References
  1. Mirjalili S, Lewis A. The whale optimization algorithm. Adv Engrg Soft. 2016; 95:51-67.
  2. Chatterjee A, Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput Oper Res.2006; 33(3):859-871.
  3. Dorigo M, Blum C. Ant colony optimization theory: A survey. Theor Comput Sci. 2005; 344(2-3):243-278.
  4. Karaboga D, Basturk B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Global Optim. 2007; 39(3):459-471.
  5. Gandomi AH, Yang XS, Alavi AH. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Engrg Comput. 2013; 29(1):17-35.
  6. Kennedy J, Eberhart R. Particle swarm optimization (PSO). In Proc. IEEE Intern Conf Neural Net, Perth, Australia , 1995 (November) pp. 1942-1948.
  7. Montalvo I, Izquierdo J, Pérez‐García R, Herrera M. Water distribution system computer‐aided design by agent swarm optimization. Comput Aided Civil Infrastr Engrg. 2014; 29(6):433-448.
  8. Gonzalez-Fernandez Y, Chen S. Leaders and followers—a new metaheuristic to avoid the bias of accumulated information. In 2015 IEEE Congr Evol Comput. (CEC)  2015 (May) pp. 776-783. IEEE.
  9. Parsopoulos KE, Vrahatis MN. Particle swarm optimization method for constrained optimization problems. Intell Tech Theory Appl: New Trends in Intell Tech. 2002; 76(1):214-220.
  10. Wu ZY, Simpson AR. A self-adaptive boundary search genetic algorithm and its application to water distribution systems. J Hydr Res.2002; 40(2):191-203.
  11. Trelea IC. The particle swarm optimization algorithm: convergence analysis and parameter selection. Inform Process Letters2003; 85(6):317-325.
  12. Brentan B, Meirelles G, Luvizotto Jr E, Izquierdo J. Joint operation of pressure-reducing valves and pumps for improving the efficiency of water distribution systems. J Water Res Plan Manag.2018; 144(9):04018055.
  13. Freire RZ, Oliveira GH, Mendes N. Predictive controllers for thermal comfort optimization and energy savings. Ener Build.2008; 40(7):1353-1365.
  14. Banga JR, Seider WD. Global optimization of chemical processes using stochastic algorithms. In State of the art in global optimization  (pp. 563-583). Springer, Boston, MA, 1996.
  15. Maringer DG. Portfolio management with heuristic optimization  (Vol. 8). Springer Science & Business Media 2006.
  16. Blocken B, van Druenen T, Toparlar Y, Malizia F, Mannion P, Andrianne T, …, Diepens J. Aerodynamic drag in cycling pelotons: new insights by CFD simulation and wind tunnel testing. J Wind Engrg Ind. Aerod. 2018; 179:319-337.
  17. MATLAB 2018, The MathWorks, Inc., Natick, Massachusetts, United States.
  18. Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput. 2002; 6(1):58-73.
  19. Eberhart RC, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization. In Proc 2000 Congr Evol Comput. CEC00 (Cat. No. 00TH8512)  (Vol. 1, pp. 84-88). IEEE, 2000, July.
  20. GAMS World, GLOBAL Library, Available online: http://www.gamsworld.org/global/globallib.html
  21. Gould NIM, Orban D, Toint P.L. CUTEr, A Constrained and Un-constrained Testing Environment, Revisited, Available online: http://cuter.rl.ac.uk/cuter-www/problems.html
  22. GO Test Problems, Available online: http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm
  23. Jamil M, Yang XS. A literature survey of benchmark functions for global optimisation problems. Intern J Math Model Num Optim.2013; 4(2): 150–194.
  24. Sharma G. The Human Genome Project and its promise. J Indian College Cardiol. 2012; 2(1):1–3.
  25. Li W. On parameters of the human genome. J Theor Biol. 2011; 288:92–104.