References
1. WHO. Section on congenital
anomalies. Available
from:http://wwwwhoint/mediacentre/factsheets/fs370/en/ 2012.
2. Darmstadt GL, Howson CP, Walraven
G, Armstrong RW, Blencowe HK, Christianson AL, et al. Prevention of
Congenital Disorders and Care of Affected Children: A Consensus
Statement. JAMA pediatrics. 2016; 170:790-3.
3. Sitkin NA, Ozgediz D, Donkor P,
Farmer DL. Congenital anomalies in low- and middle-income countries: the
unborn child of global surgery. World journal of surgery. 2015;
39:36-40.
4. Hospital Costs for Birth Defects
Reach Tens of Billions. Jama. 2017; 317:799.
5. Morris JK, Wellesley DG, Barisic I,
Addor MC, Bergman JEH, Braz P, et al. Epidemiology of congenital
cerebral anomalies in Europe: a multicentre, population-based EUROCAT
study. Archives of disease in childhood. 2019; 104:1181-7.
6. Esteva A, Kuprel B, Novoa RA, Ko J,
Swetter SM, Blau HM, et al. Dermatologist-level classification of skin
cancer with deep neural networks. Nature. 2017; 542:115-8.
7. Becker AS, Mueller M, Stoffel E,
Marcon M, Ghafoor S, Boss A. Classification of breast cancer in
ultrasound imaging using a generic deep learning analysis software: a
pilot study. The British journal of radiology. 2018; 91:20170576.
8. Chi J WE, Babyn P, Wang J, Groot G,
Eramian M. Thyroid Nodule Classification in Ultrasound Images by
Fine-Tuning Deep Convolutional Neural Network. J Digit Imaging. 2017;
30:477-86.
9. Yap MH PG, Marti J, Ganau S, Sentis
M, Zwiggelaar R, Davison AK, Marti R. Automated Breast Ultrasound
Lesions Detection Using Convolutional Neural Networks. IEEE J Biomed
Health Inform. 2018; 22:1218-26.
10. Ehteshami Bejnordi B, Veta M,
Johannes van Diest P, van Ginneken B, Karssemeijer N, Litjens G, et al.
Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph
Node Metastases in Women With Breast Cancer. Jama. 2017; 318:2199-210.
11. Gulshan V, Peng L, Coram M,
Stumpe MC, Wu D, Narayanaswamy A, et al. Development and Validation of a
Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal
Fundus Photographs. Jama. 2016; 316:2402-10.
12. Luo H, Xu G, Li C, He L, Luo L,
Wang Z, et al. Real-time artificial intelligence for detection of upper
gastrointestinal cancer by endoscopy: a multicentre, case-control,
diagnostic study. The Lancet Oncology. 2019; 20:1645-54.
13. Kermany DS, Goldbaum M, Cai W,
Valentim CCS, Liang H, Baxter SL, et al. Identifying Medical Diagnoses
and Treatable Diseases by Image-Based Deep Learning. Cell. 2018;
172:1122-31 e9.
14. Yaqub M, Kelly B, Papageorghiou
AT, Noble JA. A Deep Learning Solution for Automatic Fetal
Neurosonographic Diagnostic Plane Verification Using Clinical Standard
Constraints. Ultrasound in medicine & biology. 2017; 43:2925-33.
15. Yu Z TE, Ni D, Qin J, Chen S, Li
S, Lei B, Wang T. A Deep Convolutional Neural Network-Based Framework
for Automatic Fetal Facial Standard Plane Recognition. IEEE J Biomed
Health Inform. 2018; 22:874-5.
16. L. W, JZ. C, S. L, B. L, T. W,
FUIQA ND. Fetal Ultrasound Image Quality Assessment With Deep
Convolutional Networks. IEEE Trans Cybern. 2017; 47:1336-49.
17. Chen H WL, Dou Q, Qin J, Li S,
Cheng JZ, Ni D, Heng PA. Ultrasound Standard Plane Detection Using a
Composite Neural Network Framework. IEEE Trans Cybern. 2017; 47:1576-86.
18. Baumgartner CF, Kamnitsas K,
Matthew J, Fletcher TP, Smith S, Koch LM, et al. SonoNet: Real-Time
Detection and Localisation of Fetal Standard Scan Planes in Freehand
Ultrasound. IEEE transactions on medical imaging. 2017; 36:2204-15.
19. Lin H, Li R, Liu Z, Chen J, Yang
Y, Chen H, et al. Diagnostic Efficacy and Therapeutic Decision-making
Capacity of an Artificial Intelligence Platform for Childhood Cataracts
in Eye Clinics: A Multicentre Randomized Controlled Trial.
EClinicalMedicine. 2019; 9:52-9.
20. Azad N, Amos S, Milne K, Power B.
Telemedicine in a rural memory disorder clinic-remote management of
patients with dementia. Canadian geriatrics journal : CGJ. 2012;
15:96-100.
21. Xie H, Wang N, He M, Zhang L, Cai
H, Xian J, et al. Using deep learning algorithms to classify fetal brain
ultrasound images as normal or abnormal. Ultrasound in obstetrics &
gynecology : the official journal of the International Society of
Ultrasound in Obstetrics and Gynecology. 2020;7.
22. International Society of
Ultrasound in O, Gynecology Education C. Sonographic examination of the
fetal central nervous system: guidelines for performing the ’basic
examination’ and the ’fetal neurosonogram’. Ultrasound in obstetrics &
gynecology : the official journal of the International Society of
Ultrasound in Obstetrics and Gynecology. 2007; 29:109-16.
23. Salomon LJ, Alfirevic Z,
Berghella V, Bilardo C, Hernandez-Andrade E, Johnsen SL, et al. Practice
guidelines for performance of the routine mid-trimester fetal ultrasound
scan. Ultrasound in obstetrics & gynecology : the official journal of
the International Society of Ultrasound in Obstetrics and Gynecology.
2011;37:116-26.
24. Redmon J DS, Girshick R , et al.
You Only Look Once: Unified, Real-Time Object Detection. arXiv.
2015.
25. Redmon J FA. YOLO9000: Better, Faster, Stronger. arXiv. 2016.
26. Redmon J FA. YOLOv3: An
Incremental Improvement. arXiv. 2018.
27. Paladini D, Quarantelli M, Sglavo
G, Pastore G, Cavallaro A, D’Armiento MR, et al. Accuracy of
neurosonography and MRI in clinical management of fetuses referred with
central nervous system abnormalities. Ultrasound in obstetrics &
gynecology : the official journal of the International Society of
Ultrasound in Obstetrics and Gynecology. 2014; 44:188-96.
28. Edwards L, Hui L. First and
second trimester screening for fetal structural anomalies. Seminars in
fetal & neonatal medicine. 2018; 23:102-11.