Acknowledgements
This work was supported by the National Natural Science Foundation of
China (51805294), Tsinghua University Initiative Scientific Research
Program (20197050024), Tsinghua University-Peking Union Medical College
Hospital Initiative Scientific Research Program (20191080843), the
National Key Research and Development Program of China (2018YFA0703004),
and the 111 Project (G2017002).
References
Bai, H., Li, C., Wang, X., & Shi, G. (2011). On the gelation of
graphene oxide. The Journal of Physical Chemistry C, 115 (13),
5545-5551.
Fang, Y., Zhang, T., Zhang, L., Gong, W., & Sun, W. (2019). Biomimetic
design and fabrication of scaffolds integrating oriented micro-pores
with branched channel networks for myocardial tissue engineering.Biofabrication, 11 (3), 035004. doi:10.1088/1758-5090/ab0fd3
Guillouzo, A., Corlu, A., Aninat, C., Glaise, D., Morel, F., &
Guguen-Guillouzo, C. (2007). The human hepatoma HepaRG cells: a highly
differentiated model for studies of liver metabolism and toxicity of
xenobiotics. Chem Biol Interact, 168 (1), 66-73.
doi:10.1016/j.cbi.2006.12.003
Hummers Jr, W. S., & Offeman, R. E. (1958). Preparation of graphitic
oxide. Journal of the american chemical society, 80 (6),
1339-1339.
Jakus, A. E., Secor, E. B., Rutz, A. L., Jordan, S. W., Hersam, M. C.,
& Shah, R. N. (2015). Three-dimensional printing of high-content
graphene scaffolds for electronic and biomedical applications. ACS
nano, 9 (4), 4636-4648. doi:10.1021/acsnano.5b01179
Jiang, Y., Xu, Z., Huang, T., Liu, Y., Guo, F., Xi, J., . . . Gao, C.
(2018). Direct 3D printing of ultralight graphene oxide aerogel
microlattices. Advanced Functional Materials, 28 (16), 1707024.
Lee, W. C., Lim, C. H., Shi, H., Tang, L. A., Wang, Y., Lim, C. T., &
Loh, K. P. (2011). Origin of enhanced stem cell growth and
differentiation on graphene and graphene oxide. ACS nano, 5 (9),
7334-7341. doi:10.1021/nn202190c
Loeblein, M., Perry, G., Tsang, S. H., Xiao, W., Collard, D., Coquet,
P., . . . Teo, E. H. (2016). Three-Dimensional Graphene: A Biocompatible
and Biodegradable Scaffold with Enhanced Oxygenation. Adv Healthc
Mater, 5 (10), 1177-1191. doi:10.1002/adhm.201501026
Ouyang, L., Yao, R., Zhao, Y., & Sun, W. (2016). Effect of bioink
properties on printability and cell viability for 3D bioplotting of
embryonic stem cells. Biofabrication, 8 (3), 035020.
doi:10.1088/1758-5090/8/3/035020
Sahni, D., Jea, A., Mata, J. A., Marcano, D. C., Sivaganesan, A.,
Berlin, J. M., . . . Tour, J. M. (2013). Biocompatibility of pristine
graphene for neuronal interface. J Neurosurg Pediatr, 11 (5),
575-583. doi:10.3171/2013.1.PEDS12374
Song, Q., Jiang, Z., Li, N., Liu, P., Liu, L., Tang, M., & Cheng, G.
(2014). Anti-inflammatory effects of three-dimensional graphene foams
cultured with microglial cells. Biomaterials, 35 (25), 6930-6940.
doi:10.1016/j.biomaterials.2014.05.002
Truby, R. L., & Lewis, J. A. (2016). Printing soft matter in three
dimensions. Nature, 540 (7633), 371-378. doi:10.1038/nature21003
Wang, X., Jiang, M., Zhou, Z., Gou, J., & Hui, D. (2017). 3D printing
of polymer matrix composites: A review and prospective. Composites
Part B: Engineering, 110 , 442-458.
Xie, W., Song, F., Wang, R., Sun, S., Li, M., Fan, Z., . . . Wang, J.
(2018). Mechanically robust 3D graphene–hydroxyapatite hybrid
bioscaffolds with enhanced osteoconductive and biocompatible
performance. Crystals, 8 (2), 105.
Xu, Y., Sheng, K., Li, C., & Shi, G. (2010). Self-assembled graphene
hydrogel via a one-step hydrothermal process. ACS nano, 4 (7),
4324-4330. doi:10.1021/nn101187z
Yao, Y., Fu, K. K., Yan, C., Dai, J., Chen, Y., Wang, Y., . . . Hu, L.
(2016). Three-Dimensional Printable High-Temperature and High-Rate
Heaters. ACS nano, 10 (5), 5272-5279. doi:10.1021/acsnano.6b01059
Yocham, K. M., Scott, C., Fujimoto, K., Brown, R., Tanasse, E., Oxford,
J. T., . . . Estrada, D. (2018). Mechanical Properties of Graphene Foam
and Graphene Foam—Tissue Composites. Advanced engineering
materials, 20 (9), 1800166
Zhang, Q., Zhang, F., Medarametla, S. P., Li, H., Zhou, C., & Lin, D.
(2016). 3D Printing of Graphene Aerogels. Small, 12 (13),
1702-1708. doi:10.1002/smll.201503524
Zhu, C., Han, T. Y., Duoss, E. B., Golobic, A. M., Kuntz, J. D.,
Spadaccini, C. M., & Worsley, M. A. (2015). Highly compressible 3D
periodic graphene aerogel microlattices. Nat Commun, 6 (1), 6962.
doi:10.1038/ncomms7962
Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., &
Ruoff, R. S. (2010). Graphene and graphene oxide: synthesis, properties,
and applications. Adv Mater, 22 (35), 3906-3924.
doi:10.1002/adma.201001068