References
Allen, A.P., Brown, J.H. & Gillooly, J.F. (2002). Global biodiversity, biochemical kinetics, and the energetic-equivalence rule.Science , 297, 1545-1548.
Blomberg, S.P., Garland, T., Jr. & Ives, A.R. (2003). Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution , 57, 717-745.
Blonder, B. (2018). Hypervolume concepts in niche‐and trait‐based ecology. Ecography , 41, 1441-1455.
Boyce, M.S., Mao, J.S., Merrill, E.H., Fortin, D., Turner, M.G., Fryxell, J. et al. (2003). Scale and heterogeneity in habitat selection by elk in Yellowstone National Park. Ecoscience , 10, 421-431.
Brown, J.H. (2001). Mammals on mountainsides: elevational patterns of diversity. Global Ecol Biogeogr , 10, 101-109.
Brown, J.H. (2014). Why are there so many species in the tropics?J Biogeogr , 41, 8-22.
Cavender-Bares, J., Ackerly, D.D., Baum, D.A. & Bazzaz, F.A. (2004). Phylogenetic overdispersion in Floridian oak communities. Am Nat , 163, 823-843.
Cavender-Bares, J., Kozak, K.H., Fine, P.V. & Kembel, S.W. (2009). The merging of community ecology and phylogenetic biology. Ecol Lett , 12, 693-715.
Chun, J.H. & Lee, C.B. (2018). Partitioning the regional and local drivers of phylogenetic and functional diversity along temperate elevational gradients on an East Asian peninsula. Sci Rep , 8, 2853-2853
Colwell, R.K. & Lees, D.C. (2000). The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol Evol , 15, 70-76.
Colwell, R.K., Rahbek, C. & Gotelli, N.J. (2004). The Mid-Domain Effect and Species Richness Patterns: What Have We Learned So Far? The Am Nat , 163, E1-E23.
Darwin, C. (1859). On the origins of species by means of natural selection. London: Murray , 247.
Dixon, P. (2003). VEGAN, a package of R functions for community ecology.J Veg Sci , 14, 927-930.
Du, Y.B., Wen, Z.X., Zhang, J.L., Lv, X., Cheng, J.L., Ge, D.Y. et al . (2017). The roles of environment, space, and phylogeny in determining functional dispersion of rodents (Rodentia) in the Hengduan Mountains, China. Ecol Evol , 7, 10941-10951.
Evans, K.L., Warren, P.H. & Gaston, K.J. (2005). Species-energy relationships at the macroecological scale: a review of the mechanisms.Biol Rev , 80, 1-25.
Fabre, P.H., Hautier, L., Dimitrov, D. & Douzery, E.J. (2012). A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evol Biol , 12, 88.
Fick, S.E. & Hijmans, R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol , 37, 4302-4315.
Freeman, B.G., Tobias, J.A. & Schluter, D. (2019). Behavior influences range limits and patterns of coexistence across an elevational gradient in tropical birds. Ecography , 42, 1832-1840.
Gotelli, N.J. & Entsminger, G.L. (2001). Swap and fill algorithms in null model analysis: rethinking the knight’s tour. Oecologia , 129, 281-291.
Grime, J.P. (2006). Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. J Veg Sci , 17, 255-260.
Guittar, J., Shade, A. & Litchman, E. (2019). Trait-based community assembly and succession of the infant gut microbiome. Nat Commun , 10, 512.
Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guegan, J.F., Kaufman, D.M. et al . (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology , 84, 3105-3117.
Helmus, M.R., Bland, T.J., Williams, C.K. & Ives, A.R. (2007). Phylogenetic measures of biodiversity. Am Nat , 169, E68-83.
Hutchinson, G.E. (1959). Homage To Santa-Rosalia or Why Are There So Many Kinds of Animals. Am Nat , 93, 145-159.
Jansa, S.A., Giarla, T.C. & Lim, B.K. (2009). The Phylogenetic Position of the Rodent Genus Typhlomys and the Geographic Origin of Muroidea.J Mammal , 90, 1083-1094.
Kembel, S.W. (2009). Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol Lett , 12, 949-960.
Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D. et al . (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics , 26, 1463-1464.
Kozak, K.H. & Wiens, J.J. (2010). Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol Lett , 13, 1378-1389.
Kraft, N.J., Cornwell, W.K., Webb, C.O. & Ackerly, D.D. (2007). Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat , 170, 271-283.
Kraft, N.J.B. & Ackerly, D.D. (2010). Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol Monogr , 80, 401-422.
Laughlin, D.C. & Messier, J. (2015). Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol Evol , 30, 487-496.
Lei, F.M., Qu, Y.H., Song, G., Alstrom, P. & Fjeldsa, J. (2015). The potential drivers in forming avian biodiversity hotspots in the East Himalaya Mountains of Southwest China. Integr Zool , 10, 171-181.
Lei, F.M., Qu, Y.H. & Song, G. (2014). Species diversification and phylogeographical patterns of birds in response to the uplift of the Qinghai-Tibet Plateau and Quaternary glaciations. Curr Zool , 60, 149-161.
Liu, X.J., Swenson, N.G., Zhang, J.L. & Ma, K.P. (2013). The environment and space, not phylogeny, determine trait dispersion in a subtropical forest. Func Ecol , 27, 264-272.
Losos, J.B. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett , 11, 995-1003.
Losos, J.B., Leal, M., Glor, R.E., De Queiroz, K., Hertz, P.E., Rodriguez S. L. et al . (2003). Niche lability in the evolution of a Caribbean lizard community. Nature , 424, 542-545.
MacArthur, R.H. & Wilson, E.O. (2001). The theory of island biogeography . Princeton university press.
Martiny, J.B., Jones, S.E., Lennon, J.T. & Martiny, A.C. (2015). Microbiomes in light of traits: A phylogenetic perspective.Science , 350, aac9323.
McCain, C.M. (2007). Area and mammalian elevational diversity.Ecology , 88, 76-86.
Mehrabi, Z., Slade, E.M., Solis, A. & Mann, D.J. (2014). The importance of microhabitat for biodiversity sampling. PloS One , 9, e114015-e114015.
Miller, A. (2002). Subset selection in regression . Chapman and Hall/CRC.
Miner, B.G., Sultan, S.E., Morgan, S.G., Padilla, D.K. & Relyea, R.A. (2005). Ecological consequences of phenotypic plasticity. Trends Ecol Evol , 20, 685-692.
Mi, X., Swenson, N.G., Valencia, R., Kress, W.J., Erickson, D., Ren, H. et al. (2012). The Contribution of Rare Species to Community Phylogenetic Diversity across a Global Network of Forest Plots. Am Nat , 180: 1, E17-E30
Mu, Q., Heinsch, F.A., Zhao, M. & Running, S.W. (2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ , 111, 519-536.
Mu, Q.Z., Zhao, M.S. & Running, S.W. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ , 115, 1781-1800.
Norberg, J., Swaney, D.P., Dushoff, J., Lin, J., Casagrandi, R. & Levin, S.A. (2001). Phenotypic diversity and ecosystem functioning in changing environments: a theoretical framework. Proc Natl Acad Sci U S A , 98, 11376-11381.
Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M.H.H., Oksanen, M.J. et al. (2007). The vegan package. Community ecology package , 10, 631-637.
Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature , 401, 877-884.
Patino, J., Whittaker, R.J., Borges, P.A., Fernández‐Palacios, J.M., Ah‐Peng, C., Araújo, M.B. et al. (2017). A roadmap for island biology: 50 fundamental questions after 50 years of The Theory of Island Biogeography. J Biogeogr , 44, 963-983.
Pawar, S. (2015). Chapter Eight - The Role of Body Size Variation in Community Assembly. In: Advances in Ecological Research. Academic Press, pp. 201-248.
Quintero, I. & Wiens, J.J. (2013). Rates of projected climate change dramatically exceed past rates of climatic niche evolution among vertebrate species. Ecol Lett , 16, 1095-1103.
Revell, L.J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol , 3, 217-223.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S. Larget, B. et al . (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol , 61, 539-542.
Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling and more. Version 0.5–12 (BETA). J Stat Softw , 48, 1-36.
Schenk, J.J., Rowe, K.C. & Steppan, S.J. (2013). Ecological opportunity and incumbency in the diversification of repeated continental colonizations by muroid rodents. Syst Biol , 62, 837-864.
Sherman, R., Mullen, R., Haomin, L., Zhendong, F. & Yi, W. (2008). Spatial patterns of plant diversity and communities in Alpine ecosystems of the Hengduan Mountains, Northwest Yunnan, China. J Plant Ecol , 1, 117-136.
Stevens, R.D. & Gavilanez, M.M. (2015). Dimensionality of community structure: phylogenetic, morphological and functional perspectives along biodiversity and environmental gradients. Ecography , 38, 861-875.
Swenson, N.G. (2013). The assembly of tropical tree communities the advances and shortcomings of phylogenetic and functional trait analyses.Ecography , 36, 264-276.
Swenson, N.G. (2014). Functional and phylogenetic ecology in R . Springer.
Swenson, N.G. & Enquist, B.J. (2009). Opposing assembly mechanisms in a neotropical dry forest: implications for phylogenetic and functional community ecology. Ecology , 90, 2161-2170.
Team, R.C. (2013). R: A language and environment for statistical computing.
Thompson, K., Hillier, S.H., Grime, J.P., Bossard, C.C. & Band, S.R. (1996). A functional analysis of a limestone grassland community.J Veg Sci , 7, 371-380.
VIS, I. (2011). ENVI 4.7-The Environment for Visualizing Images.Boulder, Colorado, USA: ITT Visual Information Solutions .
Wang, X. & Clarke, J.A. (2014). Phylogeny and forelimb disparity in waterbirds. Evolution , 68, 2847-2860.
Webb, C.O. (2000). Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees. Am Nat , 156, 145-155.
Webb, C.O., Ackerly, D.D. & Kembel, S.W. (2008). Phylocom: software for the analysis of phylogenetic community structure and trait evolution.Bioinformatics , 24, 2098-2100.
Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. (2002). Phylogenies and community ecology. Annu Rev Ecol Evol S , 33, 475-505.
Wen, Z., Quan, Q., Du, Y., Xia, L., Ge, D. & Yang, Q. (2016a). Dispersal, niche, and isolation processes jointly explain species turnover patterns of nonvolant small mammals in a large mountainous region of China. Ecol Evol , 6, 946-960.
Wen, Z., Yang, Q., Quan, Q., Xia, L., Ge, D. & Lv, X. (2016b). Multiscale partitioning of small mammal β‐diversity provides novel insights into the Quaternary faunal history of Qinghai–Tibetan Plateau and Hengduan Mountains. J Biogeogr , 43, 1412-1424.
Whittaker, R.J., Willis, K.J. & Field, R. (2001). Scale and species richness: towards a general, hierarchical theory of species diversity.J Biogeogr , 28, 453-470.
Wiens, J.J. & Graham, C.H. (2005). Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol S , 36, 519-539.
Wilson, D.E. & Reeder, D.M. (2005). Mammal species of the world: a taxonomic and geographic reference . JHU Press.
Wilson, D.S. (1975). The adequacy of body size as a niche difference.Am Nat , 109, 769-784.
Wu, Y.J., Colwell, R.K., Rahbek, C., Zhang, C.L., Quan, Q., Wang, C.K.et al. (2013). Explaining the species richness of birds along a subtropical elevational gradient in the Hengduan Mountains. J Biogeogr , 40, 2310-2323.
Xing, Y. & Ree, R.H. (2017). Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc Natl Acad Sci U S A , 114, E3444-E3451.
Yang, J., Zhang, G.C., Ci, X.Q., Swenson, N.G., Cao, M., Sha, L.Q.et al . (2014). Functional and phylogenetic assembly in a Chinese tropical tree community across size classes, spatial scales and habitats. Func Ecol , 28, 520-529.
Zukswert, J.M. & Prescott, C.E. (2017). Relationships among leaf functional traits, litter traits, and mass loss during early phases of leaf litter decomposition in 12 woody plant species. Oecologia , 185, 305-316.