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Abstract

In this paper, we presented an approximation method of the rational Bézier

curve by the Bernstein-Jacobi hybrid polynomial curve. A necessary and

sufficient condition for C(u,v)-continuity and sufficient condition for G(u,v)-

continuity is given. The L1- convergence for the reparameterized rational

Bézier curve is also studied. According to the orthogonality of Jacobi poly-

nomials, calculation of the inverse of the matrix is avoided. Finally, some

examples and figures were offered to demonstrate the efficiency and the sim-

plicity of our methods.

Key words: Rational Bézier curve; Polynomial approximation;

Constrained Jacobian polynomials; Hybrid curve

1. Introduction

In computer-aided geometric design (CAGD for short), geometric mod-

eling often involves the evaluation of curve derivatives and integrals, but

these two operations of rational curves are either complicated or impossi-

ble to calculate. Therefore, some experts suggest using polynomial curves

to approximate rational curves to achieve intricate geometric modeling. In
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1991, Sederberg and Kakimoto [1] proposed a hybrid curve for the polyno-

mial approximation of rational curves, and its convergence conditions and

boundary estimations were studied by [2, 3, 4, 5], respectively. With the

progress of the research, Cai and Wang [6] applied the least-squares method

to the approximation of polynomial curves of rational curves. Using dual

constrained Bernstein polynomials and Chebyshev polynomials, Lewanowicz

etc.[7] derived rational Bézier curves approximation by polynomial curves

with endpoints constraints in the L2-norm. Shi and Deng [8] introduced a

weighted least-squares method to the field. Xu et al. [9] applied the weighted

least-squares method [8] to isogeometric analysis.

Although there are a lot of research results on the polynomial approxima-

tion of rational curves, we think that the work still needs to be carried out,

and that stable and efficient methods still need to be found. In a sense, repa-

rameterization is an important optimization method to approximate rational

Bézier curves. By using the reparameterization method, Sederberg [10] real-

ized the accurate degree reduction of rational Bézier curves and points out

that the degree reduction can also be given by combining with the numerical

method. Later [11] [12] proposed a reparameterization-based method to ap-

proximate rational curves. The main advantage of the method in [12] is that

it can preserve high-order parametric continuity or geometric continuity at

the two ends of the rational curve and the approximate curve, respectively.

But its necessary and sufficient condition for C(u,v)-continuity of Theorem

1 is incorrect since they don’t consider u or v greater than the degree of

rational Bézier curves. In other words, it is just a sufficient condition. On

the other hand, [12] suggest that the parameter λ should not be too large for

completing polynomial approximation of rational polynomial curves. This

raised a question of whether the reparameterized rational Bézier curve con-

verged, if the parameter λ is large, especially as λ tends to infinity. We will

study these problems in Sections 2 and 3.
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Jacobi polynomials are an important approximation tool in CAGD. Ahn

[13] constructed constrained Jacobi polynomials as an error function to present

a good degree reduction of Bézier curve with constraints of endpoints conti-

nuity in L∞-norm. Chen and wang [14] defined constrained Jacobi orthogonal

polynomial basis functions and used them to derive one best least-squares

approximation method for multi-degree reduction of Bézier curves with con-

straints of endpoints continuity, and the basis transformation between Jacobi

and Bernstein is used twice.

Inspired by the above-mentioned papers, we generalize [10][12][14] to the

problem of a reparameterized rational Bézier curve approximation by a Bern-

stein -Jacobi hybrid polynomial curve.

The paper is structured as follows. Section 2 discusses some basic con-

cepts and properties for developing our method. Section 3 states the re-

search problems and gives the necessary and the sufficient condition of C(u,v)-

continuity and the sufficient condition of G(u,v)-continuity for the Bernstein-

Jacobi hybrid curves and the reparameterized curves. Section 4 discuss

unconstrained control points of the approximation curve in the L2 norm.

Section 5 presents some numerical examples to verify the accuracy and ef-

fectiveness of the method.

2. Preliminaries

A rational Bézier curve of degree n can be defined by [15]

r (t) =

n∑
i=0

ωiriB
n
i (t)

n∑
i=0

ωiBn
i (t)

, (1)

where Bn
i (t) =

(
n
i

)
ti(1− t)n−i, are the Bernstein basis functions of degree n,

ri are the control points, and ωi are the associated positive weights.
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If all weights ωi = 1, a rational Bézier curve reduces to an integer Bézier

curve

p(t) =
n∑
i=0

piB
n
i (t). (2)

Let q(t) be another Bézier curve of degree m with control points{qi}mi=0, then

the product of q(t) and p(t) is given by [16]

p(t)q(t) =
m+n∑
k=0

min(m,k)∑
j=max(0,k−n)

(
m
j

)(
n
k−j

)(
m+n
k

) pk−jqjB
m+n
k (t). (3)

Theorem 1. The rth derivatives of a rational Bézier curve can be repre-
sented by the following recurrence formula

r(k) (t) =

∏k−1
j=0 (2jn)

∑2kn
i=0 P̂

[k]

i B
2kn
i (t)∑2kn

i=0 ω
[k]
i B

2kn
i (t)

, k = 1, 2, ..., (4)

where
ω
[0]
i = ωi,P

[0]
i = ωiri, P̂

[0]

i = P i,

ω
[k]
i =

min(i,2k−1n)∑
j=max(0,i−2k−1n)

(
2k−1n
j

)(
2k−1n
i−j

)(
2kn
i

) ω
[k−1]
j ω

[k−1]
i−j ,

P
[k]
i =

min(2k−1n−1,i)∑
j=max(0,i−2k−1n)

(
2k−1n−1

j

)(
2k−1n
i−j

)(
2kn−1
i

) (
∆P̂

[k−1]
j ω

[k−1]
i−j −∆ω

[k−1]
j P̂

[k−1]
i−j

)
,

and

P̂
[k]

i =

min(2kn−1,i)∑
j=max(0,i−1)

(
2kn−1
j

)(
1
i−j

)(
2kn
i

) P
[k]
j . (5)

Proof 1. We use induction on k. The result is obviously valid for k = 1
based on (3). Assumed that it is valid for some k > 1, then letting

P̂
[k]

(t) =
2kn∑
i=0

P̂
[k]

i B
2kn
i (t)
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and

ω[k] (t) =
2kn∑
i=0

ω
[k]
i B

2kn
i (t),

we have

r(k+1) (t)

=

k−1∏
j=0

(
2jn
) [(

P̂
[k]

(t)
)′
ω[k] (t)− P̂ [k]

(t)
(
ω[k] (t)

)′]
(
ω[k] (t)

)2

=

k∏
j=0

(2jn)

[(
2kn−1∑
i=0

∆P̂
[k]
i B

2kn−1
i (t)

)
ω[k] (t)− P̂ [k]

(t)

(
2kn−1∑
i=0

∆ω
[k]
i B

2kn−1
i (t)

)]
(

2kn∑
i=0

ω
[k]
i B

2kn
i (t)

)2

=

k∏
j=0

(
2jn
) min(2kn−1,i)∑

j=max(0,i−2kn)

(2
kn−1
j )(2

kn
i−j)

(2
k+1n−1

i )

(
∆P̂

[k]
i ω

[k]
i−j −∆ω

[k]
i P̂

[k]
i−j

)
2k+1n∑
i=0

 min(i,2kn)∑
j=max(0,i−2kn)

(2
kn
j )(2

kn
i−j)

(2
k+1n
i )

ω
[k]
i ω

[k]
i−j

B2k+1n
i (t)

=

k∏
j=0

(
2jn
) 2k+1n∑

i=0
P̂

[k+1]
i B2k+1n

i (t)

2k+1n∑
i=0

ω
[k+1]
i B2k+1n

i (t)

.

This completes the proof by induction.

If one does a Möbius parameter transformation

t (s) =
λs

λs+ (1− s)
,

5



the rational Bézier curve r(t) can be rewritten with the parameter s by

rλ (t (s)) =

n∑
i=0

λiωiriB
n
i (s)

n∑
i=0

λiωiBn
i (s)

. (6)

Since the limit of the rational Bézier curve rλ (t (s)) as λ approaches infinity

is

lim
λ→+∞

rλ (t (s)) =

{
r0, s = 0,

rn, s ∈ (0, 1] ,

and

‖rλ (t (s))‖ ≤ max
0≤i≤n

‖ri‖,

by Bounded Convergence Theorem [17], we have the following theorem

Theorem 2. The rational Bézier curve rλ (t (s)) is L1 convergence as λ→
+∞.

Remark: For more details about the convergences of rational Bézier curves,

the reader can refer to [18] and [19].

A Jacobi-Bernstein hybrid curve q̃(s) of degree m can be expressed as

q̃(s) =
u∑
i=0

qiB
m
i (s)+sv+1(1−s)u+1

M∑
j=0

q̃jJ
(2u+2,2v+2)
j (2s− 1) +

m∑
i=m−v

qiB
m
i (s),

(7)

where M = m − (u + v + 2), qi are the control points of the Bézier curve,

q̃i are the control points of the Jacobi curve and J
(2u+2,2v+2)
j (2s− 1) are the

Jacobi polynomials.

It is well known that Jacobi polynomials J
(2u+2,2v+2)
j (2s − 1) have the

following orthogonality with respect to the weight function s2v+2 (1− s)2u+2

6



[14]

χi,j =

∫ 1

0

s2v+2 (1− s)2u+2 J
(2u+2,2v+2)
i (2s− 1) J

(2u+2,2v+2)
j (2s− 1) ds

=

 1
2i+2u+2v+5

(i+2u+2
2u+2 )

(i+2u+2v+4
2u+2 )

i = j

0 i 6= j
,

(8)

and can be represented in degree M Bernstein forms as

J
(2u+2,2v+2)
k (2s− 1) =

M∑
j=0

Tk,jB
M
j (s), k = 0, ...,M, (9)

where

T
(2u+2,2v+2)
k,j =

min(j,k)∑
i=max(0,j+k−M)

(−1)k+i
(
k+2u+2

i

)(
k+2v+2
k−i

)(
M−k
j−i

)(
M
j

) . (10)

3. Problem description

In this paper, the problem of G(u,v) approximation of a rational Bézier

curve rλ(t(s)) (6) by a polynomial curve is to find a degree m Bernstein-

Jacobi hybrid polynomial curve q̃(s) (7) such that the squared L2-error

d2λ (r, q̃) =

∫ 1

0

‖rλ (t (s))− q̃ (s)‖2ds (11)

reaches the minimum under the following constrained conditions that
dirλ(t(s))

dsi

∣∣∣
s=0

= diq̃(s)
dsi

∣∣∣
s=0

, i = 0, 1, ..., u,

djrλ(t(s))
dsj

∣∣∣
s=1

= dj q̃(s)
dsj

∣∣∣
s=1

, j = 0, 1, ..., v.
(12)

By the constrained conditions (12) and the Theorem 1, the necessary

and the sufficient condition of C(u,v)-continuity and the sufficient condition
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of G(u,v)-continuity for the Bernstein-Jacobi hybrid curve q̃(s) (7) and the

reparameterized curve rλ (t (s)) (6) is given in the following theorem.

Theorem 3. The Bernstein-Jacobi hybrid curve q̃(s) (7) and the reparam-
eterized curve rλ (t (s)) (6) satisfy geometric continuity of u, v orders at two
endpoints respectively, if and only if the following equations

qk =
(m− k)!

m!

ˆ̃P
[k]

0

∏k−1
j=0 (2jn)

ω̃
[k]
0

−
k−1∑
i=0

(−1)k−i
(
k

i

)
qi, k = 0, 1, ..., u,

qn−l =
(−1)l (m− l)!

m!

ˆ̃P
[l]

2kn

∏l−1
j=0 (2jn)

ω̃
[l]

2kn

−
l∑

i=1

(−1)i
(
l

i

)
qn−l+i, l = 0, 1, ..., v,

are hold. where ω̃i = λiωi, P̃ i = ω̃iri, and P̂
[k]

i are given by (5).

4. Unconstrained control points of the approximation curves

For simplicity, we rewrite q̃(s) (7) in matrix form as

q̃ (s) = BC
mQ

C
m + ρ(s)JMQ̃M , (13)

where ρ(s) = sv+1 (1− s)u+1 , BC
m = (Bm

0 (s) , Bm
1 (s) , ..., Bm

m (s)) , QC
m =(

q0, ..., qu, 0, ..., 0, qm−v, ..., qm
)T
, Q̃M = (q̃0, q̃1, ..., q̃M)T , and JM =(

J
(2u+2,2v+2)
0 (2s− 1) , J

(2u+2,2v+2)
1 (2s− 1) , ..., J

(2u+2,2v+2)
M (2s− 1)

)
.

Similarly, rλ (t (s)) can also be rewritten as

rλ (t (s)) =
BnλWRn

Bnλω
, (14)

whereBn = (Bn
0 (s) , Bn

1 (s) , ..., Bn
n (s)) , ω = (ω0, ω1, ..., ωn)T ,Rn = (r0, r1, ..., rn)T ,

λ = diag (λ0, λ1, ..., λn) , and W = diag (ω0, ω1, ..., ωn) .

Then the alternative error function d2λ (r, q) is expressed in matrix form
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as

d2λ (r, q) =

∫ 1

0

∥∥∥∥BnλWRn

Bnλω
−BC

mQ
C
m − ρ(s)JMQ̃M

∥∥∥∥2 ds
To minimize the objective function d2λ (r, q), the derivatives of d2λ (r, q)

with respect to the elements of Q̃M should be zero. That is

∂d2λ (r, q)

∂Q̃M

= 2

∫ 1

0
ρ(s) (JM )T

(
BnλWRn

Bnλω
−BC

mQ
C
m − ρ(s)JMQ̃M

)
ds

= 0.

Substituting (9) and (10) in to the above-mentioned equation, the unknown

control points of the approximation curve are obtained as following

Q̃M = (χ)−1
(∫ 1

0

ρ(s) (JM )T Bn

Bnλω
dsλWRn −

∫ 1

0
ρ(s) (JM )TBC

mdsQ
C
m

)
,

= (χ)−1 T

(∫ 1

0

ρ(s) (BM )T Bn

Bnλω
dsλWRn−

∫ 1

0
ρ(s) (BM )TBC

mdsQ
C
m

)
= (χ)−1 T

(
NλWRn −XQC

m

)
,

(15)

where χ = (χij)M×M , T =
(
T

(2u+2,2v+2)
k,j

)
M×M

,

X = 1
u+v+M+m+3

(Mi )(
m
j )

(u+v+M+m+2
u+1+i+j )

and N =
∫ 1

0
ρ(s)(BM )TBn

Bnλω
ds.

In order to find an optimal value of λ such that the distance function

d2λ (r, q) reaches its minimum value, we inserting the control points (15) into

d2λ (r, q), and which can be revised as

d2λ (r, q) =

∫ 1

0

∥∥∥∥BnλWRn

Bnλω
−BC

mQ
C
m − ρ(s)JMQ̃M

∥∥∥∥2 ds
=RT

n
WλN1λWRn − 2

(
QC
m

)T
N2λWRn +

(
QC
m

)T
EQC

m

− 2
(
Q̃M

)T
TNλWRn +

(
Q̃M

)T
χQ̃M + 2

(
QC
m

)T
XT (T )T Q̃M

(16)
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where

N 1 =

∫ 1

0

BT
nBn

(Bnλω)2
ds,N 2 =

∫ 1

0

(
BC
m

)T
Bn

Bnλω
ds,

E =

∫ 1

0

(
BC
m

)T
BC
mds =

( (
m
i

)(
m
j

)
(2m+ 1)

(
2m
i+j

))
m×m

, 0 ≤ i, j ≤ m.

There are many numerical methods can be applied to solve λ [12], but for

the stability, authority and repeatability of the method, we apply maple’s

functions minimize(expr, opt1, opt2, ..., optn) for the minimum value of

d2λ (r, q), and ApproximateInt(f (x ), x = a..b, opts) to realize numerical in-

tegration of the matrices N 1 and N 1, where arguments method = simpson

and partition = 20, respectively.

5. Numerical examples

Several examples of approximation of rational Bézier curves by Bézier

curves are presented in this section. For each example, we use Hausdoff dis-

tances to express error functions.

Example 1. The given curve is a rational Bézier curve of degree 2 with the

control points (0, 0), (1.2, 1.5), (1, 0) and the associated weights 1, 3, 1. We

produce 8, 9 and 10-degree Bézier curves satisfying G(3,3)-continuity with the

given curve respectively. Errors comparison of different degrees were given

in Table 1. The graphs of distance functions d2λ (r, q) (16) for degrees illus-

trated in Figure 1(a) to show minimum value of λ . The resulting curves are

illustrated in Figure 1 (b) and the corresponding error distance curves are

shown in Figure 1 (c).

Example 2. The given curve is a rational Bézier of degree 4 with con-

trol points (0, 0), (2, 2), (3, 0), (4,−2), (4, 0) and the associated weights

5, 4, 2, 1, 1. We produce 3, 4 and 5-degree Bernstein-Jacobi hybrid curve

satisfying C(0,0)-continuity with the given curve. Table 2 is comparisons of
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Table 1: Errors comparison of different degrees.

m λ Error
8 0.977520234167110 0.03705155951
9 0.977694721940438 0.03159070686
10 0.980670422354805 0.00448306784

approximation methods under Hausdorff distance. The graphs of distance

function distance functions d2λ (r, q) (16) is illustrated in Figure 2(a) to show

minimum value of λ. The resulting curves obtained by our method and

Hu’s method are shown in the Figure 2(b) and 2(d), respectively. The cor-

responding error distance curves are illustrated in the Figure 2(c) and 2(e),

respectively.

Table 2: Error comparison of different degrees.

m Our method Hu’s method
λ Error λ Error

3 1.481286280 0.049976920855755 1.480160 0.06037148
4 1.279139695 0.016836651178081 1.305553 0.01689231
5 0.884817836 0.011527075552774 0.893806 0.01175240

Example 3. The given curve is a rational Bézier curve of degree 7 with con-

trol points (0, 0), (0.5, 2), (1.5, 2), (2.5,−2),(3.5,−2), (4.5, 2), (5.5, 2), (6, 0)

and the associated weights 4, 10, 18, 8, 9, 40, 12, 20. We produce a 5-degree

Bézier curve satisfying C(0,0)-continuity with the given curve. The param-

eter λ in our method is 0.704214485, while Hu’s is 0.681401. The husdorff

distance errors provided by our method and Hu’s method are 0.06861713,

and 0.074820, respectively. The graphs of distance functions d2λ (r, q) (16)

for degrees illustrated in Figure 3(a) to show minimum value of λ . The

resulting curves are illustrated in Figure 3 (b) and the corresponding error

distance curves are shown in Figure 3(c).
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0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0

0.5

1

1.5

The given curve
m=8
m=9
m=10

(a) The graphs of distance functions d2λ (r, q) for degrees

(b) The resulting curves (c) The error distance curves

Figure 1: The graphs of distance functions, resulting curves and corresponding error
distance curves

Example 4. The given curve is a rational Bézier curve of degree 9

with control points (17, 12), (32, 34), (−23, 24), (33, 62), (−23, 15), (25, 3),

(30,−2), (−5,−8), (−5, 15), (11, 8) and the associated weights 1, 2, 3, 6, 4,

5, 3, 4, 2, 1. We produce a 10-degree Bézier curve satisfying G(0,0)-continuity
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The given curve
m=3
m=4
m=5

(a) The graphs of distance function d2λ (r, q) by our method

(b) The resulting curves obtained by our
method

(c) The error distance curves by our method

(d) The resulting curves obtained by Hu’s
method

(e) The error distance curves by Hu’s
method

Figure 2: The graphs of distance functions, resulting curves and corresponding error
distance curves
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0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

The given curve
Hu's method
Our method

(a) The graph of distance function d2λ (r, q) by our method

(b) The resulting curves (c) The error distance curves

Figure 3: The graphs of distance functions, resulting curves and corresponding error
distance curves

with the given curve. The parameter λ in our method is 0.86861029. The

husdorff distance error provided by our method is 0.275802791948593. For

the case G(1,1)-continuity, the parameter λ is 0.875867536754241 and corre-

sponding Hausdorff distance is 0.410850837381587. The graphs of distance
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
The given curve
Hu's method
Our method

(a) The graph of distance function d2λ (r, q) for G(0,0)-
continuity by our method

(b) The resulting curves (c) The error distance curves

Figure 4: The graphs of distance functions, resulting curves and corresponding error
distance curves with G(0,0)-continuity

functions d2λ (r, q) (16) for G(0,0) and G(1,1) -continuity illustrated in Figure

4(a) and 5(a) to show minimum value of λ, respectively . The resulting curves

are illustrated in Figure 4 (b) and 5(b). The corresponding error distance

curves are shown in Figure 4(c) and 5(c).
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0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

100

120

140

160

180
The given curve
Hu's method
Our method

(a) The graph of distance function d2λ (r, q) for G(1,1)-
continuity by our method

(b) The resulting curves (c) The error distance curves

Figure 5: The graphs of distance functions, resulting curves and corresponding error
distance curves with G(1,1)-continuity

Conclusions

In this paper, we have proposed a reparameterization-based method for

Jacobi-Bernstein hybrid polynomials approximating rational Bézier curves
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with constraints. The approximation curve and the given curve can satisfy

parametric continuity or geometric continuity of any u, v(u, v ≥ 0) orders at

two endpoints, respectively. Numerical examples show that our method has

a better approximation effect than the previous methods under the Haus-

dorff distance. As for future work, the method can also be applied to the

cases of rational tensor-product Bézier surfaces and rational triangular Bézier

surfaces.
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