REFERENCES
Ahmed, A. M., Motoi, Y., Sato, M., Maruyama, A., Watanabe, H., Fukumoto, Y., & Shimamoto, T. (2007). Zoo animals as reservoirs of gram-negative bacteria harboring integrons and antimicrobial resistance genes.Appl Environ Microbiol , 73(20), 6686-6690. doi:10.1128/aem.01054-07
Allen, S. E., Boerlin, P., Janecko, N., Lumsden, J. S., Barker, I. K., Pearl, D. L., . . . Jardine, C. (2011). Antimicrobial resistance in generic Escherichia coli isolates from wild small mammals living in swine farm, residential, landfill, and natural environments in southern Ontario, Canada. Appl Environ Microbiol , 77(3), 882-888. doi:10.1128/aem.01111-10
Ashton, P. M., Nair, S., Dallman, T., Rubino, S., Rabsch, W., Mwaigwisya, S., . . . O’Grady, J. (2015). MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat Biotechnol , 33(3), 296-300. doi:10.1038/nbt.3103
Babic, M., Hujer, A. M., & Bonomo, R. A. (2006). What’s new in antibiotic resistance? Focus on beta-lactamases. Drug Resist Updat , 9(3), 142-156. doi:10.1016/j.drup.2006.05.005
Bender, J. B., & Shulman, S. A. (2004). Reports of zoonotic disease outbreaks associated with animal exhibits and availability of recommendations for preventing zoonotic disease transmission from animals to people in such settings. J Am Vet Med Assoc , 224(7), 1105-1109. doi:10.2460/javma.2004.224.1105
Bush, K., & Bradford, P. A. (2020). Epidemiology of beta-Lactamase-Producing Pathogens. Clin Microbiol Rev , 33(2). doi:10.1128/cmr.00047-19
Bush, K., & Fisher, J. F. (2011). Epidemiological expansion, structural studies, and clinical challenges of new beta-lactamases from gram-negative bacteria. Annu Rev Microbiol , 65, 455-478. doi:10.1146/annurev-micro-090110-102911
Canton, R., Novais, A., Valverde, A., Machado, E., Peixe, L., Baquero, F., & Coque, T. M. (2008). Prevalence and spread of extended-spectrum beta-lactamase-producing Enterobacteriaceae in Europe. Clin Microbiol Infect , 14 Suppl 1, 144-153. doi:10.1111/j.1469-0691.2007.01850.x
Carattoli, A. (2011). Plasmids in Gram negatives: molecular typing of resistance plasmids. Int J Med Microbiol , 301(8), 654-658. doi:10.1016/j.ijmm.2011.09.003
Cole, D., Drum, D. J., Stalknecht, D. E., White, D. G., Lee, M. D., Ayers, S., . . . Maurer, J. J. (2005). Free-living Canada geese and antimicrobial resistance. Emerg Infect Dis , 11(6), 935-938. doi:10.3201/eid1106.040717
Dahmen, S., Haenni, M., Chatre, P., & Madec, J. Y. (2013). Characterization of blaCTX-M IncFII plasmids and clones ofEscherichia coli from pets in France. J Antimicrob Chemother , 68(12), 2797-2801. doi:10.1093/jac/dkt291
Di Luca, M. C., Sorum, V., Starikova, I., Kloos, J., Hulter, N., Naseer, U., . . . Samuelsen, O. (2017). Low biological cost of carbapenemase-encoding plasmids following transfer from Klebsiella pneumoniae to Escherichia coli . J Antimicrob Chemother , 72(1), 85-89. doi:10.1093/jac/dkw350
Dobiasova, H., Dolejska, M., Jamborova, I., Brhelova, E., Blazkova, L., Papousek, I., . . . Literak, I. (2013). Extended spectrum beta-lactamase and fluoroquinolone resistance genes and plasmids amongEscherichia coli isolates from zoo animals, Czech Republic . FEMS Microbiol Ecol, 85(3), 604-611. doi:10.1111/1574-6941.12149
Du, X. D., Li, D. X., Hu, G. Z., Wang, Y., Shang, Y. H., Wu, C. M., . . . Li, X. S. (2012). Tn1548-associated armA is co-located with qnrB2, aac(6’)-Ib-cr and blaCTX-M-3 on an IncFII plasmid in a Salmonella enterica subsp. enterica serovar Paratyphi B strain isolated from chickens in China. J Antimicrob Chemother , 67(1), 246-248. doi:10.1093/jac/dkr407
Edge, T. A., & Hill, S. (2005). Occurrence of antibiotic resistance inEscherichia coli from surface waters and fecal pollution sources near Hamilton, Ontario. Can J Microbiol , 51(6), 501-505. doi:10.1139/w05-028
Falade, S., & Durojaiye, O. A. (1976). Salmonellae isolated from captive animals in Ibadan, Western State of Nigeria. J Wildl Dis , 12(3), 464-467. doi:10.7589/0090-3558-12.3.464
Farias, L. F., Oliveira, C. J., Medardus, J. J., Molla, B. Z., Wolfe, B. A., & Gebreyes, W. A. (2015). Phenotypic and Genotypic Characterization of Salmonella enterica in Captive Wildlife and Exotic Animal Species in Ohio, USA. Zoonoses Public Health , 62(6), 438-444. doi:10.1111/zph.12170
Fessler, A. T., Thomas, P., Muhldorfer, K., Grobbel, M., Brombach, J., Eichhorn, I., . . . Schwarz, S. (2018). Phenotypic and genotypic characteristics of Staphylococcus aureus isolates from zoo and wild animals. Vet Microbiol , 218, 98-103. doi:10.1016/j.vetmic.2018.03.020
Ghaly, T. M., Geoghegan, J. L., Tetu, S. G., & Gillings, M. R. (2020). The Peril and Promise of Integrons: Beyond Antibiotic Resistance.Trends Microbiol . doi:10.1016/j.tim.2019.12.002
Grall, N., Barraud, O., Wieder, I., Hua, A., Perrier, M., Babosan, A., . . . Andremont, A. (2015). Lack of dissemination of acquired resistance to beta-lactams in small wild mammals around an isolated village in the Amazonian forest. Environ Microbiol Rep , 7(5), 698-708. doi:10.1111/1758-2229.12289
Jean, S. S., & Hsueh, P. R. (2011). High burden of antimicrobial resistance in Asia. Int J Antimicrob Agents , 37(4), 291-295. doi:10.1016/j.ijantimicag.2011.01.009
Jin, Y., Song, X., Liu, Y., Wang, Y., Zhang, B., Fan, H., & Shao, C. (2017). Characteristics of carbapenemase-producing Klebsiella pneumoniae as a cause of neonatal infection in Shandong, China.Exp Ther Med , 13(3), 1117-1126. doi:10.3892/etm.2017.4070
Jobbins, S. E., & Alexander, K. A. (2015). FROM WHENCE THEY CAME–ANTIBIOTIC-RESISTANT ESCHERICHIA COLI IN AFRICAN WILDLIFE. J Wildl Dis , 51(4), 811-820. doi:10.7589/2014-11-257
Kock, R., Daniels-Haardt, I., Becker, K., Mellmann, A., Friedrich, A. W., Mevius, D., . . . Jurke, A. (2018). Carbapenem-resistantEnterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect , 24(12), 1241-1250. doi:10.1016/j.cmi.2018.04.004
Kong, N., Li, G., Yang, C., Wang, X., Cao, M., Zhang, L., . . . Wei, Q. (2020). Prevalence of blaKPC-2-harbouring Klebsiella pneumoniaeST290 in a tertiary hospital in China. J Glob Antimicrob Resist , 20, 344-345. doi:10.1016/j.jgar.2020.01.025
Kozak, G. K., Boerlin, P., Janecko, N., Reid-Smith, R. J., & Jardine, C. (2009). Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Appl Environ Microbiol , 75(3), 559-566. doi:10.1128/aem.01821-08
Liu, W., Xie, Y., Ma, J., Luo, X., Nie, P., Zuo, Z., . . . Ren, J. (2015). IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics , 31(20), 3359-3361. doi:10.1093/bioinformatics/btv362
Loman, N. J., Quick, J., & Simpson, J. T. (2015). A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods , 12(8), 733-735. doi:10.1038/nmeth.3444
Milton, A. A. P., Agarwal, R. K., Priya, G. B., Athira, C. K., Saminathan, M., Reddy, A., . . . Kumar, A. (2018). Occurrence, antimicrobial susceptibility patterns and genotypic relatedness ofSalmonella spp . isolates from captive wildlife, their caretakers, feed and water in India. Epidemiol Infect , 146(12), 1543-1549. doi:10.1017/s0950268818001553
Paterson, D. L., & Bonomo, R. A. (2005). Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev , 18(4), 657-686. doi:10.1128/cmr.18.4.657-686.2005
Paul, D., Babenko, D., & Toleman, M. A. (2020). Human carriage of cefotaxime-resistant Escherichia coli in North-East India: an analysis of STs and associated resistance mechanisms. J Antimicrob Chemother , 75(1), 72-76. doi:10.1093/jac/dkz416
Perron, G. G., Quessy, S., & Bell, G. (2008). A reservoir of drug-resistant pathogenic bacteria in asymptomatic hosts. PLoS One , 3(11), e3749. doi:10.1371/journal.pone.0003749
Pitout, J. D., & Laupland, K. B. (2008). Extended-spectrum beta-lactamase-producing Enterobacteriaceae : an emerging public-health concern. Lancet Infect Dis , 8(3), 159-166. doi:10.1016/s1473-3099(08)70041-0
Rolland, R. M., Hausfater, G., Marshall, B., & Levy, S. B. (1985). Antibiotic-resistant bacteria in wild primates: increased prevalence in baboons feeding on human refuse. Appl Environ Microbiol , 49(4), 791-794.
Rooney, C. M., Sheppard, A. E., Clark, E., Davies, K., Hubbard, A. T. M., Sebra, R., . . . Chilton, C. H. (2019). Dissemination of multiple carbapenem resistance genes in an in vitro gut model simulating the human colon. J Antimicrob Chemother , 74(7), 1876-1883. doi:10.1093/jac/dkz106
Rozwandowicz, M., Brouwer, M. S. M., Fischer, J., Wagenaar, J. A., Gonzalez-Zorn, B., Guerra, B., . . . Hordijk, J. (2018). Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae .J Antimicrob Chemother , 73(5), 1121-1137. doi:10.1093/jac/dkx488
Simner, P. J., Antar, A. A. R., Hao, S., Gurtowski, J., Tamma, P. D., Rock, C., . . . Timp, W. (2018). Antibiotic pressure on the acquisition and loss of antibiotic resistance genes in Klebsiella pneumoniae.J Antimicrob Chemother , 73(7), 1796-1803. doi:10.1093/jac/dky121
Skurnik, D., Ruimy, R., Andremont, A., Amorin, C., Rouquet, P., Picard, B., & Denamur, E. (2006). Effect of human vicinity on antimicrobial resistance and integrons in animal faecal Escherichia coli .J Antimicrob Chemother , 57(6), 1215-1219. doi:10.1093/jac/dkl122
Strydom, K. A., Chen, L., Kock, M. M., Stoltz, A. C., Peirano, G., Nobrega, D. B., . . . Pitout, J. D. D. (2020). Klebsiella pneumoniae ST307 with OXA-181: threat of a high-risk clone and promiscuous plasmid in a resource-constrained healthcare setting. J Antimicrob Chemother , 75(4), 896-902. doi:10.1093/jac/dkz550
Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., . . . Magrini, N. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis , 18(3), 318-327. doi:10.1016/s1473-3099(17)30753-3
Walsh, T. R., Weeks, J., Livermore, D. M., & Toleman, M. A. (2011). Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis , 11(5), 355-362. doi:10.1016/s1473-3099(11)70059-7
Wang, Z., Li, M., Shen, X., Wang, L., Liu, L., Hao, Z., . . . Yu, F. (2019). Outbreak of blaNDM-5-Harboring Klebsiella pneumoniaeST290 in a Tertiary Hospital in China. Microb Drug Resist , 25(10), 1443-1448. doi:10.1089/mdr.2019.0046
Wei, Q., Jiang, X., Yang, Z., Chen, N., Chen, X., Li, G., & Lu, Y. (2009). dfrA27, a new integron-associated trimethoprim resistance gene from Escherichia coli . J Antimicrob Chemother , 63(2), 405-406. doi:10.1093/jac/dkn474
Wein, T., Hulter, N. F., Mizrahi, I., & Dagan, T. (2019). Emergence of plasmid stability under non-selective conditions maintains antibiotic resistance. Nat Commun , 10(1), 2595. doi:10.1038/s41467-019-10600-7
Wu, W., Feng, Y., Tang, G., Qiao, F., McNally, A., & Zong, Z. (2019). NDM Metallo-beta-Lactamases and Their Bacterial Producers in Health Care Settings. Clin Microbiol Rev , 32(2). doi:10.1128/cmr.00115-18
Wyres, K. L., Nguyen, T. N. T., Lam, M. M. C., Judd, L. M., van Vinh Chau, N., Dance, D. A. B., . . . Holt, K. E. (2020). Genomic surveillance for hypervirulence and multi-drug resistance in invasiveKlebsiella pneumoniae from South and Southeast Asia. Genome Med , 12(1), 11. doi:10.1186/s13073-019-0706-y
Yang, Q. E., Tansawai, U., Andrey, D. O., Wang, S., Wang, Y., Sands, K., . . . Niumsup, P. R. (2019). Environmental dissemination of mcr-1 positive Enterobacteriaceae by Chrysomya spp. (common blowfly): An increasing public health risk. Environ Int , 122, 281-290. doi:10.1016/j.envint.2018.11.021
Yang, X., Wai-Chi Chan, E., Zhang, R., & Chen, S. (2019). A conjugative plasmid that augments virulence in Klebsiella pneumoniae .Nat Microbiol , 4(12), 2039-2043. doi:10.1038/s41564-019-0566-7