References
- Mirjalili S, Lewis A. The whale optimization algorithm. Adv
Engrg Soft. 2016; 95:51-67.
- Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic
adaptation in particle swarm optimization. Comput Oper Res.2006; 33(3):859-871.
- Dorigo M, Blum C. Ant colony optimization theory: A
survey. Theor Comput Sci. 2005; 344(2-3):243-278.
- Karaboga D, Basturk B. A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (ABC)
algorithm. J Global Optim. 2007; 39(3):459-471.
- Gandomi AH, Yang XS, Alavi AH. Cuckoo search algorithm: a
metaheuristic approach to solve structural optimization
problems. Engrg Comput. 2013; 29(1):17-35.
- Kennedy J, Eberhart R. Particle swarm optimization (PSO).
In Proc. IEEE Intern Conf Neural Net, Perth, Australia , 1995
(November) pp. 1942-1948.
- Montalvo I, Izquierdo J, Pérez‐García R, Herrera M. Water distribution
system computer‐aided design by agent swarm optimization. Comput
Aided Civil Infrastr Engrg. 2014; 29(6):433-448.
- Gonzalez-Fernandez Y, Chen S. Leaders and followers—a new
metaheuristic to avoid the bias of accumulated information.
In 2015 IEEE Congr Evol Comput. (CEC) 2015 (May) pp. 776-783.
IEEE.
- Parsopoulos KE, Vrahatis MN. Particle swarm optimization method for
constrained optimization problems. Intell Tech Theory Appl: New
Trends in Intell Tech. 2002; 76(1):214-220.
- Wu ZY, Simpson AR. A self-adaptive boundary search genetic algorithm
and its application to water distribution systems. J Hydr Res.2002; 40(2):191-203.
- Trelea IC. The particle swarm optimization algorithm: convergence
analysis and parameter selection. Inform Process Letters2003; 85(6):317-325.
- Brentan B, Meirelles G, Luvizotto Jr E, Izquierdo J. Joint operation
of pressure-reducing valves and pumps for improving the efficiency of
water distribution systems. J Water Res Plan Manag.2018; 144(9):04018055.
- Freire RZ, Oliveira GH, Mendes N. Predictive controllers for thermal
comfort optimization and energy savings. Ener Build.2008; 40(7):1353-1365.
- Banga JR, Seider WD. Global optimization of chemical processes using
stochastic algorithms. In State of the art in global
optimization (pp. 563-583). Springer, Boston, MA, 1996.
- Maringer DG. Portfolio management with heuristic
optimization (Vol. 8). Springer Science & Business Media 2006.
- Blocken B, van Druenen T, Toparlar Y, Malizia F, Mannion P, Andrianne
T, …, Diepens J. Aerodynamic
drag in cycling pelotons: new insights by CFD simulation and wind
tunnel testing. J Wind Engrg Ind. Aerod. 2018; 179:319-337.
- MATLAB 2018, The MathWorks, Inc., Natick, Massachusetts, United
States.
- Clerc M, Kennedy J. The particle swarm-explosion, stability, and
convergence in a multidimensional complex space. IEEE Trans Evol
Comput. 2002; 6(1):58-73.
- Eberhart RC, Shi Y. Comparing inertia weights and constriction factors
in particle swarm optimization. In Proc 2000 Congr Evol Comput.
CEC00 (Cat. No. 00TH8512) (Vol. 1, pp. 84-88). IEEE, 2000, July.
- GAMS World, GLOBAL Library, Available online:
http://www.gamsworld.org/global/globallib.html
- Gould NIM, Orban D, Toint P.L. CUTEr, A Constrained and Un-constrained
Testing Environment, Revisited, Available online:
http://cuter.rl.ac.uk/cuter-www/problems.html
- GO Test Problems, Available online:
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
- Jamil M, Yang XS. A literature survey of benchmark functions for
global optimisation problems. Intern J Math Model Num Optim.2013; 4(2): 150–194.
- Sharma G. The Human Genome Project and its promise. J Indian
College Cardiol. 2012; 2(1):1–3.
- Li W. On parameters of the human genome. J Theor Biol. 2011;
288:92–104.