), s ∈ J, (2.1)

such that X(0) = I, then Eq. (2.1) has an exponential dichotomy on J , if there exist two real coefficients
α > 0, κ > 1 and a matrix Λ verifying Λ2 = Λ, such that for all s, t ∈ J we have:

‖X(s)ΛX−1(t)‖ ≤ κeα(t−s) if t ≤ s;
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and
‖X(s)(I − Λ)X−1(t)‖ ≤ κeα(s−t) if s ≤ t.

Let (Λ, κ, α) the three associated coefficients with exponential dichotomy.

Theorem 2.1. [2] If (Λ, κ, α) the three associated coefficients with exponential dichotomy of Eq. (2.1)on

R and B : R→ Mn(R) is bounded and continuous such that δ = sup
s∈R
|B(s)| < α

4κ2
, then the system

y′(s) = [A(s) +B(s)]y(s), s ∈ R, (2.2)

admits an exponential dichotomy with coefficients(
Q, κ1 =

5κ2

2
,−2κδ + α

)
,

where Q denotes a projection, with the same kernel as the one of Λ. Moreover, let Y (t) the fundamental
matrix of Eq. (2.2) verifying Y (0) = I. Then for all s ∈ R, we have:

|Y (s)QY −1(s)−X(s)ΛX−1(s)| ≤ 4

α
δκ3.

Let V be a solution of equation (1.1) and Z(s) =
(
V (s)
V (−s)

)
. Then the function Z checks the equation

Z ′(s) = M(s)Z(s) + N(s, Z(s)),

where

M(s) =

 A(s) B(s)

−B(−s) −A(−s)

 ,

N(s, Z(s)) =

(
f(s, V (s), V (−s))
f(s, V (−s), V (s))

)
+ G(s, Z(s)),

and

G(s, Z(s)) =

( ∫ +∞
s

K(y − s)g(y, V (y), V (−y))dy +
∫ +∞
−s K(y + s)g(y, V (y), V (−y))dy∫ +∞

−s K(y + s)g(y, V (y), V (−y))dy +
∫ +∞
s

K(y − s)g(y, V (y), V (−y))dy

)
.

2.2 µ−Pseudo almost automorphic functions

In this section, let BC(R,Rn) = {f : R→ Rn; f continuous and bounded}.

Definition 2.2. [7] (Bohr, 1924) f : R 7→ Rn ( continuous) is almost periodic (or in AP(R,Rn), or Bohr
almost periodic) if ∀ ε > 0, ∃ l > 0; ∀δ ∈ R, ∃τ ∈ [δ, δ + l] verifying

‖f(t+ δ)− f(t)‖ < ε, ∀t ∈ R.

Definition 2.3. [7] (Bochner, 1927) f : R 7→ Rn ( continuous) is almost periodic
( or Bochner almost periodic) if from every sequence of real numbers (h′n)n∈N one can extract a subse-
quence (hn)n∈N such that limn→+∞ f(s+ hn) = g(s) exists uniformly on R.

Theorem 2.2. [11] A continuous function is almost periodic in the Bochner sense if it is almost periodic
in the Bohr sense and vice versa.

Example 2.3.
[t→ f(t) := sin

√
2t+ sin t] ∈ AP(R,R).



4 E.A. Dads et al.

Figure 1: Curve of the almost periodic function f

Remark 2.4. It is easy to check the following points:

• t→ f(t) = sin
√

2t+ sin t is quasi-periodic and in AP(R,Rn), but it is not periodic.

• f is almost periodic ⇒ f is uniformly continuous.

• Provided with the infinite norm, AP(R,Rn) is a Banach space.

• The product of two functions of AP(R,Rn) remains in AP(R,Rn).

Definition 2.4. [7] f : R → Rn (continuous) is almost automorphic (or in AA(R,Rn)), if for all real
sequence (sn), there exists a subsequence (τn) such that we have g(s) := lim

n→∞
f(s + τn) is well defined

for all s in R and lim
n→∞

g(s− τn) = f(s) for all s in R.

Example 2.5.

[t→ g(t) :=
1

2 + cos t+ cos
√

2t
] ∈ AA(R,R).

Figure 2: Curve of the almost automorphic function g

Remark 2.6. 1. (AA(R,Rn), ‖ · ‖∞) is a Banach space.

2. AP(R,Rn)  AA(R,Rn), since g ∈ AA(R,Rn) and g is not in AP(R,Rn).
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Definition 2.5. [7]A function f from a set R×Rn to a set Rn is called almost automorphic in t uniformly
respecting x ∈ Rn (or in AAU(R× Rn,Rn)), if and only if points (i) and (ii) are true, where:
(i) ∀ x ∈ Rn, t→ f(t, x) is in AA(R,Rn).
(ii) The function f is uniformly continuous on all K (compact) in Rn respecting x ∈ Rn.

Let � the set of each positive measures on B, where B denotes the Lebesgue σ−field of R. Then, we
pose

M =
{
µ ∈ �; µ(R) = +∞ and µ([m,n]) < +∞, ∀ m,n ∈ R, m ≤ n

}
.

Let µ ∈M. We define the following ergodic space:

E(R,Rn, µ) := {ϕ ∈ BC(R,Rn) : lim
z→∞

1

µ([−z, z])

∫ z

−z
‖ϕ(s)‖dµ(s) = 0}.

Definition 2.6. [6] A continuous function f : R → Rn is µ−pseudo almost automorphic ( or in
PAA(R,Rn, µ), if we have

f = a0 + e0,

where a0 ∈ AA(R,Rn) and e0 ∈ E(R,Rn, µ).

Example 2.7.

[s→ h(s) := sin
1

2− sinπs− sin s
+

1√
1 + s2

] ∈ PAA(R,R, µ), where µ ∈M.

Figure 3: Curve of the measure pseudo almost automorphic function h
.

Definition 2.7. [5] If µ ∈ M, f : R× Rn → Rn is µ−ergodic in t uniformly with respect to x ∈ Rn (or
in EU(R× Rn,Rn, µ)), if and only if points (i) and (ii) are true, where
(i) ∀ x ∈ Rn, t→ f(t, x) is in E(R,Rn, µ).
(ii) f is uniformly continuous on all K (compact) in Rn respecting x ∈ Rn.

Definition 2.8. [5] If µ ∈ M, f : R× Rn → Rn ( continuous) is µ−pseudo almost automorphic ( or in
PAAU(R× Rn,Rn, µ)), if we have:

f = a1 + e1,

where a1 ∈ AAU(R× Rn,Rn) and e1 ∈ EU(R× Rn,Rn, µ).

Remark 2.8. (i) AA(R,Rn) ⊂ PAA(R,Rn, µ) ⊂ BC(R,Rn).
(ii) The paper of Blot and collaborators [5], is the best reference to show the translation invariance and
the completeness of the space of PAA(R,Rn, µ).



6 E.A. Dads et al.

In this paper and in order to establish our results, we formulate the condition (H.1), where:

(H.1) ∀ τ ∈ R, there exist I (bounded interval) and β > 0; if E ∈ B and E ∩ I = ∅, we have

µ({a+ τ : a ∈ E}) ≤ βµ(E).

Lemma 2.9. [5] If µ in M and (H.1) trues, then we have:
1) The decomposition in PAA(R,Rn, µ) is unique.
2) (PAA(R,Rn, µ), ‖.‖∞) is a Banach space.
3) The space PAA(R,Rn, µ) is translation invariant.

3 µ−Pseudo almost automorphic solution

We also assume that the conditions (H.2)- (H.5)hold, where:
(H.2) ∃m,n > 0, such that ∀A ∈ B, we have m+ nµ(A)− µ(−A) ≥ 0.
(H.3) f, g : R3 → R are µ−pseudo almost automorphic in t.
(H.4)(i) There exists L1

f , L
2
f > 0; ∀ x1, x2, y1, y2 ∈ R, we have∣∣∣f(t, x1, x2)− f(t, y1, y2)

∣∣∣ < L1
f |x1 − y1|+ L2

f |x2 − y2|.

(ii) There exists L1
g, L

2
g > 0; ∀ x1, x2, y1, y2 ∈ R, we have∣∣∣g(t, x1, x2)− g(t, y1, y2)

∣∣∣ < L1
g|x1 − y1|+ L2

g|x2 − y2|.

(H.5) K : R+ → R+ ∫ +∞

0

K(y)dy := c ∈ R.

(H.6) The Eq. x′(s) = A(s)x(s) has an exponential dichotomy with coefficients (Λ, α, κ).
(H.7) The operator B : R→ Mn(R) is uniformly bounded in t ∈ R and continuous. In addition, one of
the following two conditions is assumed.

lim
z→+∞

1

2z

∫ z

−z
‖B(s)‖ds = 0 or sup

s∈R
‖B(s)‖ < α

4κ2
.

Lemma 3.1. [2] Let f ∈ PAA(R,R, µ). If µ ∈ M such that (H.1)-(H.2) are true, then [t 7→ f(−t)] ∈
PAA(R,R, µ).

Lemma 3.2. If (H.1)-(H.4) are true and V ∈ PAA(R,R, µ), then [t 7→ f(t, V (t), V (−t))] ∈ PAA(R,R, µ).

Proof. By using (H.3), f ∈ PAA(R3,R, µ), then f = ϕ + h, where: ϕ ∈ EU(R3,R, µ) and h ∈
AAU(R3,R) such that

lim
z→∞

1

µ([−z, z])

∫ z

−z
|ϕ(s, u)|dµ(s) = 0,

uniformly for u ∈ R2. Since V ∈ PAA(R,R, µ), then V = V1 + V2 where V1 ∈ AA(R,R), and V2 ∈
E(R,R, µ). Now let us rewrite

f(t, V (t), V (−t)) = h(t, V1(t), V1(−t)) + f(t, V (t), V (−t))− h(t, V1(t), V1(−t))
= h(t, V1(t), V1(−t)) + f(t, V (t), V (−t))− f(t, V1(t), V1(−t)) + ϕ(t, V1(t), V1(−t)).

Consider the function H(t) := h(t, V1(t), V1(−t)), suppose that {sn} is a sequence of R, since h ∈
AAU(R3,R), then there exists a subsequence {τn} of {sn} such that:
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(1) lim
n→∞

h(t+ τn, v, u) = φ(t, v, u), for all t, v, u ∈ R;

(2) lim
n→∞

φ(t− τn, v, u) = h(t, v, u), for all t, v, u ∈ R;

(3) lim
n→∞

V1(t+ τn) = U1(t), for all t ∈ R;

(4) lim
n→∞

U1(t− τn) = V1(t), for all t ∈ R.
If we define Φ(t) : R −→ R by Φ(t) = φ(t, U1(t), U1(−t)), then for t ∈ R we obtain:

lim
n→∞

H(t+ τn) = Φ(t); lim
n→∞

Φ(t− τn) = H(t).

Obviously, we have

|H(t+ τn)− Φ(t)| ≤ |h(t+ τn, V1(t+ τn), V1(−t+ τn))− h(t+ τn, U1(t), U1(−t))|
+ |h(t+ τn, U1(t), U1(−t))− φ(t, U1(t), U1(−t))|.

Since V1(t) is almost automorphic, V1(t), and U1(t) are bounded. By (3), we have h(t, V1(t), V1(−t)) is
uniformly continuous on each compact subset K ⊂ R, then

lim
n→∞

|h(t+ τn, V1(t+ τn), V1(−t+ τn))− h(t+ τn, U1(t), U1(−t))| = 0.

Since h ∈ AAU(R3,R), then limn→∞H(t+ τn) = Φ(t). Using the same argument, we obtain

lim
n→∞

Φ(t− τn) = H(t), for all t ∈ R.

The last result implies that H is almost automorphic. It only remains to show that

s→ [f(s, V (s), V (−s))− f(s, V1(s), V1(−s))] ∈ E(R,R, µ).

Consider now the function Ω(s) = f(s, V (s), V (−s))− f(s, V1(s), V1(−s)). Clearly Ω ∈ BC(R,R). Since

|f(t, u1, u2)− f(t, v1, v2)| ≤ L1
f |u1 − v1|+ L2

f |u2 − v2|.

Thus we obtain

1

µ([−z, z])

∫ z

−z
|Ω(s)|dµ(s) =

1

µ([−z, z])

∫ z

−z
|f(s, V (s), V (−s))− f(s, V1(s), V1(−s))|dµ(s)

≤ 1

µ([−z, z])

∫ z

−z
L1
f |V (s)− V1(s)|+ L2

f |V (−s)− V1(−s)|dµ(s)

≤
L1
f

µ([−z, z])

∫ z

−z
|V2(s)|dµ(s) +

L2
f

µ([−z, z])

∫ z

−z
|V2(−s)|dµ(s).

From Lemma 3.1, we have

lim
z→∞

1

µ([−z, z])

∫ z

−z
|Ω(s)|dµ(s) = 0.

Then Ω ∈ E(R,R, µ). Since [t→ ϕ(t, V1(t), V1(−t))] ∈ E(R,R, µ) (see [5]), therefore [t→ f(t,V (t), V (−t))] ∈
PAA(R,R, µ).

Lemma 3.3. If the conditions (H.1)–(H.5)are true and V ∈ PAA(R,R, µ), then

[s 7→
∫ +∞

s

K(y − s)g(y, V (y), V (−y))dy] ∈ PAA(R,R, µ).
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Proof. From Lemma 3.2, [y 7−→ g(y, V (y), V (−y))] ∈ PAA(R,R, µ). Then

g(y, V (y), V (−y)) = g1(y) + g2(y),

where g1 ∈ AA(R,R) and g2 ∈ E(R,R, µ). We pose Θ(t) =

∫ +∞

t

K(s− t)g(s, V (s), V (−s))ds. Then

Θ(t) =

∫ +∞

t

K(s− t)g1(s)ds+

∫ +∞

t

K(s− t)g2(s)ds

= θ1(t) + θ2(t),

where θ1(t) =

∫ +∞

t

K(s − t)g1(s)ds, and θ2(t) =

∫ +∞

t

K(s − t)g2(s)ds. Now, we prove that θ1 ∈

AA(R,R). Since g1 ∈ AA(R,R), then for every sequence (τ ′n)n∈N there exists a subsequence (τn) such
that

u1(t) := lim
n→∞

g1(t+ τn) (3.1)

is well defined for each t ∈ R, and
lim
n→∞

u1(t− τn) = g1(t), (3.2)

for each t ∈ R. Set

θ1(t) =

∫ +∞

t

K(s− t)g1(s)ds and M(t) =

∫ +∞

t

K(s− t)u1(s)ds.

Now, we have

|θ1(t+ τn)−M(t)| = |
∫ +∞

t+τn

K(s− t− τn)g1(s)ds−
∫ +∞

t

K(s− t)u1(s)ds|

= |
∫ +∞

t

K(s− t)(g1(s+ τn)− u1(s))ds|.

Using Eq. (3.1), hypotheses (H.4) and the L.D.C. theorem, then we obtain:∫ +∞

t

K(s− t)(g1(s+ τn)− u1(s))ds −→ 0, as n→∞, t ∈ R.

Therefore, we have
M(t) = lim

n→∞
θ1(t+ τn), t ∈ R.

Using the same argument, we obtain

θ1(t) = lim
n→∞

M(t− τn), t ∈ R.

Therefore, θ1 ∈ AA(R,R). In order to prove that Θ(t) ∈ PAA(R,R, µ), it remains to be shown that
θ2 ∈ E(R,R, µ), as

lim
z→+∞

1

µ([−z, z])

∫ z

−z
|θ2(s)|dµ(s) = 0.

lim
z→+∞

1

µ([−z, z])

∫ z

−z
|θ2(s)|dµ(s) ≤ lim

z→+∞

1

µ([−z, z])

∫ z

−z

∫ +∞

s

|K(y − s)||g2(y)|dydµ(s)

≤ lim
z→+∞

1

µ([−z, z])

∫ z

−z

∫ +∞

0

|K(y)||g2(y + s)|dydµ(s)

= lim
z→+∞

∫ +∞

0

K(y)

µ([−z, z])

∫ z

−z
|g2(y + s)|dµ(s)dy.
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By the L.D.C. theorem and Lemma 2.9, we have:

lim
z→+∞

1

µ([−z, z])

∫ z

−z
|θ2(s)|dµ(s) ≤

∫ +∞

0

K(y) lim
z→+∞

1

µ([−z, z])

∫ z

−z
|g2(y + s)|dµ(s)dy = 0.

This completes the proof.

Remark 3.4. In what precede we show that,[
s→

∫ +∞

s

K(y − s)g(y, V (y), V (−y))dy
]
∈ PAA(R,R, µ). (3.3)

From (H.2) and Eq. (3.3), we obtain,[
s→

∫ +∞

−s
K(y + s)g(y, V (y), V (−y))dy

]
∈ PAA(R,R, µ).

Knowing that A and B are two square matrix, in [12], Gupta has studied the equation:

V ′(s) = A(s)V (s) +B(s)V (−s) + f(s, V (s), V (−s)). (3.4)

In [1], Ait Dads et al. have shown very important results on the existence and uniqueness of solution of
Eq. (3.4).

Theorem 3.5. [2] Let f ∈ PAA(R3,R, µ). Assume that M : R→ R2n × R2n defined by

M(s) =

 A(s) B(s)
−B(−s) −A(−s)

 ,

be continuous, non-singular and almost automorphic function such that {M−1(s)}s∈R, is bounded. If
conditions (H.1)–(H.4)(i), (H.6) and (H.7) are hold, then equation (3.4) has a unique solution in
PAA(R,R, µ), provided that

max(L1
f , L

2
f ) <

α

2k
.

Theorem 3.6. Assume that M : R→ R2n × R2n defined by

M(s) =

 A(s) B(s)
−B(−s) −A(−s)

 ,

be continuous, non-singular and almost automorphic function such that {M−1(s)}s∈R, is bounded. If
conditions (H.1)–(H.7) are hold, then equation (1.1) has a unique solution in PAA(R,R, µ), provided
that

max(L1
f + 2cL1

g, L
2
f + 2cL2

g) <
α

2k
.

Proof. Let Γ be the operator defined in PAA(R,R, µ) by

Γv(t) =

∫ +∞

−∞
G(s, t)F (s, v(s), v(−s))ds,

where

G(s, t) =

{
X(s)ΛX−1(t) if s ≥ t
−X(s)(I − Λ)X−1(t) if s ≤ t.
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and

F (s, v(s), v(−s)) = f(s, V (s), V (−s))+
∫ +∞

s

K(y−s)g(y, V (y), V (−y))dy+

∫ +∞

−s
K(y+s)g(y, V (y), V (−y))dy.

For y ∈ R, according to the Lemma 3.1, then [y 7→ V (−y)] ∈ PAA(R,R, µ) and using the Lemma 3.2
and Lemma 3.3, to conclude

[s 7→
∫ +∞

s

K(y − s)g(y, v(y), v(−y))dy] ∈ PAA(R,R, µ)

and

[s 7→
∫ +∞

−s
K(y + s)g(y, v(y), v(−y))dy] ∈ PAA(R,R, µ).

So, we obtain that

Γ : PAA(R,R, µ)→ PAA(R,R, µ).

The fact remains that Γ admits a simple fixed point which is a solution µ−pseudo almost automorphic
of equation (1.1). Indeed, we have:

∣∣∣F (t, v(t), v(−t))− F (t, u(t), u(−t))
∣∣∣

≤
∣∣∣f(t, v(t), v(−t))− f(t, u(t), u(−t))

∣∣∣
+

∫ +∞

t

K(s− t)
∣∣∣g(s, v(s), v(−s))− g(s, u(s), u(−s))

∣∣∣ds
+

∫ +∞

−t
K(t+ s)

∣∣∣g(s, v(s), v(−s))− g(s, u(s), u(−s))
∣∣∣ds

≤
∣∣∣f(t, v(t), v(−t))− f(t, u(t), u(−t))

∣∣∣
+

∫ +∞

0

K(s)
∣∣∣g((s+ t), v(s+ t), v(−(s+ t)))− g((s+ t, u(s+ t), u(−(s+ t)))

∣∣∣ds
+

∫ +∞

0

K(s)
∣∣∣g(s− t, v(s− t), v(−(s− t)))− g(s− t, u(s− t), u(−(s− t)))

∣∣∣ds
≤ (L1

f + 2cL1
g)‖v − u‖∞ + (L2

f + 2cL2
g)‖v − u‖∞.

Then ∣∣∣F (t, v(t), v(−t))− F (t, u(t), u(−t))
∣∣∣ ≤ LF := max(L1

f + 2cL1
g, L

2
f + 2cL2

g)‖v − u‖∞.
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Let u, v ∈ PAA(R,R, µ) and LF := max(L1
f + 2kL1

g, L
2
f + 2kL2

g), then we have:

∣∣∣Γv(t)− Γu(t)
∣∣∣ ≤ ∣∣∣ ∫ ∞

−∞
G(s, t)F (s, v(s), v(−s))ds−

∫ ∞
−∞
G(s, t)F (s, u(s), u(−s))ds

∣∣∣
≤

∫ ∞
−∞
|G(s, t)|

∣∣∣F (s, v(s), v(−s))− F (s, u(s), u(−s))
∣∣∣ds

≤
∫ ∞
−∞
|G(s, t)|LF ‖v − u‖∞ds

≤
∫ t

−∞
κLF e

−α(t−s)‖v − u‖∞ds+

∫ +∞

t

κLF e
−α(s−t)‖v − u‖∞ds

≤ 2κLF ‖v − u‖∞
∫ ∞
0

e−αsds

≤ 2κLF
α
‖v − u‖∞.

Since 2kmax(L1
f + 2cL1

g, L
2
f + 2cL2

g) < α, then the operator Γ : PAA(R,R, µ) −→ PAA(R,R, µ) is a
contraction. So Γ has a unique fixed point in PAA(R,R, µ) and equation (1.1) has a unique µ−pseudo
almost automorphic solution.

4 The Lipschitz coefficients of the functions are variable
[ Lif , L

i
g ∈ Lp(R,R, dt) ∩ Lp(R,R, dµ(t))] for p > 1 and i=1,2

(H’.4)

• There exists L1
f , L

2
f ∈ Lp(R,R+, ds) ∩ Lp(R,R+, dµ(s)), i = 1, 2, p > 1 and 1

p + 1
q = 1 such that

∀ s, x1, x2, y1, y2 ∈ R, we have:∣∣∣f(s, x1, x2)− f(s, y1, y2)
∣∣∣ < L1

f (s)|x1 − y1|+ L2
f (s)|x2 − y2|.

• There exists L1
g, L

2
g ∈ Lp(R,R+, ds) ∩ Lp(R,R+, dµ(s)), i = 1, 2, p > 1 and 1

p + 1
q = 1 such that

∀ s, x1, x2, y1, y2 ∈ R, we have:∣∣∣g(s, x1, x2)− g(s, y1, y2)
∣∣∣ < L1

g(s)|x1 − y1|+ L2
g(s)|x2 − y2|.

Lemma 4.1. If (H.1)–(H.3) and (H’.4) hold and V ∈ PAA(R,R, µ), then

[s 7→ f(s, V (s), V (−s))] ∈ PAA(R,R, µ).

Proof. We repeat the same fakes as the proof of Lemma 3.2, only it remains to show that

[s→ f(s, V (s), V (−s))− f(s, V1(s), V1(−s))] ∈ E(R,R, µ).

Indeed, Using assumption (H’.4), then∣∣∣f(s, u1, u2)− f(s, v1, v2)
∣∣∣ ≤ L1

f (s)|u1 − v1|+ L2
f (s)|u2 − v2|, ∀ s, u1, v1 ∈ R.
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By Holder’s inequality and some usual inequalities, we obtain:

1

µ([−z, z])

∫ z

−z

∣∣∣f(s, V (s), V (−s))− f(s, V1(s), V1(−s))
∣∣∣dµ(s)

≤ 1

µ([−z, z])

∫ z

−z
L1
f (s)|V (s)− V1(s)|+ L2

f (s)|V (−s)− V1(−s)|dµ(s)

≤ ‖V2‖∞
µ([−z, z])

∫ z

−z
|L1
f (s)|dµ(s) +

‖V2‖∞
µ([−z, z])

∫ z

−z
|L2
f (s)|dµ(s)

≤ ‖V2‖∞
µ([−z, z])

[( ∫ z

−z
|L1
f (s)|pdµ(s)

) 1
p

(

∫ z

−z
dµ(s))

1
q + (

∫ z

−z
|L2
f (s)|pdµ(s))

1
p

(∫ z

−z
dµ(s)

) 1
q
]

≤ cst.
‖V2‖∞

[µ([−z, z])]
1
p

→ 0 if z → +∞.

Therefore

[s→ f(s, V (s), V (−s))] ∈ PAP(R,R, µ).

In the following, we assume that:

(H’.5) K : R+ → R+, such that, for all τ > 1,

∫ +∞

0

(K(y))τdy < +∞.

In the remainder of this paragraph, it is assumed that p > 1. Since q := p
p−1 > 1 then

C := (

∫ +∞

0

(K(y))q)
1
q <∞.

Theorem 4.2. Assume that M : R→ R2n × R2n defined by

M(s) =

 A(s) B(s)

−B(−s) −A(−s)

 ,

be continuous, almost automorphic and non-singular function such that {M−1(s)}s∈R, is bounded. If
conditions (H.1)-(H.3), (H’.4)-(H’.5) and (H.6)-(H.7) are hold, then Eq. (1.1) has a unique solution
in PAA(R,R, µ), provided that

‖L1
f‖p + ‖L2

f‖p + 2C‖L1
g‖p + 2C‖L2

g‖p <
(αq)

1
q

2κ
.
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Proof. We have:∣∣∣F (s, v(s), v(−s))− F (s, u(s), u(−s))
∣∣∣

≤
∣∣∣f(s, v(s), v(−s))− f(s, u(s), u(−s))

∣∣∣+

∫ +∞

s

K(τ − s)
∣∣∣g(τ, v(τ), v(−τ))− g(τ, u(τ), u(−τ))

∣∣∣dτ
+

∫ +∞

−s
K(s+ τ)

∣∣∣g(τ, v(τ), v(−τ))− g(τ, u(τ), u(−τ))
∣∣∣dτ

≤ |L1
f (s)| |v(s)− u(s)|+ |L2

f (s)| |v(−s)− u(−s)|

+

∫ +∞

s

K(τ − s)
(
L1
g(τ)|v(τ)− u(τ)|+ L2

g|v(−τ)− u(−τ)|
)
dτ

+

∫ +∞

−s
K(τ + s)

(
L1
g(τ)|v(τ)− u(τ)|+ L2

g(τ)|v(−τ)− u(−τ)|
)
dτ

≤ (|L1
f (s)|+ |L2

f (s)|)‖v − u‖∞ +
[( ∫ +∞

0

(K(y))q
) 1

q ‖L1
g‖p +

(∫ +∞

0

(K(y))q
) 1

q ‖L1
g‖p
]
‖v − u‖∞

+
[( ∫ +∞

0

(K(y))q
) 1

q ‖L2
g‖p +

(∫ +∞

0

(K(y)
)q

)
1
q ‖L2

g‖p
]
‖v − u‖∞

≤
[
|L1
f (s)|+ 2‖L1

g‖p
(∫ +∞

0

(K(y))q
) 1

q

+ |L2
f (s)|+ 2‖L2

g‖p
(∫ +∞

0

(K(y))q
) 1

q
]
‖v − u‖|∞.

Then we have∣∣∣F (s, v(s), v(−s))− F (s, u(s), u(−s))
∣∣∣ ≤ [|L1

f (s)|+ |L2
f (s)|+ 2C(‖L1

g‖p + ‖L2
g‖p)

]
‖v − u‖∞.

Let u and v in PAA(R,R, µ); then for all t ∈ R we have:

|Γv(t)− Γu(t)| ≤
∣∣∣ ∫ ∞
−∞
G(s, t)F (s, v(s), v(−s))ds−

∫ ∞
−∞
G(s, t)F (s, u(s), u(−s))ds

∣∣∣
≤

∫ ∞
−∞
G(s, t)

∣∣∣F (s, v(s), v(−s))− F (s, u(s), u(−s))
∣∣∣ds

≤
∫ ∞
−∞
G(s, t)

[
|L1
f (s)|+ |L2

f (s)|+ 2C(‖L1
g‖p + ‖L2

g‖p)
]
‖v − u‖∞

≤
∫ t

−∞

[
|L1
f (s)|+ |L2

f (s)|+ 2C(‖L1
g‖p + ‖L2

g‖p)
]
κe−α(t−s)‖v − u‖∞ds

+

∫ +∞

t

[
|L1
f (s)|+ |L2

f (s)|+ 2C(‖L1
g‖p + ‖L2

g‖p)
]
κe−α(s−t)‖v − u‖∞ds

≤ 2κ
(
‖L1

f‖p + ‖L2
f‖p + 2C(‖L1

g‖p + ‖L2
g‖p)

)(∫ +∞

0

|e−αqs|ds
) 1

q ‖v − u‖∞

≤ 2κ
‖L1

f‖p + ‖L2
f‖p + 2C(‖L1

g‖p + ‖L2
g‖p)

(αq)
1
q

‖v − u‖∞.

Since ‖L1
f‖p+‖L2

f‖p+2C(‖L1
g‖p+‖L2

g‖p) <
(αq)

1
q

2κ , then the operator Γ : PAA(R,R, µ) −→ PAA(R,R, µ)
is a contraction. So Γ has a unique fixed point in PAA(R,R, µ) and equation (1.1) has a unique solution
in PAA(R,R, µ).
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5 Example

We consider the following model bearing the names of Markus and Yamabe (see [16]):

v′(s) = A(s)v(s) +B(s)v(−s) + f(s, v(s), v(−s)) (5.1)

+

∫ +∞

s

[K(s+ y) +K(y − s)]g(y, v(y), v(−y))dy +

∫ s

−s
K(s− y)g(y, v(y), v(−y))dy.

A(s) =

(
−1 + 3

2 cos2(s) 1− 3
2 cos(s) sin(s)

−1− 3
2 cos(s) sin(s) −1 + 3

2 sin2(s)

)
,

A is periodic of period π and the eigenvalues of A(s) are

λ1(s) =
i
√

7− 1

4
and λ2(s) =

−i
√

7− 1

4

From [16], the system v′(s) = A(s)v(s) has an exponential dichotomy, then α and k exists. So the hy-
pothesis (H.6) is satisfied.

We pose: f(s, x, y) = αb(s)(sin(x)+sin(y))
4k , with b(s) = sin( 1

2−sin(s)−sin(πs) ) and

g(s, x, y) = G(s)(e−x + e−y), with G(s) = cos( 1
2−cos(s)−cos(πs) ), for all s ∈ R and x, y ∈ R+.

If we pose K(s) = αe−s

10k , then c = α
10k and max(L1

f + 2cL1
g, L

2
f + 2cL2

g) = 9α
20k <

α
2k .

Let

B(s) =

(
0 0
0 0

)
,

then, we have

sup
t∈R
|B(s)| = 0 <

α

4κ2
.

This implies that assumption (H.7) is true.
Let µ be the measure defined by the following weight: ρ(s) = esin(s), ∀ s ∈ R. Then, ∀ z > 0, we have

2z

e
≤ µ([−z, z]) =

∫ z

−z
esin sds ≤ 2ez.

therefore µ ∈ M satisfies (H.1). Indeed, for all a ∈ A and τ ∈ R, we have 2 + sin(a) ≥ sin(τ + a), then
µ(τ +A) ≤ e2µ(A).
Since for all s ∈ A = [m,n], one has sin(−s) ≤ 2 + sin(s), where m,n ∈ R such that m > n, then we have
µ(−A) ≤ 1 + e2µ(A). Therefore condition (H.2) is trues.

We deduce that all assumptions (H.1)-(H.7) of Theorem 3.6 are satisfied. Since M : R → R4 × R4

defined by M(s) =

(
A(s) B(s)
−B(−s) −A(−s)

)
is continuous, non-singular and almost automorphic function

such that {M−1(s)}s∈R, is bounded, then equation (5.1) has a unique solution in PAA(R,R, µ).

6 Conclusion

At the term of this paper, we can say that we have brought our contribution in the theory of integral with
reflection equations. Indeed, the originality here is to show the existence and the uniqueness of solution
in the space PAA(R,R, µ) of a class of integral equations with delay to infinity. The approach we used
is based primarily on techniques analyzes and the Banach fixed point theorem. In the end, we illustrated
our theoretical result to the study of the existence and the uniqueness of solutions in PAA(R,R, µ) of a
logistic differential equation, and finally we give an example.
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