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Abstract

This paper presents the application of multi-objective genetic programming in engi-
neering issues. An evolutionary symbolic implementation was developed based on a
case study on prediction of the shear strength of slender reinforced concrete beams
without stirrups including 1942 set of published test results. In the implementation
of the MOGP model, the non-dominated sorting genetic algorithm II with adaptive
regression by mixing algorithm with considering the optimization of mean-square
error as the fitness measure and the subtree complexity was used. The developed
MOGP model was compared to previously developed GP models, different building
codes, and additional machine learning based approaches. It is clearly shown that
the MOGP model outperformed the other algorithms applied on this database and
can be a general solution on any engineering problems with the main advantage of
prediction equations without assuming prior form of the relevance among the input
predictor variables.
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1 INTRODUCTION

Since its conception in 1992 by John Koza1 Genetic Programming (GP) has been an attractive tool for researchers to identify
models and systems. GP and its close predecessor Genetic Algorithm (GA)2, are two most significant members of a group of
methods, called Evolutionary Algorithms (EA), which use natural selection principles to pursue better solutions to various types
of engineering problems. One important difference between GP and GA is that GA generally does not allow for variation of the
model structure during the computation3, while in GP the structure of the model is a part of the problem and will be a part of
the solution as well. We can say that GA is more concerned with the model parameters and inputs and assumes the behavior of
the to-be-optimized system is known, while GP does not make such assumption about the internals of the system beforehand,
and there lies its true power. GP is specifically effective for the problems in which the structure of the solution–in terms of
how the variables inside the model are related to each other (interaction among variables) and to the output–is unknown, or
expected to be poorly known4. A good example for such problems is the synthesis of electronic circuits such as amplifiers,
voltage-current converter, low-voltage balun circuit, etc.1,5,6 that was achieved by merely describing the higher level behavior
of the circuit. Streeter et al.6 managed to duplicate the functionality of five patented circuits using a GP approach which outputs
the topology of the circuit and the numerical value of its components. Other than producing novel topologies for electronic
solutions, GP has been used for synthesizing topologies of PID controllers7. Not only was the proposed GP approach able to
produce with the controller topology, but also it managed to come up with tuning rules that would outperform Ziegler-Nichols
and Astrom-Hagglund tuning rules, which have been extensively in use for the majority of the twentieth century. Another area
of strength for GP based approaches is where there are powerful simulation tools for a given problem but no concrete approach4,
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Algorithm 1 NSGA-II
GenerationsN , Population P Best Model
Initialize population P Generate random population size M Evaluate objective values Assign ranking based on Pareto sort
Generate child population Binary tournament selection Recombination and mutation

for i ∈ {1,… , N} do
for each Parent and Child in Population do

Set ranking based on Pareto sort Generate sets of non-dominated solutions Determine Crowding distance Loop inside by
adding solutions to next generation starting from the first front untilN individuals
Select points on the lower front with higher crowding distance Create next generation Binary tournament selection Recombi-
nation and mutation

especially when the problem is somehow related to mimicking a natural system or phenomenon. Evolutionary Robotics (ER) is
a field in which evolutionary algorithms are applied to solve robot design problems. For instance, something as rudimentary as
walking has been posed as a great challenge to robotics researchers for decades8. A multi-tree genetic programming approach
was adopted in9 to optimize the way a swarm of cubic shaped robots assemble themselves into a larger unit. Others used GP
approach to create controllers for mobile robots10,9,8. Due to the complex nature of walking locomotion, GP is proven very
effective in producing satisfactory results. GP has been utilized to model complex processes in other engineering issues where
the internal parts of the model are unknown or time consuming to attain11,12. In12 the authors used GP to model the strength of
the concrete cylinders after they are enhanced by Carbon-Fiber Reinforced Polymer composites. In this paper, an evolutionary
symbolic implementation for the prediction of the shear strength of slender reinforced concrete (RC) beams without stirrups was
investigated. In this implementation various models including different characteristics via the combination of multi-objective
genetic programming and adaptive regression by mixing algorithm were proposed. The proposed models were compared to the
benchmark machine learning algorithms along with the model proposed by Gandomi et al.13. Additionally, the proposed model
has shown better accuracy than models based on several building codes such as ACI building code, EC2 building code, Canadian
Standard Code, and New Zealand Standard13.

2 MULTI OBJECTIVE GENETIC PROGRAMMING

One area of use for GP1 as a symbolic optimization technique is to find a model that best represents the dataset, in the simplest
andmost accurate form. This is done by searching the space of themathematical expressions. GPwas originally formulated based
on functional programming language as an evolutionary method to use Darwin’s theory of natural selection to create computer
programs aimed at a specific problem. Instead of using one candidate, GP uses a group of individuals (known as population),
formed by randomly combining mathematical building blocks such as constants, mathematical operators, analytic functions,
state variables, and genetic operators, to make new individuals (generations) guided by fitness and complexity as objective
functions that are meant to gauge the quality of each individual. The regression model14,15 in Algorithm 1 is implemented as a
Multi-Objective Genetic Programming (MOGP) approach based on the work of Deb et al. on Non-Dominated Sorting Genetic
Algorithm II (NSGA-II).16 Instead of fitness sharing (which was used in NSGA-I), NSGA-II uses the concept of crowding
distance. In other words, in NSGA-II, parents and offspring are combined to form one set and a non-dominated sorting is used
to classify the entire population based on an estimate of the density of solutions using the crowding distance. There are two
values that the algorithm will minimize; first, the error, which can be the Maen Square Error (MSE) or Mean Absolute Error
(MAE), and second, the subtree complexity measure.17,14,15 GP has great potential in predicting complex patterns.18,19,20. It is
also a suitable approach to be implemented using common parallelization frameworks such as MPI and OpenMP. The proposed
model forms a Pareto front of models based on the fitness and subtree complexity measures. In this study, the most accurate
model, and the model at the knee of the Pareto front (the knee of the 2D space of the objectives: Fitness-Complexity space which
presents the maximal trade-offs between objectives) were presented. Additionally, a fused model of the Pareto front obtained
with Adaptive Regression by Mixing (ARM) algorithm (shown in Algorithm 2) introduced by Yang21 was presented.
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Algorithm 2 ARM
Input Variables Xi, Target Variables Yi, i ∈ (1,N), Function f̂ Best Model
Random permutation the order of the observationsM

for m ∈ {1,… ,M − 1} do Randomly permute the order of the observations. Split the data into two parts Z (1) = (Xi, Yi)
N
2
i=1

Z (2) = (Xi, Yi)Ni=N
2
+1

for j ∈ {1,… , J} do
Estimate f̂j,N

2
(x;Z(1)) of f

Estimate the variance function �2(x) by �̂2
j,N

2

(x)

for i ∈ {N
2
+ 1,… , N} do

Predict Yi by f̂j,N
2
(Xi)

Ej =
∏N

i=N2 +1
ℎ((Yi−f̂j, N2

(Xi))∕�̂j, N2
(Xi))

∏N
i=N2 +1

�̂j, N2
(Xi)

Compute the current weight Ŵj =
Ej

∑J
l=1 El

The final estimate is f̂N (x) =
∑J
j=1 Ŵj f̂j,N (x)
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FIGURE 1 Kernel density distribution of the predictor variables in the database.

3 PERFORMANCE ANALYSIS

As an example of engineering problems, a case study on prediction of the shear strength of slender reinforced concrete (RC)
beams without stirrups including 1942 set of published test results was employed13. The input predictor variables are (1) web
width (bw in mm), (2) effective depth (d in mm), (3) shear span to depth ratio ( a

d
), (4) concrete compressive strength (fc in

MPa), and (5) the amount of longitudinal reinforcement (�l in%), as well as shear strength of the RC beam without stirrups (V
in kN) as the output. Figure 1 illustrates the kernel density distribution of the predictor variables in the database. As seen, all
of the variables have a Gaussian distribution. The database randomly splitted into training and testing sets including 1458, and
486 instances, respectively. An MOGP model based on NSGA-II employing the most important factors commonly used in the
previous building codes was developed. In order to find the optimized mutation and crossover rates of the model, various rates
ranging from 0.1 to 0.9 were employed for the developed MOGP model for 200 generations. The 3-dimensional surface plot of
the mutation rates and the crossover rates based on the fitness and subtree complexity measures are illustrated in Figure ?? and
Figure ??, respectively. The highest fitness value (0.9389) was obtained with a value of 0.6 as the crossover rate, and a value of
0.4 as the mutation rate. Additionally, the lowest subtree complexity (153) was obtained with a value of 0.2 for the crossover
rate, and a value of 0.8 for the mutation rate. However, the crossover and the mutation rates of 0.1 and 0.9 showed a fitness value
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FIGURE 2 Exploring the optimized values for mutation and crossover rates for the developed GP model based on the fitness
and complexity measures.

TABLE 1 Parameters setting for the MOGP function regressor.

Parameter Setting

Population Size 1000

Number of Generations 2000

Tournament Size 20

Number of Inputs 5

Crossover Rate 0.1

Mutation Rate 0.9

Number of instances in Training Set 1458

Number of instances in Testing Set 486

Number of CPU Threads 8

1st Objective MSE

2nd Objective Subtree Complexity

Population Initialization Ramped-Half-and-Half

Function Set +,−,×, ∕,√ , ( )2, ( )3, ( )4

log, exp, sin, cos

of 0.9337 and a subtree complexity value of 181, accordingly. Therefore, the aforementioned rates were considered for running
the developed MOGP model with 2000 generations and 1000 population for the regression task. The details of the parameters
setting for the MOGP model is presented in Table 1 . The developed MOGP model was trained on the training dataset with
1458 instances and tested on the testing dataset with 486 instances. This would decrease the chance of over-fitting of the model.
The fitness and the complexity values at each generation were reported for the best individuals. Figure ?? depicts the evolution
of the best individuals in the Pareto front of the MOGP model through generations for both fitness and complexity measures.
The left Y-axis was set to fitness measure, the right Y-axis to complexity, and X-axis to number of generations. As seen, after
roughly about 100 generations the model reached the fitness with 94% accuracy. After 2000 generations the fitness reached a
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FIGURE 3 (a) The evolution of the employed objective functions, fitness and complexity measures for the developed MOGP
model through different numbers of generations. (b) Scatter plots of coefficient of determination versus root-mean-square error
(R vs RMSE) of the all models in the Pareto front (dark violet circles) with indicating the most MOGP-Accurate model (dark
orchid star), the MOGP-Fused model (purple triangle), the MOGP-Knee model (cyan square), and the GP model by Gandomi
et al.13 (yellow pentagon).
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FIGURE 4 Histograms of the ratio of the predicted and the measured V (kN) for (a) the MOGP-Fused model, and (b) the GP
model by Gandomi et al.13. Mean value and coefficient of variation of this ratio are also reported for each model.

value of 96% with the complexity value of 2227 which is about three times more than the value that was obtained for the 94%
fitness measure. By increasing the number of generations both fitness and complexity values increased as well, however the rate
of improvement of the fitness value was almost constant after 200 generations.
In the context of statistical modeling with the main purpose of prediction of future outcomes, coefficient of determination

(R2) provides a measure of how well observed outcomes are replicated by the model based on the proportion of total variation of
outcomes explained by the model. Additionally, root-mean-square error (RMSE) is frequently used to measure the differences
between values predicted by a model and the values actually observed. To explore the performance of the proposed models,
both regression metrics were computed for all of the models in the Pareto front (shown in dark violet circles) as shown in
Figure ??. Furthermore, the specified models including the most MOGP-Accurate model (dark orchid star), the MOGP-Fused
model (purple triangle), the MOGP-Knee model (cyan square), and the GP model by Gandomi et al.13 (yellow pentagon) were
indicated. It is clearly shown that the ARM algorithm found a model even better than the most accurate model in the Pareto front.
The MOGP-Fused model with a value of 0.9487 asR, a value of 2480.92 asMSE, and a value of 25.18 asMAE outperformed
the other proposed models in the Pareto front and the GP model proposed by Gandomi et al.13 with a value of 0.9254 as R, a
value of 3566.47 asMSE, and a value of 34.70 asMAE.
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FIGURE 5 Measured versus predicted V (kN) values using (a) the MOGP-Fused model, and (b) the GP model by Gandomi et
al.13. The black dashed line indicates the ideal fit.
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FIGURE 6 (a) REC curves of various regression methods along with calculated AUC compared to the developed symbolic
regression model using MOGP. (b) Radar plot representation of the coefficient of determination for various regression methods
compared to the developed symbolic regression model using MOGP.

to study the quality assurance, mean value (�) and coefficient of variation (CV ) of this ratio are also reported. Figure 4
presents the comparison of the histograms of theMOGP-Fused model and the GPmodel presented by Gandomi et al.13. As seen,
the MOGP-Fused model has a mean value of 1.0840 and a coefficient of variation of 0.309 which is better than the GP model
with a mean value of 1.0679 and a coefficient of variation of 0.477. By using the coefficient of variation, we can get a better
understanding of the standard deviation in light of the data mean value. Figure 5 shows the measured versus predicted shear
strength values resulted from the developed models. Multi stage Genetic Programming can serve as a substitute for the NSGA-II
based model that was developed to decrease error decomposition11,22. There are two main stages in the MSGP algorithm:

1. incorporating the individual effect of the input variables

2. incorporating the interactions among the input variables

The MSGP formulates these two terms in an efficient procedure to optimize the error among predicted and actual values. This
procedure can be parallelized to decrease overall computation time.
There are three machine learning regression models compared with the developed MOGP model:
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TABLE 2 External validation results of the developed MOGP models.

MOGP
Condition Accurate Fused Knee GP

R R ≥ 0.8 0.94341 0.95071 0.94075 0.92806

K =
∑n
i=1 ℎiti
ℎ2i

0.85 < K < 1.15 0.90652 0.98390 0.87762 0.86914

K ′ =
∑n
i=1 ℎiti
t2i

0.85 < K ′ < 1.15 1.02946 0.95670 1.05910 1.05295

Rm = R2(1 −
√

|R2 − R2
0|) Rm ≥ 0.5 0.61620 0.62421 0.62295 0.57937

R2
o = 1 −

∑n
i=1(ti−ℎ

0
i )

2

∑n
i=1(ti−t̄i)2

ℎ0i = K × ti 0.98467 0.99956 0.97270 0.96845

R′2
o = 1 −

∑n
i=1(ℎi−t

0
i )

2

∑n
i=1(ℎi−ℎ̄i)2

t0i = K ′ × ℎi 0.99856 0.99690 0.99424 0.99537

|m| = |R2−R2
0|

R2 |m| < 0.1 0.10634 0.10590 0.09907 0.12439

|n| = |R2−R′2
0 |

R2 |m| < 0.1 0.12195 0.10295 0.12340 0.15565

1. Decision Tree (DT)

2. Support Vector Regressor (SVR)

3. Least Absolute Shrinkage and Selection Operator (LASSO)

A Receiver Operating Characteristics (ROC) curve for a binary classifier is a way to visualize how the trade-off between true
positive rate and true negative rate can affect the performance of the system. The Area under this curve (AUC) is a measure of
expected performance for that classifier.23. In the case of a regressor, Regression Error Characteristic (REC) curve is used as a
way to visualize the performance. It shows the percentage of the data instances predicted within tolerance (on the y-axis) vs the
tolerance level (on the x-axis). The resulting curve estimates the cumulative distribution function of the error. The area over the
ROC and REC curve (AOC), which is just 1 - AUC is a biased estimate of the expected error. The coefficient of determination
R2 can be also calculated with respect to the AOC23. In addition, The shape of the REC curve can also be used to provide insight
for the analysts about the data modeling. The REC curve was implemented in Python1 and the details of the error metrics and
scaling of the residuals are also available24. Figure ?? compares the REC curves of the proposedMOGP-Fusedmodel alongwith
the machine learning algorithms and Gandomi et al’s model proposed in13. All of the models predicted all the instances with a
normalized deviation of 0.55 correctly. By decreasing the deviation tolerance, the fraction of the correct predictions decreased
as well. A value of 0.3 can be the critical tolerance for the employed models. The developed MOGP-Fused model with an AUC
of 84.50% outperformed the other models. In fact, the developed MOGP model has the ability of prediction of the instances
with a deviation of less than 0.3. Also, shows the radar plot of the performance of the GP model proposed by Gandomi et al13
and the regression models are shown in Figure ??. In terms of coefficient of determination R. By comparing the coefficient of
determination, it is clear that the MOGP model with an R value of 0.9487 outperformed the other models. The closest R score
to the proposed model is the GP model presented by Gandomi et al.13 with an R score of 0.9254.
According to the external verification criteria suggested by Golbraikh and Tropsha25 for a proposed model: the slope(K orK ′)

of the regression line between the actual data (ℎi) and the predicted data (ti) should be close to 1, and the performance indices
|m| and |n| should be lower than 0.1. In 2008, Roy et al.26 introduced an index (Rm) for external predictability evaluation of
models. Their validation criterion is satisfied for Rm ≥ 0.5. As shown in Table 2 , the statistical parameters of the variations of
the MOGP model are externally validated. Additionally, the external verification results of the proposed GP model by Gandomi
et al.13 are also compared with the MOGP models. As seen, the MOGP-Fused model outperformed the other models.

1https://github.com/amirhessam88/Regression-Error-Characteristic-Curve
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4 CONCLUSIONS

This paper shows the application of robust solutions employing multi-objective genetic programming specifically in engineering
problems. In this regard, an evolutionary symbolic implementation for shear strength of slender RC beams was developed. The
model uses NSGA-II to optimize subtree complexity as the complexity measure and the MSE as the fitness function. The final
result was obtained after running the model for 2000 generations with the population size of 1000. Training-testing split was
used to monitor and mitigate any possible overfitting. Additionally, the mutation and the crossover rates were optimized over 200
generations based on the fitness and complexity measures. A total of five features from shear strength database were employed
as the predictor input variables of the MOGP regression model. The developed MOGP model outperformed other machine
learning algorithms that used this database for training.
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