References
Alluri, H., Wilson R.L., Anasooya Shaji C., Wiggins-Dohlvik K., Patel S., Liu Y., et al. (2016). melatonin preserves blood-brain barrier integrity and permeability via matrix metalloproteinase-9 inhibition. PLoS One, 11: e0154427.
Andersen, L.P., Gogenur I., Rosenberg J., & Reiter R.J. (2016a). The Safety of melatonin in humans. Clin Drug Investig, 36: 169-175.
Andersen, L.P., Werner M.U., Rosenkilde M.M., Fenger A.Q., Petersen M.C., Rosenberg J., et al. (2016b). Pharmacokinetics of high-dose intravenous melatonin in humans. J Clin Pharmacol, 56: 324-329.
Andersen, L.P., Werner M.U., Rosenkilde M.M., Harpsoe N.G., Fuglsang H., Rosenberg J., et al. (2016c). Pharmacokinetics of oral and intravenous melatonin in healthy volunteers. BMC Pharmacol Toxicol, 17: 8.
Anderson, G., Maes M., Markus R.P., & Rodriguez M. (2015). Ebola virus: melatonin as a readily available treatment option. J Med Virol, 87: 537-543.
Anderson, G., & Reiter R.J. (2020). Melatonin: Roles in influenza, Covid-19, and other viral infections. Rev Med Virol, e2109.
Arbour, N., Day R., Newcombe J., & Talbot P.J. (2000). Neuroinvasion by human respiratory coronaviruses. J Virol, 74: 8913-8921.
Bingol, B., Wang C.F., Arnott D., Cheng D., Peng J., & Sheng M. (2010). Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell, 140: 567-578.
Brigo, F., Igwe S.C., & Del Felice A. (2016). Melatonin as add-on treatment for epilepsy. Cochrane Database Syst Rev, CD006967.
Brzezinski, A. (1997). Melatonin in humans. N Engl J Med, 336: 186-195.
Carrascal, L., Nunez-Abades P., Ayala A., & Cano M. (2018). Role of melatonin in the inflammatory process and its therapeutic potential. Curr Pharm Des, 24: 1563-1588.
Carrillo-Vico, A., Guerrero J.M., Lardone P.J., & Reiter R.J. (2005). A review of the multiple actions of melatonin on the immune system. Endocrine, 27: 189-200.
Changeux, J.P., Amoura Z., Rey F., & Miyara M. (2020). A nicotinic hypothesis for Covid-19 with preventive and therapeutic implications. Qeios, ID: FXGQSB 1-11.
Chen, N., Zhou M., Dong X., Qu J., Gong F., Han Y., et al. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 395: 507-513.
Chen, R., Wang K., Yu J., Chen Z., Wen C., & Xu Z. (2020). The spatial and cell-type distribution of SARS-CoV-2 receptor ACE2 in human and mouse brain. bioRxiv, 2020.2004.2007.030650.
Conti, P., Ronconi G., Caraffa A., Gallenga C.E., Ross R., Frydas I., et al. (2020). Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents, 34.
Deftereos, S.G., Siasos G., Giannopoulos G., Vrachatis D.A., Angelidis C., Giotaki S.G., et al. (2020). The Greek study in the effects of colchicine in COVID-19 complications prevention (GRECCO-19 study): Rationale and study design. Hellenic J Cardiol, in press.
Desforges, M., Le Coupanec A., Stodola J.K., Meessen-Pinard M., & Talbot P.J. (2014). Human coronaviruses: viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Res, 194: 145-158.
Di, W.L., Kadva A., Johnston A., & Silman R. (1997). Variable bioavailability of oral melatonin. N Engl J Med, 336: 1028-1029.
Ding, Y., He L., Zhang Q., Huang Z., Che X., Hou J., et al. (2004). Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol, 203: 622-630.
Donoghue, M., Hsieh F., Baronas E., Godbout K., Gosselin M., Stagliano N., et al. (2000). A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res, 87: E1-9.
Ekmekcioglu, C. (2006). Melatonin receptors in humans: biological role and clinical relevance. Biomed Pharmacother, 60: 97-108.
Elmahallawy, E.K., Luque J.O., Aloweidi A.S., Gutierrez-Fernandez J., Sampedro-Martinez A., Rodriguez-Granger J., et al. (2015). Potential relevance of melatonin against some infectious agents: a review and assessment of recent research. Curr Med Chem, 22: 3848-3861.
Farez, M.F., Mascanfroni I.D., Mendez-Huergo S.P., Yeste A., Murugaiyan G., Garo L.P., et al. (2015). Melatonin contributes to the seasonality of multiple sclerosis relapses. Cell, 162: 1338-1352.
Filatov, A., Sharma P., Hindi F., & ESpinosa P.S. (2020). Neurological complications of coronavirus disease (COVID-19): Encephalopathy. Cureus, 12: e7352.
Galougahi, M.K., Ghorbani J., Bakhshayeshkaram M., Naeini A.S., & Haseli S. (2020). Olfactory bulb magnetic resonance imaging in SARS-CoV-2-induced anosmia: The first report. Acad Radiol, in press.
García-García, P., López-Muñoz F., & Álamo C. (2016). New galenic formulations of melatonin. In melatonin, neuroprotective agents and antidepressant therapy. eds López-Muñoz, F, Srinivasan, V, de Berardis, D, Álamo, C, & Kato, TA Springer India: New Delhi, pp 193-202.
Gerber, J., Lotz M., Ebert S., Kiel S., Huether G., Kuhnt U., et al. (2005). Melatonin is neuroprotective in experimental Streptococcus pneumoniae meningitis. J Infect Dis, 191: 783-790.
Gotti, C., & Clementi F. (2004). Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol, 74: 363-396.
Gu, J., Han B., & Wang J. (2020). COVID-19: Gastrointestinal Manifestations and Potential Fecal-Oral Transmission. Gastroenterology, 158:1518-1519.
Guan, W.J., Ni Z.Y., Hu Y., Liang W.H., Ou C.Q., He J.X., et al. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med, 382: 1708-1720
Harpsoe, N.G., Andersen L.P., Gogenur I., & Rosenberg J. (2015). Clinical pharmacokinetics of melatonin: a systematic review. Eur J Clin Pharmacol, 71: 901-909.
Helms, J., Kremer S., Merdji H., Clere-Jehl R., Schenck M., Kummerlen C., et al. (2020). Neurologic Features in Severe SARS-CoV-2 Infection. New England Journal of Medicine.
Hoffmann, M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., et al. (2020). SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 181: 271-280 e278.
Holappa, M., Valjakka J., & Vaajanen A. (2015). Angiotensin(1-7) and ACE2, ”the hot spots” of renin-angiotensin system, detected in the human aqueous humor. Open Ophthalmol J, 9: 28-32.
Huang, C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395: 497-506.
Huang, S.H., Cao X.J., Liu W., Shi X.Y., & Wei W. (2010). Inhibitory effect of melatonin on lung oxidative stress induced by respiratory syncytial virus infection in mice. J Pineal Res, 48: 109-116.
Huang, Y., & Zhao N. (2020). Generalized anxiety disorder, depressive symptoms and sleep quality during COVID-19 outbreak in China: a web-based cross-sectional survey. Psychiatry Res, 288: 112954.
Jin, H., Hong C., Chen S., Zhou Y., Wang Y., Mao L., et al. (2020). Consensus for prevention and management of coronavirus disease 2019 (COVID-19) for neurologists. Stroke and Vascular Neurology, svn-2020-000382.
Junaid, A., Tang H., van Reeuwijk A., Abouleila Y., Wuelfroth P., van Duinen V., et al. (2020). Ebola hemorrhagic shock syndrome-on-a-chip. iScience, 23: 100765.
Kabbani, N., & Olds J.L. (2020). Does COVID19 infect the brain? If so, smokers might be at a higher risk. Mol Pharmacol, 97: 351-353.
Karasek, M. (2004). Melatonin, human aging, and age-related diseases. Exp Gerontol, 39: 1723-1729.
Karimi, N., Sharifi Razavi A., & Rouhani N. (2020). Frequent convulsive seizures in an adult patient with COVID-19: A case report. Iran Red Crescent Med J, 22: e102828.
Kuba, K., Imai Y., Rao S., Gao H., Guo F., Guan B., et al. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med, 11: 875-879.
Lambert, D.W., Clarke N.E., Hooper N.M., & Turner A.J. (2008). Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain. FEBS Lett, 582: 385-390.
Lapina, C., Rodic M., Peschanski D., & Mesmoudi S. (2020). The potential genetic network of human brain SARS-CoV-2 infection. bioRxiv, 2020.2004.2006.027318.
Lau, K.K., Yu W.C., Chu C.M., Lau S.T., Sheng B., & Yuen K.Y. (2004). Possible central nervous system infection by SARS coronavirus. Emerg Infect Dis, 10: 342-344.
Lee, C.H., Yoo K.Y., Choi J.H., Park O.K., Hwang I.K., Kwon Y.G., et al. (2010). Melatonin’s protective action against ischemic neuronal damage is associated with up-regulation of the MT2 melatonin receptor. J Neurosci Res, 88: 2630-2640.
Li, K., Wohlford-Lenane C., Perlman S., Zhao J., Jewell A.K., Reznikov L.R., et al. (2016). Middle east respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis, 213: 712-722.
Li, Y., Zhai P., & Ding Y. (2020). The impact of COVID-19 on ischemic stroke: A case report. Research Square. 10.21203/rs.3.rs-20393/v1
Li, Y.C., Bai W.Z., & Hashikawa T. (2020). The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol, in press.
Linton, N.M., Kobayashi T., Yang Y., Hayashi K., Akhmetzhanov A.R., Jung S.M., et al. (2020). Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: a statistical analysis of publicly available case data. J Clin Med, 9: 538
Lippi, A., Domingues R., Setz C., Outeiro T.F., & Krisko A. (2020). SARS-CoV-2: At the crossroad between aging and neurodegeneration. Mov Disord, in press.
Liu, J., Clough S.J., Hutchinson A.J., Adamah-Biassi E.B., Popovska-Gorevski M., & Dubocovich M.L. (2016). MT1 and MT2 melatonin receptors: A therapeutic perspective. Annu Rev Pharmacol Toxicol, 56: 361-383.
Liu, L., Chen H., Jin J., Tang Z., Yin P., Zhong D., et al. (2019). Melatonin ameliorates cerebral ischemia/reperfusion injury through SIRT3 activation. Life Sci, 239: 117036.
Liu, W.C., Wang X., Zhang X., Chen X., & Jin X. (2017). Melatonin supplementation, a strategy to prevent neurological diseases through maintaining integrity of blood brain barrier in old people. Front Aging Neurosci, 9: 165.
Ma, S., Chen J., Feng J., Zhang R., Fan M., Han D., et al. (2018). Melatonin ameliorates the progression of atherosclerosis via mitophagy activation and NLRP3 inflammasome inhibition. Oxid Med Cell Longev, 2018: 9286458.
Mahase, E. (2020). Covid-19: WHO declares pandemic because of “alarming levels” of spread, severity, and inaction. BMJ, 368: m1036.
Mao, L., Wang M., Chen S., He Q., Chang J., Hong C., et al. (2020). Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: a retrospective case series study. medRxiv, 2020.2002.2022.20026500.
Mehta, P., McAuley D.F., Brown M., Sanchez E., Tattersall R.S., Manson J.J., et al. (2020). COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet, 395: 1033-1034.
Menendez-Pelaez, A., & Reiter R.J. (1993). Distribution of melatonin in mammalian tissues: the relative importance of nuclear versus cytosolic localization. J Pineal Res, 15: 59-69.
Montiel, M., Bonilla E., Valero N., Mosquera J., Espina L.M., Quiroz Y., et al. (2015). Melatonin decreases brain apoptosis, oxidative stress, and CD200 expression and increased survival rate in mice infected by Venezuelan equine encephalitis virus. Antivir Chem Chemother, 24: 99-108.
Moriguchi, T., Harii N., Goto J., Harada D., Sugawara H., Takamino J., et al. (2020). A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis, 94: 55-58.
Nataf, S. (2020). An alteration of the dopamine synthetic pathway is possibly involved in the pathophysiology of COVID-19. J Med Virol, in press.
Ng, K.Y., Leong M.K., Liang H., & Paxinos G. (2017). Melatonin receptors: distribution in mammalian brain and their respective putative functions. Brain Struct Funct, 222: 2921-2939.
Nickkholgh, A., Schneider H., Sobirey M., Venetz W.P., Hinz U., Pelzl le H., et al. (2011). The use of high-dose melatonin in liver resection is safe: first clinical experience. J Pineal Res, 50: 381-388.
Niranjan, R., Nath C., & Shukla R. (2012). Melatonin attenuated mediators of neuroinflammation and alpha-7 nicotinic acetylcholine receptor mRNA expression in lipopolysaccharide (LPS) stimulated rat astrocytoma cells, C6. Free Radic Res, 46: 1167-1177.
Oakes, J.M., Fuchs R.M., Gardner J.D., Lazartigues E., & Yue X. (2018). Nicotine and the renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol, 315: R895-R906.
Paniz-Mondolfi, A., Bryce C., Grimes Z., Gordon R.E., Reidy J., Lednicky J., et al. (2020). Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol, in press.
Parada, E., Buendia I., Leon R., Negredo P., Romero A., Cuadrado A., et al. (2014). Neuroprotective effect of melatonin against ischemia is partially mediated by alpha-7 nicotinic receptor modulation and HO-1 overexpression. J Pineal Res, 56: 204-212.
Peschechera, E., & Veronesi P.A. (2020). Injectable melatonin: an anti-cancer and anti-viral treatment option. Melatonin Research. Melatonin Research, 3: 77-80.
Poyiadji, N., Shahin G., Noujaim D., Stone M., Patel S., & Griffith B. (2020). COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI Features. Radiology, 201187.
Pozo, D., Garcia-Maurino S., Guerrero J.M., & Calvo J.R. (2004). mRNA expression of nuclear receptor RZR/RORalpha, melatonin membrane receptor MT, and hydroxindole-O-methyltransferase in different populations of human immune cells. J Pineal Res, 37: 48-54.
Qi, F., Qian S., Zhang S., & Zhang Z. (2020). Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun, 526: 135-140.
Radmanesh, F., Rodriguez-Pla A., Pincus M.D., & Burns J.D. (2020). Severe cerebral involvement in adult-onset hemophagocytic lymphohistiocytosis. J Clin Neurosci, in press.
Ramos, E., Gil-Martín E., & Romero A. (2020). Chapter Three - Melatonin and neurodegeneration: From neurotoxic environment to cell resilience. In Advances in Molecular Toxicology. eds Fishbein, JC, & Heilman, JM Elsevier, pp 69-108.
Ramos, E., Patiño P., Reiter R.J., Gil-Martin E., Marco-Contelles J., Parada E., et al. (2017). Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med, 104: 32-53.
Reiter, R.J., Craft C.M., Johnson J.E., Jr., King T.S., Richardson B.A., Vaughan G.M., et al. (1981). Age-associated reduction in nocturnal pineal melatonin levels in female rats. Endocrinology, 109: 1295-1297.
Reiter, R.J., Tan D.X., Kim S.J., & Cruz M.H. (2014). Delivery of pineal melatonin to the brain and SCN: role of canaliculi, cerebrospinal fluid, tanycytes and Virchow-Robin perivascular spaces. Brain Struct Funct, 219: 1873-1887.
Reiter, R.J, Ma Q., & Sharma R. (2020a). Treatment of ebola and other infectious diseases: melatonin “goes viral”. Melatonin Research, 3: 43-57.
Reiter, R.J., Ma Q., & Sharma R. (2020b). Melatonin in mitochondria: Mitigating clear and present dangers. Physiology (Bethesda), 35: 86-95.
Rizzo, P., Vieceli Dalla Sega F., Fortini F., Marracino L., Rapezzi C., & Ferrari R. (2020). COVID-19 in the heart and the lungs: could we ”Notch” the inflammatory storm? Basic Res Cardiol, 115: 31.
Rodriguez, C., Mayo J.C., Sainz R.M., Antolin I., Herrera F., Martin V., et al. (2004). Regulation of antioxidant enzymes: a significant role for melatonin. J Pineal Res, 36: 1-9.
Rosenberg, G.A. (2012). Neurological diseases in relation to the blood-brain barrier. J Cereb Blood Flow Metab, 32: 1139-1151.
Ruan, Q., Yang K., Wang W., Jiang L., & Song J. (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med.
Seabra, M.L., Bignotto M., Pinto L.R., Jr., & Tufik S. (2000). Randomized, double-blind clinical trial, controlled with placebo, of the toxicology of chronic melatonin treatment. J Pineal Res, 29: 193-200.
Shukla, M., Chinchalongporn V., Govitrapong P., & Reiter R.J. (2019). The role of melatonin in targeting cell signaling pathways in neurodegeneration. Ann N Y Acad Sci, 1443: 75-96.
Silvestri, M., & Rossi G.A. (2013). Melatonin: its possible role in the management of viral infections–a brief review. Ital J Pediatr, 39: 61.
Slominski, R.M., Reiter R.J., Schlabritz-Loutsevitch N., Ostrom R.S., & Slominski A.T. (2012). Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol, 351: 152-166.
Stewart, L.S., & Leung L.S. (2005). Hippocampal melatonin receptors modulate seizure threshold. Epilepsia, 46: 473-480.
Su, H., Li J., Chen T., Li N., Xiao J., Wang S., et al. (2016). Melatonin attenuates angiotensin II-induced cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway. Mol Cell Biochem, 422: 85-95.
Tan, D.X. (2010). Melatonin and brain. Curr Neuropharmacol, 8: 161.
Tan, D.X., Korkmaz A., Reiter R.J., & Manchester L.C. (2014). Ebola virus disease: potential use of melatonin as a treatment. J Pineal Res, 57: 381-384.
Tan, DX., & Hardeland R. (2020). Potential utility of melatonin in deadly infectious diseases related to the overreaction of innate immune response and destructive inflammation: focus on COVID-19 Melatonin Research, 3: 120-143.
Tarocco, A., Caroccia N., Morciano G., Wieckowski M.R., Ancora G., Garani G., et al. (2019). Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis, 10: 317.
Tiong, Y.L., Ng K.Y., Koh R.Y., Ponnudurai G., & Chye S.M. (2019). melatonin prevents oxidative stress-induced mitochondrial dysfunction and apoptosis in high glucose-treated schwann cells via upregulation of Bcl2, NF-kappaB, mTOR, Wnt signalling pathways. Antioxidants (Basel), 8: 198.
Valero, N., Nery A., Bonilla E., Espina L.M., Chacin-Bonilla L., Anez F., et al. (2009). Antagonistic effect of luzindole in mice treated with melatonin during the infection with the venezuelan equine encephalomyelitis virus. Neurochem Res, 34: 268-273.
Vriend, J., & Reiter R.J. (2014). Melatonin and ubiquitin: what’s the connection? Cell Mol Life Sci, 71: 3409-3418.
Wan, Y., Shang J., Graham R., Baric R.S., & Li F. (2020). Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol, 94: e00127-20.
Wang, D., Hu B., Hu C., Zhu F., Liu X., Zhang J., et al. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 323: 1061-1069
Wang, K., Chen W., Zhou Y.-S., Lian J.-Q., Zhang Z., Du P., et al. (2020). SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv, 2020.2003.2014.988345.
Wu, J., Cao S., Li Y., Yue H., Li C., Xia M., et al. (2020). Insight from a noticeable difference between two families infected with COVID-19. Research Square, 10.21203/rs.3.rs-22850/v1.
Xia, H., & Lazartigues E. (2010). Angiotensin-converting enzyme 2: central regulator for cardiovascular function. Curr Hypertens Rep, 12: 170-175.
Xiang, P.P.P. (2020). First case of 2019 novel coronavirus disease with Encephalitis. ChinaXiv, T202003.
Xiao, F., Tang M., Zheng X., Liu Y., Li X., & Shan H. (2020). Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology,158: 1831-1833.
Xu, H., Zhong L., Deng J., Peng J., Dan H., Zeng X., et al. (2020). High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci, 12: 8.
Xu, J., Zhong S., Liu J., Li L., Li Y., Wu X., et al. (2005). Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin Infect Dis, 41: 1089-1096.
Xu, X., Wang G., Ai L., Shi J., Zhang J., & Chen Y.X. (2018). Melatonin suppresses TLR9-triggered proinflammatory cytokine production in macrophages by inhibiting ERK1/2 and AKT activation. Sci Rep, 8: 15579.
Xu, X., Chen P., Wang J., Feng J., Zhou H., Li X., et al. (2020). Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci, 63: 457-460.
Ye, M., Ren Y., & Lv T. (2020). Encephalitis as a clinical manifestation of COVID-19. Brain Behav Immun, in press.
Zetner, D., Andersen L.P., & Rosenberg J. (2016). Pharmacokinetics of Alternative Administration Routes of Melatonin: A Systematic Review. Drug Res (Stuttg), 66: 169-173.
Zhang, R., Wang X., Ni L., Di X., Ma B., Niu S., et al. (2020). COVID-19: Melatonin as a potential adjuvant treatment. Life Sci, 250: 117583.
Zhao, H., Shen D., Zhou H., Liu J., & Chen S. (2020). Guillain-Barre syndrome associated with SARS-CoV-2 infection: causality or coincidence? Lancet Neurol.
Zhou, P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579: 270-273.
Zhou, Y., Hou Y., Shen J., Huang Y., Martin W., & Cheng F. (2020). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov, 6: 14.
Zou, X., Chen K., Zou J., Han P., Hao J., & Han Z. (2020). Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med.