References
Altermatt, F. (2010). Climatic
warming increases voltinism in European butterflies and moths.Proc. R Soc. Lond. [Biol], 277, 1281–1287.
Bale, J. S. (2002). Insects and low temperatures: from molecular biology
to distributions and abundance. Philos. Trans. R. Soc. B. , 357,
849-862
Bale, J. S., & Hayward, S. A. L. (2010). Insect overwintering in a
changing climate. J. Exp. Biol. , 213, 980-994.
Barton, G. G., & Sandercock, B. K. (2018). Long-term changes in the
seasonal timing of landbird migration on the Pacific
Flyway. Condor, 120, 30-46.
Bates, D., Maechler, M., Bolker,
B., & Walker, S. (2014). lme4: Linear mixed-effects models using Eigen
and S4. R package version , 1, 1-23.
Both, C., Bouwhuis, S., Lessells, C. M., & Visser, M. E. (2006).
Climate change and population declines in a long-distance migratory
bird. Nature , 441, 81.
Breed, G. A., Stichter, S. & Crone, E. E. (2013). Climate-driven
changes in northeastern US butterfly communities. Nat Clim
Change, 3, 142–145.
Brereton, T. M., Botham, M. S., Middlebrook, I., Randle, Z., Noble, D.,
& Roy, D. B. (2014). United Kingdom butterfly monitoring scheme report
for 2014. Centre for Ecology and Hydrology and Butterfly
Conservation .
Brooks, S. J., Self, A., Toloni, F., & Sparks, T. (2014). Natural
history museum collections provide information on phenological change in
British butterflies since the late-nineteenth century. Int. J.
Biometeorol. , 58, 1749-1758.
Cade, B. S. & Noon, B. R. (2003).
A gentle introduction to quantile regression for ecologists.Front. Ecol. Envrion., 1, 412-420.
Chevin, L. M., & Lande, R. (2010). When do adaptive plasticity and
genetic evolution prevent extinction of a density‐regulated
population? Evolution, 64, 1143-1150.
Cleland, E.E., Allen J. M., Crimmins, T.M., Dunne, J.A., Pau, S.,
Traver, S.E., Zavaleta, E.S., Wolkovich, E.M. (2012). Phenological
tracking enables positive species responses to climate change.Ecology, 93, 1765-1771.
Fric, Z. F., Rindoš, M., & Konvička, M. (2020). Phenology responses of
temperate butterflies to latitude depend on ecological
traits. Ecol. Lett. , 23, 172-180.
Forister, M. L., Shapiro, A. M. (2003). Climatic trends and advancing
spring flight of butterflies in lowland California. Glob. Change
Biol., 9, 1130–1135.
Forister M. L., Jahner J. P.,
Casner K. L., Wilson J. S., Shapiro A. M. (2011). The race is not to the
swift: long-term data reveal pervasive declines in California’s
low-elevation butterfly fauna. Ecology , 92, 2222–2235
Franklin, D. C. (1999). Evidence
of disarray amongst granivorous bird assemblages in the savannas of
northern Australia, a region of sparse human settlement. Biol.
Cons., 90, 53–68.
Forrest, J., & Miller-Rushing, A. J. (2010). Introduction: Toward a
synthetic understanding of the role of phenology in ecology and
evolution. Philos. Trans. R. Soc. B. , 3101-3112.
Gallinat, A. S., Primack, R. B., & Wagner, D. L. (2015). Autumn, the
neglected season in climate change research. Trends Ecol.
Evolut. , 30, 169-176.
Gimesi, L., Homoródi, R., Hirka, A., Szaboki, C., & Hufnagel, L.
(2012). The effect of climate change on the phenology of moth abundance
and diversity. Appl. Ecol. Environ. Res., 10, 349-363.
Gordo, O., Tryjanowski, P., Kosicki, J. Z., & Fulín, M. (2013). Complex
phenological changes and their consequences in the breeding success of a
migratory bird, the white stork Ciconia ciconia. J. Anim.
Ecol., 82, 1072-1086.
Grace, J. B., Scheiner, S. M., & Schoolmaster Jr, D. R. (2015).
Structural equation modeling: building and evaluating causal models:
Chapter 8. (Ecological Statistics: Contemporary theory and
application ) Oxford Scholarship Online, pp. 168-199.
Grevstad, F. S., & Coop, L. B. (2015). The consequences of
photoperiodism for organisms in new climates. Ecol. Appl. , 25,
1506-1517.
Hulme, P. E. (2011). Contrasting impacts of climate‐driven flowering
phenology on changes in alien and native plant species
distributions. New Phytol. , 189, 272-281.
Inouye, D. W., Barr, B., Armitage, K. B., & Inouye, B. D. (2000).
Climate change is affecting altitudinal migrants and hibernating
species. PNAS , 97, 1630-1633.
Inouye, B. D., Ehrlén, J., & Underwood, N. (2019). Phenology as a
process rather than an event: from individual reaction norms to
community metrics. Ecol. Monograph , 89, e01352.
Karlsson, B. (2014). Extended season for northern
butterflies. Int. J. Biometeorol. , 58, 691-701.
Kerr, N. Z., Wepprich, T., Grevstad, F., Dopman, E. B., Chew, F. S.,
Crone, E. E. (2020). Developmental trap or demographic bonanza? Opposing
consequences of earlier phenology in a changing climate for a
multivoltine butterfly. Glob. Change Biol., 26, 2014-2027.
Kerr, N. Z., Crone, E. E., Chew, F. S. (2019). Life history trade‐offs
are more pronounced for a noninvasive, native butterfly compared to its
invasive, exotic congener. Pop. Ecol ., 62: 119– 133.
Koenker, R., Portnoy, S., Ng, P.
T., Zeileis, A., Grosjean, P., & Ripley, B. D. (2019). Package
‘quantreg’.
Levy, R. C., Kozak, G. M., Wadsworth, C. B., Coates, B. S. & Dopman, E.
B. (2015). Explaining the sawtooth: Latitudinal periodicity in a
circadian gene correlates with shifts in generation number. J
Evol. Biol., 28, 40–53.
Lindestad, O., Wheat, C.W., Nylin, S. and Gotthard, K., (2019). Local
adaptation of photoperiodic plasticity maintains life cycle variation
within latitudes in a butterfly. Ecology , 100, p.e02550.
Macgregor, C. J., Thomas, C. D., Roy, D. B., Beaumont, M. A., Bell, J.
R., Brereton, et al. (2019). Climate-induced phenology shifts linked to
range expansions in species with multiple reproductive cycles per
year. Nature, 10, 1-10.
Melero, Y., Stefanescu, C., & Pino, J. (2016). General declines in
Mediterranean butterflies over the last two decades are modulated by
species traits. Biol. Cons., 201, 336-342.
Mitton, J. B., & Ferrenberg, S. M. (2012). Mountain pine beetle
develops an unprecedented summer generation in response to climate
warming. Amer. Nat., 179, 163-171.
Møller, A. P., Rubolini, D. & Lehikoinen, E. (2008). Populations of
migratory bird species that did not show a phenological response to
climate change are declining. PNAS, 105, 16195-16200.
Ozgul, A., Childs, D. Z., Oli, M. K., Armitage, K. B., Blumstein, D. T.,
Olson, L., et al. (2010). Coupled dynamics of body mass and population
growth in response to environmental change. Nature, 466, 482-485.
Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D.,
Descimon, H., et al. (1999). Poleward shifts in geographical ranges of
butterfly species associated with regional warming. Nature, 399,
579-583.
Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of
climate change impacts across natural systems. Nature , 421, 37-42
Polgar, C. A., & Primack, R. B. (2011). Leaf‐out phenology of temperate
woody plants: from trees to ecosystems. New phytol. , 191,
926-941.
Polgar, C. A., Primack, R. B., Williams, E. H., Stichter, S., &
Hitchcock, C. (2013). Climate effects on the flight period of Lycaenid
butterflies in Massachusetts. Biol. Cons., 160, 25-31.
Pöyry, J., Luoto, M., Heikkinen, R. K., Kuussaari, M., & Saarinen, K.
(2009). Species traits explain recent range shifts of Finnish
butterflies. Glob. Change Biol., 15, 732-743.
R Core Team (2019). R: A language and environment for statistical
computing . R Foundation for Statistical Computing, Vienna, Austria. URL
https://www.R-project.org/
Ramula, S. Johansson, J., Lindén, A. & Jonzén, N. (2015). Linking
phenological shifts to demographic change. Clim. Res. , 63,
135-144.
Rathcke, B., & Lacey, E. P. (1985). Phenological patterns of
terrestrial plants. Annu. Rev. Ecol. Evol. Syst. , 16, 179-214.
Roy D. B. & Sparks, T. H. (2000). Phenology of British Butterflies and
climate change. Glob. Change Biol., 6, 76-81.
Saino, N., Ambrosini, R., Rubolini, D., von Hardenberg, J., Provenzale,
A., Hüppop, K., et al. (2011). Climate warming, ecological mismatch at
arrival and population decline in migratory birds. Proc R Soc Lond
[Biol], 278, 835-842.
Stichter, S. (2015).Butterflies of Massachusetts . Available at:
https://www.butterfliesofmassachusetts.net/index.htm. Last
accessed 28 January 2020.
Szabo, J. K., Vesk, P. A., Baxter,
P. W. J. & Possingham, H. P. (2010). Regional avian species declines
estimated from volunteer-collected long-term data using List Length
Analysis. Ecol. Appl., 20, 2157–2169.
Tobin, P. C., Nagarkatti, S., Loeb, G., & Saunders, M. C. (2008).
Historical and projected interactions between climate change and insect
voltinism in a multivoltine species. Glob. Change Biol. , 14,
951-95.
Van Dyck, H., Bonte, D., Puls, R., Gotthard, K., & Maes, D. (2015). The
lost generation hypothesis: could climate change drive ectotherms into a
developmental trap? Oikos , 124, 54-61.
Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J., & Haddad, N. M.
(2019). Butterfly abundance declines over 20 years of systematic
monitoring in Ohio, USA. PloS ONE , 14 e0216270.
Westwood, A. R., & Blair, D. (2010). Effect of regional climate warming
on the phenology of butterflies in boreal forests in Manitoba,
Canada. Environ. Entomol. , 39, 1122-1133.
Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J. &
Davis, C. C. (2008). Phylogenetic patterns of species loss in Thoreau’s
woods are driven by climate change. PNAS, 105, 17029–17033.
Zipf, L., Williams, E. H., Primack, R. B. & Stichter, S. (2017).
Climate effects on late-season flight times of Massachusetts
butterflies. Int. J. Biometeorol., 61, 1667–1673.