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This work present analytical results for the position- and momentum-space information entropies, of the 1s2-state of helium-like ions, using different interaction potentials. The potentials that we used are the Yukawa potential (YP), and the exponential-cosine-screened Coulomb potential (ECSCP). The investigated studies allow us to relate the position-space information with the momentum-space information of Shannon and Fisher, as well as Shannon entropy power, and the Fisher-Shannon information product, through different famous relations. The calculation is done using one-electron charge density of entangled two-parameter wave function. On one hand, the results that are presented for fifteen members in the helium iso-electronic sequence demonstrate with precision the effect of correlation on bare charge distributions. On the other hand, it leads to some very important results for both the correlated and uncorrelated values of the informatic entropies. Analytical formula for the momentum-space information entropies are given. The effect of the nuclear charge and the screening parameter on the informatic expressions has been studied for both potentials. Detailed computational and numerical values and characteristics of these quantities are reported here for the ﬁrst time. New inequality has been proposed with Fisher’s total value to measure the correlation of two electrons.
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I. Introduction
In terms of three basic parameters, one can define a singular short-range potential of the form1:

						(1)





where and are screening parameters,  and  is the strength which is identified with the atomic number Z when the potential is used for atomic phenomena. We will assume that is bounded everywhere with  and has a Coulomb-like behavior as r → 0 [ i.e. F(0) = 1]. In addition, we impose that F(r) is a fast decaying function at large distances, which results in the short-range behavior of the potential; however, it is not required to be analytic. An example of Eq. (1) is the exponential-cosine-screened Coulomb potential (ECSCP)2,3:

 .                                             (2)



It can be understood that Eq. (2) reduces to the Coulomb potential (CP) when , screened Coulomb (or Yukawa potential, YP) when 4. In our study, we are dealing with the case . 
For decades, the literatures related to the YP and ECSCP are vast, and it is difficult to mention them in in one paragraph. In turn, we will shed light on a few of them. For example, in addition to using YP in nuclear and elementary particles4, it also used in calculating the bound and resonance states for one5-8 and two-electron systems9,10, in scattering11, in Quantum entanglement12. ECSCP is used in calculating the bound and resonance states for one13,14, and two-electron systems15-17, in plasma18, scattering19,20.
It has been used in calculating the information entropies21,22, such as Fisher23, Shannon24, Rényi25, and Tsallis26,27. For two- and more electrons systems, many literatures have used the Density Functional Formalism28 or many terms of the Hylleraas wave function29-34. The two potentials, YP and ECSEP are used in one-electron systems35-37 and in two and more-electrons systems using few parameters in position space38-40 and two parameters in position- and momentum- spaces41-43. 
 	Our interest in the calculations for helium isoelectronic sequence has many objectives. The first is to use singular short-range potentials in calculating the position- and momentum-space entropies; the second is to study the physical effect of inter-electronic repulsion on Fisher and Shannon information entropies; the third is to check the Fisher and Shannon power, in addition to Fisher-Shannon information product, and BBM inequality44. This will be done due to a lack of similar work in the literature using screening parameters. In the literature, there are vast numbers of systematic approaches to obtain accurate results for single-particle charge densities in the position space, mainly in Coulomb and a few in YP, and ECSCP. To implement our objectives, we have used a 2-parameter correlated wave function. Recently, few parameters have been used in calculating the information entropies in 2-electron systems, such as Fisher and Shannon41-43, Rényi45, Tsallis38,39. Using more than the 2-parameter will make the entropy calculation difficult, and execution can only be done using highly sophisticated computers10-20. 


In the present work, we will start section II by introducing and defining the basic equations, 2-parameter wave function, and the procedure for computing the information entropies integrals S, and F for 2-electron series. Also, we define the 1-electron density approach for calculating the information entropies and defining Fisher (F), Shannon (S), Shannon power (N), and Fisher-Shannon product (P), all in position- and momentum-space. We devote Section III to present our results of S, and F for the 1s2- state of atoms from Z=1 to Z=15 and thus try to shed some light on the effect of inter-electronic repulsion on S, F, N, and P. The dependent behavior of S, F, N, and P with Z, and ,  is discussed. Finally, concluding remarks of our outcomes are accessible in Section IV. In the following, the abbreviation “e” is used for electron, and the atomic units (a.u.) have been used to express our outcomes.

II. Theoretical background
In spherical coordinates, the Hamiltonian of He-like ions characterized by the potential in Eq. (2), is defined by:

                                      (3)




where  and  as the radial coordinates of the two electrons relative to a fixed nucleus,  and  is the inter-electron distance46. For a wave function that includes several terms of , it is appropriate to employ the Hylleraas-coordinates22,29-34,38-43,45,47.

In the present work, we used the 2-parameter wave function as suggested by the entangled, or non-separable, wave function:

                                       (4)





where C is the normalization constant, and a and b are the variational parameters. Using in Eq. (4), searching for the minimum energy expectation value,, one finds the optimal values of a, and b. Eq. (4) is used to study the effect of the e-e (interelectron) repulsion, and for the sake of comparative study, we will use the uncorrelated (independent) wave function  [38-41], where b = 0 and the correlated (entanglement) wave function . Therefore, the bare wave function  is used to describe the Coulomb-field-case, i.e. without the e-e repulsion.


Our approach is applied here by means of the 1-e charge density. In this method we start by integrating out one degree of freedom, for example . In the following equation we have48:

   (5)
with testing the normalization condition:

                                                    (6)
This method of integrating out several degrees of freedom is crucial in discussing the quantum entanglement31.

With the knowledge of the electronic charge density of Eq. (6), we can calculate, let us say in 3-dimension space,
i- the Fisher information23: 

  ,                                                          (7)


where is the infinitesimal volume in position-space, and satisfies the normalization condition of Eq. (6).
ii- Shannon entropy24

.                                             (8)


Moreover, the Shannon entropy power  , and the Fisher-Shannon information product “”

                                                            (9)
Fisher-Shannon information product34 has been introduced to measure the correlation of 2-electron systems, in addition to information entropies themselves. In Fact, Fisher information is a local quantity, and it measures the fluctuation in a given distribution, whereas Shannon entropy is an expectation value of uncertainty.



In p-space46, to calculate the density  one has to apply the Fourier transformation to , in Eq. (5), in the spherical coordinates, i.e.

.		(10)






Consequently, one can replace, in Eqs. (7, 8), the subscript r by p,  by , and  by , with the normalization condition , where is the infinitesimal volume in momentum-space. Consequently, we can have the Fisher information: 

                                                         (12)
and Shannon entropy is:

,                                                (13)


 with Shannon entropy power, and the Fisher-Shannon information product  

In addition, we have to check the Shannon entropy sum that contains the net information and obeys the BBM-condition44 in the form:

                                                        (14)





Eq. (14), indicates the reciprocity relation between the r- and p- spaces such that low values of  are associated with high values of . For separable wave functions (uncorrelated) of two-electron systems, the quantities N, P, and  are Z -independent. But when the e–e interaction is switched on, the quantities N, P, and  appear to be Z-dependent. Consequently, the quantities N, P, and  also have been used as a gauge for the correlation in physical systems.



 To implement our procedure in the 1-e density, we will start with the uncorrelated (separated) wave function , while integrating out , to find the normalized wave function:

  ,                                                    (15)
with its momentum counterpart wave function:

 ,                                                (16)
and its normalized density:

  .                                                    (17)


To calculate the Fourier transformation of ,
we will use the property:

                   (18)



For , integrating out  , and changing ,gives:

                         (19)

We have kept only the three leading terms. Otherwise, we will have a diverging series. The momentum counterpart wave function of  is:

,                      (20)

and the corelated normalized density of  is:

        (21)



In the following discussions, the superscript or 0, on the symbols, will be used to differentiate between correlated and uncorrelated values, respectively. For examples: using the bare wave function  and in a 1-e charge density, it is easy to realize that:














 ,,, , and . Using the five bare results of and , we have the values:,, and  In measuring the correlation between the electrons, it is crucial to keep in mind that the quantities  are important, as well as the quantities . From the bare values of and , we can also propose the ansatz: 

                                   (22)

to measure the electron correlation, with the bare value .

III. Results and discussions





To discuss the correlation effect on the Fisher and Shannon values, we have to study the dependence of the variational parameters (a, b) on Z and  . To do so, we have plotted them as a function of Z in Figure 1, and as a function of  in Figure 2. The values of the variational parameters represent the importance of the inter-electronic repulsion as a function of Z or . Figure 1 shows that, as Z increases, the value of a increases following the linear equation: a = 1.0013 Z – 1.1481 with the correlation coefficient , and b decreases in power law following the equation b = 0.3876 Z-0.123 with R² =  0.9473. Moreover, it was found that a > b and the ratio of a/b is increased, for all Z. As an example, the ratio a/b increases from a factor of 5 as Z = 2 to a factor of 33 as Z = 10. This behavior shows that the inter-electronic repulsion, as represented by the parameter b, decreases as Z increases. 










As a function of, the parameters are plotted in Figure 2 for the two potentials YP and ECSCP. From Figure 2, it was found that for all Z, a > b and both a and b decrease monotonically as  increases, while the ratio of a/b decreases slowly asincreases. For example a/b = 5.1 at Z =2, and decreases to 5 at Z = 5. The curves of a and b for ECSEP match the curves of YP, except at the middle values of . In Figure 2, we stopped at. is defined as  the critical value, where for YP and for ECSCP. In this context, is defined as the value above which only one bound state exists. Although our wave function fulfills the requirements to derive the characteristic features of the entropic quantities, the inaccuracy in energy makes it difficult to reach close to the critical values of .
	[image: ]
Figure 1: Plotting the variational parameters a and b as a function of Z for CP. For guidance purposes only, we have used the fitted lines.
	[image: ]

Figure 2: Plotting the variational parameters a and b as a function of  for YP and ECSCP. 


A. 
The Coulomb potential 












To discuss the effect of the correlation on the entropies’ values, we displayed in Table 1 the calculated values of Fisher and Shannon information entropies, in r- and p- spaces, for 15 elements of 2-electron iso-electronic sequence. The columns 2-5 represent the Shannon results. The inter-electronic repulsion always affects the values of r- and p-space entropies. In r-space, it is found that ,  and both decrease logarithmically, as a function of Z, and change signs at . In p-space,  and both increase logarithmically, as a function of Z, with no change in signs. In column 6, the uncorrelated sum, , for the separable wave function , is Z-independent and its values are greater than the bare value (6.34419) because we are using rather than  . In column 7, the correlated sum is Z-dependent, and the BBT conditionis satisfied, and decreases as Z increases. From the numbers in column 7 we see that the effect of inter-electronic repulsion increases the  by about 9% for Z = 1 while for Z=10 a similar increase in  is 2% only. Consequently, at large Z both correlated and uncorrelated sums start to match each other. In summary, decreases (increases) as Z- increases.


















To complete our discussion for Table 1, columns 8-11 represent the Fisher information entropies, in r- and p-space. From the given data it was found that: and for all Z with no change of signs on the values. Furthermore,  and  increase in power law with an exponent = 2,  and decreases in power law with an exponent = -2, as a function of Z. In column 10, the uncorrelated sum, , for the separable wave function , is Z-independent and its values are equal to the bare value (3.8712) . In column 13, the correlated sum is Z-dependent, with the condition as Z < 4, and as Z > 4. The Fisher’s multiplication is the same as the bare values, and it is Z-independent. For correlated Fisher’s multiplication, , is Z-dependent and increases when Z increases with the condition that . The Fisher-Shannon information product is given in columns 16 and 17. It is clear that is the same as the bare value 1.2373 and it is Z-independent.  and decreases with increasing Z. Generally, although the Shannon’s values in r-space decrease with increasing Z, the values in p-space increase with increasing Z. This is the opposite when compared to Fisher’s values, in which the values in r-space increase with increasing Z and the values in p-space decrease with increasing Z. In summary,  increases (decreases) as Z- increases. Generally, in the same space with increasing Z, S and F behave reciprocally, i.e. if one increases, the other decreases, and vice versa. 



The numbers of Shannon and Fisher in Table 1 could be explained well using the graphical representation of the Shannon and Fisher densities, as a function of r and p for selected values of Z. The behavior of Shannon’s density,, as a function of r for Z = 2,3,5 is shown in Figure 3. For Z = 2 and in Figure 3.a, all the values of  are positive, so the entropy will be positive, as it is the area under the curve. For Z = 3, the peak becomes smaller, the curve is shifted to the left with a smaller width, and part of the curve will be negative. Consequently, the area under the curve, namely the entropy, will be smaller than the Shannon’s value for Z = 2, but still positive. For Z = 5 and compared to Z = 3, the peak becomes smaller, the curve is shifted more to the left with a smaller width (more localized), and a large part of the curve will be negative. Consequently, the Shannon’s entropy will be negative. This behavior is physically acceptable due to the decreasing e-e interaction at Z > 4, i.e. a > b by a factor of magnitude as shown in Figure 1. In conclusion, when Z increases, the density will be more localized, and the Shannon’s entropy decreases. At high Z, the Shannon’s values will be mainly due the electron nuclear interaction and the e-e may be neglected. 


In p-space, the Shannon’s density,, as a function of p for Z = 2,3, and 5 is displayed in Figure 3.b.  In that case, for all values of Z, the values of are positive, so the entropy will be positive. As Z increases, the peaks become smaller, and the curves shift to the right with more spreading (delocalized). Consequently, in p-space when Z increases, the density will be more delocalized and the entropy increases.







Regarding Fisher’s behavior, Figure 4 displays the Fisher’s density for Z=2,3,5  a- for  as a function of r ; b- for as a function of p.  In Figure 4.a, for all values of Z, the values of  are positive, so the entropy will be positive. As Z increases, the peaks become larger and the curves shift to the left and become localized. In conclusion, as Z increases, will be more localized, and the Fisher’s entropy increases. In p-space, Figure 4.b shows that for all values of Z, the values of are positive, so the entropy will be positive. As Z increases, the peaks of  become extremely smaller, the curves shift to the right and become more spreading (delocalized). Consequently, in p-space when Z increases, will be smaller and more delocalized, and the Fisher’s entropy decreases.
B. 
The YP  with Z=2 



















[bookmark: _Hlk38030569]For YP, it is interesting to investigate the effect of correlation by changing the screening parameter , as . Figure 5- displays the behavior of  and  as a function of  in r- and p- spaces. In r-space, Figure 5-a shows that , and they increase monotonically in the small range of , . As , the increase of  and  follow a power law with an exponent . In p-space, Figure 5-a shows that , and they decrease monotonically in the range of small values of, . As , the decrease of  and  follow a power law with an exponent .


















Figure 5-b displays the behavior of  and  as a function of  in r-space and p-space. In r-space, Figure 5-b shows that , and they decrease monotonically in the range of  small values of, . As , the decrease of  and  follow a power law with an exponent . In p-space , Figure 5-b shows that , and they increase monotonically in the range of small values of, . As , the increase of  and  follow a power law with an exponent . Generally, in the same space with increasing , S and F behave reciprocally, i.e. if one increases the other decreases, and vice versa. 
























For more discussions of Fisher and Shannon entropies for YP as a function of  in r-space and p-space, we used Table 2 to display additional parameters’ values. From Table 2, it was found that in r-space:  and both increase with increasing ;  and both decrease as  increases. The value of total uncorrelated sum is -independent and greater than the bare value (6.34419) because we are using rather than . The BBT conditionis satisfied, and  increases monotonically as increases. For Fisher:  both decrease as  increases,  and both increase with increasing . In column 13, the correlated sum is Z-dependent, with the condition is fulfilled.  The product and  have the bare value, ,  and all are -independent. The product is smaller than , and decreases monotonically as  increases.

C- ECSCP with Z=2  



















Similarly for ECSCP, it is interesting to investigate the effect of correlation by changing the screening parameter , that changes from 0 to . Figure 6-a displays the behavior of  and  as a function of  in r-space and p-space. In r-space , Figure 6-a shows that , and they increase monotonically in the range of  values, . As , the increasing of  and  follow a power law with an exponent . In p-space , Figure 6-a shows that , and they decrease monotonically in the range of   small values of, . As , the decreasing of  and  follow a power law with an exponent .


















Figure 6-b  displays the behavior of  and  as a function of  in r- and p- spaces. In  r-space, Figure 6-b shows that , and they decrease monotonically in the range of   small values, . With  and , the decreasing of  and  follow a power law with an exponent . In p-space, Figure 6-b shows that , and they increase monotonically in the range of small values, . As  the increasing of  and  follow a power law with an exponent .


























For more discussions of Fisher and Shannon entropies for ECSCP as a function of  in r-space and p-space, we used Table 3 to display additional parameters’ values. Table 3 shows the change of the Fisher and Shannon values, and their related relations, as a function of. From Table 3 it was found that for Shannon:  where both increase with increasing ;  where both decease as  increases. The value of total uncorrelated sum  is -independent and greater than the bare value (6.34419) because we are using rather than . The BBT conditionis satisfied, and  increases monotonically as increases. For Fisher:  both decrease as  increases,  where both increase with increasing . In column 13, the correlated sum is Z-dependent, with the condition is fulfilled.  The product and  have the bare value, ,  and all are -independent. The product is smaller than , and decreases monotonically as  increases.
VI. Concluding observations: 




[bookmark: _Hlk39274568]In the present paper we have presented our numerical outcomes of the information entropies, Fisher, Shannon, as well as Shannon entropy power, and the Fisher-Shannon information product, for the 1s2-state of helium and helium-like ions that impeded with YP or ECSCP, in the position- and momentum- spaces. The information entropies, and their related quantities, have been calculated with the simple correlated Hylleraas wave functions with 2-parameter, and in a 1-elecron charge density. Rather than writing the summary in words, we are going to reveal in Table 4 the importance of changing Z, or on the behavior of the informatic quantities. The conclusion of table 4 is that, the localization of the electronic charge density could increase by realizing the decrease of Shannon values and increase of Fisher values in r-space , or by increasing  Shannon values and decreasing Fisher values in p-space. A similar behavior could be realized as changes close to its threshold values. The effect of the correlation could be realized by calculating the total sum in r- and p- space, as well as by other quantities such as Fisher-Shannon information product and the Fisher product. New inequality has been proposed with Fisher’s total value, in which  for , to measure the correlation of two electrons. We hope that our findings for information quantities using YP and ECSCP will be of valuable reference and will stimulate further research on entanglement and informatic theoretical quantities of atomic and molecular systems immersed in dense plasmas.

Conﬂicts of Interest: 
The authors declare no conﬂict of interest.


References

1.	Abdelmonem, M. S.; Nasser, I.; Bahlouli, H.; Al Khawaja, U.; Alhaidari, A. D. Physics Letters A 2009, 373, 2408-2412.
2.	Anderson, P. W. Physical Review 1952, 86, 694-701.
3.	Kubo, R. Physical Review 1952, 87, 568-580.
4.	Yukawa, H. Proc Phys Math Soc Jap 1935, 17, 48-57.
5.	Roy, A. K. International Journal of Quantum Chemistry 2016, 116, 953-960.
6.	Bahlouli, H.; Abdelmonem, M. S.; Nasser, I. M. Physica Scripta 2010, 82, 065005.
7.	Abdelmonem, M. S.; Al-Marzoug, S. M.; Abdel-Hady, A.; Nasser, I. Physica Scripta 2015, 90, 055401.
8.	Santos, L. C.; Martins, M. G. R.; Vianna, J. D. M. International Journal of Quantum Chemistry 2011, 111, 1671-1679.
9.	Montgomery, H. E.; Sen, K. D.; Katriel, J. Physical Review A 2018, 97, 022503.
10.	Kar, S.; Ho, Y. K. The European Physical Journal D 2007, 44, 1-8.
11.	Jiang, Z.; Zhang, Y.-Z.; Kar, S. Physics of Plasmas 2015, 22, 052105.
12.	Lin, Y.-C.; Fang, T.-K.; Ho, Y. K. Physics of Plasmas 2015, 22, 032113.
13.	Nasser, I.; Abdelmonem, M. S.; Abdel-Hady, A. Physica Scripta 2011, 84, 045001.
14.	Lin, C. Y.; Ho, Y. K. The European Physical Journal D 2010, 57, 21-26.
15.	Ghoshal, A.; Ho, Y. K. Journal of Physics B: Atomic, Molecular and Optical Physics 2009, 42, 075002.
16.	Ancarani, L. U.; Rodriguez, K. V. Physical Review A 2014, 89, 012507.
17.	Lin, Y.-C.; Lin, C.-Y.; Ho, Y. K. International Journal of Quantum Chemistry 2015, 115, 830-836.
18.	Chaudhuri, S. K.; Mukherjee, P. K.; Fricke, B. Physics of Plasmas 2015, 22, 123120.
19.	Nayek, S.; Ghoshal, A. Physica Scripta 2012, 85, 035301.
20.	Ghoshal, A.; Ho, Y. K. Physica Scripta 2011, 83, 065301.
21.	Sen, K. D. Electronic Structure of Quantum Confined Atoms and Molecules; Springer International Publishing, 2014.
22.	Sen, K. D. Statistical Complexity: Applications in Electronic Structure; Springer Netherlands, 2011.
23.	Fisher, R. A. Mathematical Proceedings of the Cambridge Philosophical Society 1925, 22, 700-725.
24.	Shannon, C. E. Bell System Technical Journal 1948, 27, 379-423.
25.	Renyi, A. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, Berkeley, Calif., 1961 1961, pp 547-561.
26.	Tsallis, C. Journal of Statistical Physics 1988, 52, 479-487.
27.	Tsallis, C. Entropy 2011, 13, 1765-1804.
28.	Majumdar, S.; Roy, A. K. Quantum Reports 2020, 2, 189-207.
29.	López-Rosa, S.; Martín, A. L.; Antolín, J.; Angulo, J. C. International Journal of Quantum Chemistry 2019, 119, e25861.
30.	Ou, J.-H.; Ho, Y. Atoms 2017, 5, 15.
31.	Lin, Y.-C.; Lin, C.-Y.; Ho, Y. K. Physical Review A 2013, 87, 022316.
32.	Lin, C.-H.; Ho, Y. K. Chemical Physics Letters 2015, 633, 261-264.
33.	Restrepo Cuartas, J. P.; Sanz-Vicario, J. L. Physical Review A 2015, 91, 052301.
34.	Romera, E.; Dehesa, J. S. J Chem Phys 2004, 120, 8906-8912.
35.	Abdelmonem, M. S.; Abdel-Hady, A.; Nasser, I. Molecular Physics 2017, 115, 1480-1492.
36.	Zan, L. R.; Jiao, L. G.; Ma, J.; Ho, Y. K. Physics of Plasmas 2017, 24, 122101.
37.	Nasser, I. Journal of Physics: Conference Series 2019, 1253, 012013.
38.	Nasser, I.; Zeama, M.; Abdel-Hady, A. Molecular Physics 2020, 118, 1612105.
39.	Zeama, M.; Nasser, I. Physica A: Statistical Mechanics and its Applications 2019, 528, 121468.
40.	Nasser, I.; Abdel-Hady, A. Canadian Journal of Physics 2020.
41.	Saha, A.; Talukdar, B.; Chatterjee, S. Physica A: Statistical Mechanics and its Applications 2017, 474, 370-379.
42.	Saha, A.; Talukdar, B.; Sarkar, P. The European Physical Journal Plus 2018, 133, 20.
43.	Sekh, G. A.; Saha, A.; Talukdar, B. Physics Letters A 2018, 382, 315-320.
44.	Bialynicki-Birula, I.; Rudnicki, Ł. In Statistical Complexity: Applications in Electronic Structure; Sen, K. D., Ed.; Springer Netherlands: Dordrecht, 2011, p 1-34.
45.	Nasser, I.; Zeama, M.; Abdel-Hady, A. Results in Physics 2017, 7, 3892-3900.
46.	Bransden, B.; Joachain, C. Physics of Atoms and Molecules, 2014.
47.	Ou, J.-H.; Ho, Y. K. Chemical Physics Letters 2017, 689, 116-120.
48.	Calais, J.-L.; Löwdin, P.-O. Journal of Molecular Spectroscopy 1962, 8, 203-211.
    2 May 2020


19



Table 1: The information entropies, and their related relations, for 1s2- state for 15 members of helium and its isoelectronic ions with Coulomb potential. Z=1,2,3, etc. corresponding to etc.; respectively.
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	1
	5.2688
	5.2652
	1.2978
	1.7795
	6.5666
	7.0447
	1.8906
	1.9367
	25.3884
	21.1578
	3.8712
	3.7130
	48
	40.9767
	1.2373
	1.2645

	2
	2.5750
	2.6016
	3.9916
	4.2253
	6.5666
	6.8269
	11.3906
	11.4189
	4.2140
	3.8620
	3.8712
	3.7864
	48
	44.0991
	1.2373
	1.2626

	3
	1.1789
	1.2014
	5.3877
	5.5351
	6.5666
	6.7365
	28.8906
	28.9121
	1.6614
	1.5873
	3.8712
	3.8263
	48
	45.8925
	1.2373
	1.2570

	4
	0.2299
	0.2483
	6.3367
	6.4405
	6.5666
	6.6888
	54.3906
	54.4091
	0.8825
	0.8618
	3.8712
	3.8478
	48
	46.8880
	1.2373
	1.2531

	5
	-0.4900
	-0.4745
	7.0566
	7.1341
	6.5666
	6.6596
	87.8906
	87.9075
	0.5461
	0.5405
	3.8711
	3.8610
	48
	47.5105
	1.2373
	1.2504

	6
	-1.0701
	-1.0569
	7.6367
	7.6968
	6.5666
	6.6400
	129.3906
	129.4065
	0.3710
	0.3704
	3.8713
	3.8698
	48
	47.9343
	1.2373
	1.2484

	7
	-1.5560
	-1.5444
	8.1226
	8.1703
	6.5666
	6.6259
	178.8906
	178.9059
	0.2683
	0.2696
	3.8711
	3.8762
	48
	48.2407
	1.2373
	1.2470

	8
	-1.9741
	-1.9638
	8.5406
	8.5791
	6.5665
	6.6153
	236.3906
	236.4054
	0.2031
	0.2050
	3.8714
	3.8810
	48
	48.4723
	1.2373
	1.2459

	9
	-2.3409
	-2.3317
	8.9075
	8.9388
	6.5666
	6.6071
	301.8906
	301.9051
	0.1590
	0.1612
	3.8712
	3.8847
	48
	48.6534
	1.2374
	1.2450

	10
	-2.6678
	-2.6595
	9.2344
	9.2599
	6.5666
	6.6005
	375.3906
	375.4048
	0.1279
	0.1300
	3.8715
	3.8877
	48
	48.7988
	1.2373
	1.2443

	11
	-2.9625
	-2.9549
	9.5291
	9.5500
	6.5666
	6.5951
	456.8906
	456.9046
	0.1051
	0.1071
	3.8716
	3.8901
	48
	48.9181
	1.2373
	1.2437

	12
	-3.2308
	-3.2238
	9.7974
	9.8144
	6.5666
	6.5906
	546.3906
	546.4043
	0.0878
	0.0897
	3.8706
	3.8922
	48
	49.0177
	1.2374
	1.2432

	13
	-3.4771
	-3.4706
	10.0437
	10.0574
	6.5666
	6.5868
	643.8906
	643.9044
	0.0745
	0.0763
	3.8706
	3.8939
	48
	49.1022
	1.2374
	1.2427

	14
	-3.7047
	-3.6987
	10.2713
	10.2822
	6.5666
	6.5835
	749.3906
	749.4043
	0.0641
	0.0656
	3.8719
	3.8954
	48
	49.1747
	1.2373
	1.2424

	15
	-3.9163
	-3.9106
	10.4829
	10.4913
	6.5666
	6.5807
	862.8906
	862.9041
	0.0556
	0.0571
	3.8707
	3.8967
	48
	49.2376
	1.2373
	1.2420
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Figure 3 a- Shannon’s density as a function of r for different Z in r-space    b- Shannon’s density as a function of p for different Z in p-space.
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Figure 4 a- Fisher’s density as a function of r for different Z in r-space    b- Fisher’s density as a function of p for different Z in p-space.
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Figure 5 For YP a-  and  as a function of  in r-space  and p-space. b-  and as a function of  in r-space  and p-space.
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Figure 6 For ECSCP  a-  and  as a function of  in r-space  and p-space. b-  and as a function of  in r-space  and p-space.




Table 2: The information entropies, and their related relations, for 1s2-state of He-like ions using YP. 
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	


	0.1
	2.5806
	2.6070
	3.9860
	4.2199
	6.5666
	6.7142
	11.3480
	11.3778
	4.2298
	3.8737
	3.8712
	3.7859
	48
	45.7763
	1.2373
	1.2626

	0.2
	2.5964
	2.6222
	3.9702
	4.2047
	6.5666
	6.7153
	11.2291
	11.2627
	4.2746
	3.9071
	3.8712
	3.7843
	48
	45.7252
	1.2373
	1.2626

	0.3
	2.6212
	2.6462
	3.9454
	4.1809
	6.5666
	6.7171
	11.0447
	11.0836
	4.3460
	3.9608
	3.8712
	3.7819
	48
	45.6478
	1.2373
	1.2625

	0.4
	2.6544
	2.6783
	3.9122
	4.1490
	6.5666
	6.7194
	10.8031
	10.8484
	4.4432
	4.0345
	3.8712
	3.7789
	48
	45.5490
	1.2373
	1.2625

	0.5
	2.6956
	2.7182
	3.8710
	4.1094
	6.5666
	6.7222
	10.5109
	10.5632
	4.5667
	4.1287
	3.8712
	3.7753
	48
	45.4325
	1.2373
	1.2624

	0.6
	2.7445
	2.7658
	3.8221
	4.0623
	6.5666
	6.7253
	10.1733
	10.2333
	4.7182
	4.2447
	3.8712
	3.7713
	48
	45.3009
	1.2373
	1.2624

	0.7
	2.8014
	2.8211
	3.7652
	4.0077
	6.5666
	6.7289
	9.7947
	9.8627
	4.9006
	4.3848
	3.8712
	3.7669
	48
	45.1565
	1.2373
	1.2624

	0.8
	2.8665
	2.8844
	3.7001
	3.9453
	6.5666
	6.7327
	9.3786
	9.4550
	5.1180
	4.5522
	3.8712
	3.7622
	48
	45.0006
	1.2373
	1.2623

	0.9
	2.9404
	2.9561
	3.6262
	3.8745
	6.5666
	6.7369
	8.9280
	9.0130
	5.3763
	4.7512
	3.8712
	3.7571
	48
	44.8339
	1.2373
	1.2623

	1
	3.0238
	3.0371
	3.5428
	3.7948
	6.5666
	6.7414
	8.4452
	8.5391
	5.6837
	4.9879
	3.8712
	3.7517
	48
	44.6569
	1.2373
	1.2623

	1.1
	3.1179
	3.1284
	3.4487
	3.7050
	6.5666
	6.7463
	7.9318
	8.0350
	6.0516
	5.2708
	3.8712
	3.7460
	48
	44.4694
	1.2373
	1.2623

	1.2
	3.2242
	3.2313
	3.3424
	3.6038
	6.5666
	6.7515
	7.3889
	7.5021
	6.4962
	5.6115
	3.8712
	3.7400
	48
	44.2704
	1.2373
	1.2623

	1.3
	3.3451
	3.3480
	3.2215
	3.4892
	6.5666
	6.7572
	6.8170
	6.9408
	7.0413
	6.0271
	3.8712
	3.7337
	48
	44.0587
	1.2373
	1.2623

	1.4
	3.4837
	3.4812
	3.0829
	3.3583
	6.5666
	6.7633
	6.2152
	6.3508
	7.7230
	6.5432
	3.8712
	3.7270
	48
	43.8318
	1.2373
	1.2623

	1.5
	3.6451
	3.6355
	2.9215
	3.2070
	6.5666
	6.7702
	5.5812
	5.7305
	8.6003
	7.1999
	3.8712
	3.7199
	48
	43.5859
	1.2373
	1.2623

	1.6
	3.8373
	3.8175
	2.7293
	3.0284
	6.5666
	6.7778
	4.9099
	5.0758
	9.7763
	8.0663
	3.8712
	3.7122
	48
	43.3148
	1.2373
	1.2624

	1.7
	4.0752
	4.0393
	2.4914
	2.8109
	6.5666
	6.7866
	4.1897
	4.3783
	11.4566
	9.2725
	3.8712
	3.7037
	48
	43.0078
	1.2373
	1.2625

	1.8
	4.3915
	4.3255
	2.1751
	2.5303
	6.5666
	6.7974
	3.3932
	3.6183
	14.1461
	11.1122
	3.8712
	3.6941
	48
	42.6429
	1.2373
	1.2626






Table 3: Similar to Table 2, but for ECSCP. 
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	


	0.1
	2.5757
	2.6022
	3.9909
	4.2247
	6.5666
	6.7138
	11.3854
	11.4141
	4.2159
	3.8632
	3.8712
	3.7863
	48
	45.7924
	1.2373
	1.2626

	0.2
	2.5801
	2.6063
	3.9865
	4.2205
	6.5666
	6.7141
	11.3521
	11.3830
	4.2283
	3.8715
	3.8712
	3.7858
	48
	45.7758
	1.2373
	1.2626

	0.3
	2.5910
	2.6165
	3.9756
	4.2100
	6.5666
	6.7149
	11.2698
	11.3056
	4.2592
	3.8928
	3.8712
	3.7844
	48
	45.7363
	1.2373
	1.2625

	0.4
	2.6106
	2.6349
	3.9560
	4.1912
	6.5666
	6.7162
	11.1236
	11.1670
	4.3151
	3.9323
	3.8712
	3.7822
	48
	45.6694
	1.2373
	1.2625

	0.5
	2.6407
	2.6635
	3.9259
	4.1623
	6.5666
	6.7182
	10.9023
	10.9556
	4.4027
	3.9954
	3.8712
	3.7790
	48
	45.5731
	1.2373
	1.2624

	0.6
	2.6834
	2.7041
	3.8832
	4.1213
	6.5666
	6.7208
	10.5966
	10.6619
	4.5298
	4.0884
	3.8712
	3.7748
	48
	45.4471
	1.2373
	1.2623

	0.7
	2.7410
	2.7592
	3.8256
	4.0661
	6.5666
	6.7243
	10.1974
	10.2766
	4.7071
	4.2201
	3.8712
	3.7697
	48
	45.2913
	1.2373
	1.2622

	0.8
	2.8168
	2.8319
	3.7498
	3.9935
	6.5666
	6.7285
	9.6948
	9.7897
	4.9511
	4.4032
	3.8712
	3.7637
	48
	45.1050
	1.2373
	1.2621

	0.9
	2.9159
	2.9269
	3.6507
	3.8991
	6.5666
	6.7336
	9.0750
	9.1881
	5.2892
	4.6586
	3.8712
	3.7566
	48
	44.8852
	1.2373
	1.2620

	1
	3.0468
	3.0521
	3.5198
	3.7751
	6.5666
	6.7400
	8.3168
	8.4522
	5.7715
	5.0230
	3.8712
	3.7484
	48
	44.6247
	1.2373
	1.2619

	1.1
	3.2259
	3.2220
	3.3407
	3.6075
	6.5666
	6.7482
	7.3805
	7.5465
	6.5036
	5.5716
	3.8712
	3.7388
	48
	44.3070
	1.2373
	1.2619

	1.2
	3.4944
	3.4713
	3.0722
	3.3625
	6.5666
	6.7595
	6.1709
	6.3913
	7.7784
	6.4990
	3.8712
	3.7266
	48
	43.8900
	1.2373
	1.2619

	0.1
	2.5757
	2.6022
	3.9909
	4.2247
	6.5666
	6.7138
	11.3854
	11.4141
	4.2159
	3.8632
	3.8712
	3.7863
	48
	45.7924
	1.2373
	1.2626

	0.2
	2.5801
	2.6063
	3.9865
	4.2205
	6.5666
	6.7141
	11.3521
	11.3830
	4.2283
	3.8715
	3.8712
	3.7858
	48
	45.7758
	1.2373
	1.2626







Table 4: Summary for the information entropies, and their related relations, for 1s2-state of He-like ions. 

	quantity
	Increasing Z
	Relation
	
Increasing 
	Relation

	a
	Increasing linearly
	
	Decreasing
	

	b
	Decreasing in power law
	a>b, a/b increasing
	Decreasing in power law
	a>b, a/b = constant

	

	Decreasing logarithmically
	
	Increasing monotonically
	

	

	Decreasing logarithmically
	

	Increasing monotonically
	


	

	Increasing logarithmically
	
	Decreasing monotonically
	

	

	Increasing logarithmically
	

	Decreasing monotonically
	


	

	Z-independent
	
	
-independent
	

	

	Decreasing monotonically
	

	Increasing monotonically
	


	

	Increasing in power law
	
	Decreasing monotonically
	

	

	Increasing in power law
	

	Decreasing monotonically
	


	

	Decreasing in power law
	
	Increasing monotonically
	

	

	Decreasing in power law
	

	Increasing monotonically
	


	

	Z-independent
	
	
-independent
	

	

	Decreasing monotonically
	

	Increasing monotonically
	


	

	Z-independent
	
	
-independent
	

	

	Increasing monotonically
	
	Increasing monotonically
	

	

	Constant (bare value)
	
	Constant (bare value)
	

	

	Z-independent
	

	
-independent
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