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Abstract 

Scientists are increasingly using volunteer efforts of citizen scientists to classify images captured 1 

by motion-activated trail-cameras. The rising popularity of citizen science reflects its potential to 2 

engage the public in conservation science and accelerate processing of the large volume of 3 

images generated by trail-cameras. While image classification accuracy by citizen scientists can 4 

vary across species, the influence of other factors on accuracy are poorly understood. Inaccuracy 5 

diminishes the value of citizen science derived data and prompts the need for specific best 6 

practice protocols to decrease error. We compare the accuracy between three programs that use 7 

crowdsourced citizen scientists to process images online: Snapshot Serengeti, Wildwatch Kenya, 8 

and AmazonCam Tambopata. We hypothesized that habitat type and camera settings would 9 

influence accuracy. To evaluate these factors, each photo was circulated to multiple volunteers.10 

 All volunteer classifications were aggregated to a single best answer for each photo using 11 

a plurality algorithm. Subsequently, a subset of these images underwent expert review and were 12 

compared to the citizen scientist results. Classification errors were categorized by the nature of 13 

the error (e.g. false species or false empty), and reason for the false classification (e.g. 14 

misidentification). Our results show that Snapshot Serengeti had the highest accuracy (97.9%), 15 

followed by AmazonCam Tambopata (93.5%), then Wildwatch Kenya (83.4%). Error type was 16 

influenced by habitat, with false empty images more prevalent in open-grassy habitat (27%) 17 

compared to woodlands (10%). For medium to large animal surveys across all habitat types, our 18 

results suggest that to significantly improve accuracy in crowdsourced projects, researchers 19 

should use a trail-camera set up protocol with a burst of three consecutive photos, a short field of 20 

view, and consider appropriate camera sensitivity. Accuracy level comparisons such as this study 21 
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can improve reliability of future citizen science projects, and subsequently encourage the 22 

increased use of such data. 23 

 24 

Introduction 25 

Citizen science, the practice of volunteer participation in scientific research, has long played a 26 

role in the collection and analysis of data, and has provided public access to scientific 27 

information and education. Evidence of early examples date back to the late nineteenth century 28 

where North American lighthouse keepers began collecting bird strike data and volunteer-based 29 

bird surveys began in Europe (Dickinson, Bonney, & Fitzpatrick 2015). Beginning in 1900, the 30 

National Audubon Society’s annual Christmas Bird Count is still active over a century later, and 31 

recently documented that net bird populations in the United States have declined by three billion 32 

individuals over the past 50 years (Dickinson et al., 2015; Rosenberg et al., 2019). It’s clear that 33 

science has benefitted from the use of volunteers as a cost-saving, and in some cases more rapid 34 

and broad scale means of data collection and processing (Tulloch, Possingham, Joseph, Szabo, & 35 

Martin 2013). Additionally, engaging citizen scientists increases scientific literacy among the 36 

public and spreads awareness about research (Jordan, Gray, Howe, Brooks, & Ehrenfeld 2011; 37 

Mitchell et al., 2017). 38 

With recent technological advancements, the availability and diversity of projects suitable 39 

for public participation has increased dramatically (Silvertown, 2009; Dickinson, Zuckerberg, & 40 

Bonter 2010; Tulloch et al., 2013). Online citizen science research projects have been developed 41 

for a range of species and programs around the world e.g. observing fireflies (Firefly Watch), 42 

mapping herpetological observations (HerpMapper), and identifying roadside wildlife (Wildlife 43 

Road Watch) (Swanson, Kosmala, Lintott, & Packer 2016). Despite some skepticism about using 44 
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data produced by non-experts (Foster-Smith & Evans 2003; Dickinson et al., 2010), numerous 45 

studies have shown that citizen science can produce accurate results for ecological science 46 

(Kosmala, Wiggins, Swanson, & Simmons 2016; Sauermann & Franzoni, 2015).  47 

A common and increasing use for citizen science in ecological studies is for the placement 48 

and collection of motion-activated cameras, as well as the extraction and analysis of the resulting 49 

wildlife images. Motion-activated cameras (hereafter “camera traps”) have revolutionized 50 

wildlife science, providing a robust and non-invasive mode for ecological data collection on a 51 

wide range of species (O’Connell, Nichols, & Karanth 2010). Camera traps are being used to 52 

gather data on species’ population sizes and distributions, habitat use, and behavior, thereby 53 

facilitating better understanding and protection of natural ecosystems (McShea, Forrester, 54 

Costello, He, & Kays 2016; Agha et al., 2018; Moo, Froese, & Gray 2018; O’Connor et al., 55 

2019). Camera traps are also extremely useful for capturing rare or elusive species (Tobler, 56 

Carrillo-Percastegui, Pitman, Mares, & Powell 2008; Pilfold et al., 2019) and discovering new 57 

species all together (Rovero & Zimmerman, 2016). A disadvantage of camera traps is the 58 

significant time and resource commitment needed to support the review and classification of 59 

images, resulting in cases where data are left unanalyzed (Jones et al., 2018; Norouzzadeh et al., 60 

2017). Tabak et al. (2018) estimated that a person can process approximately 200 camera trap 61 

images per hour, a rate that slows with fatigue. In the case of Wildwatch Kenya, a grid of camera 62 

traps placed throughout two conservancies in Northern Kenya collected over 2 million images in 63 

the three years of deployment (J. Stacy-Dawes, personal comment, January 2020). At the rate of 64 

200 images/hour, assuming a typical 40-hour work week, it would take a single researcher 4.8 65 

years (1,250 days) to complete sorting and classifying this dataset of images. 66 
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A variety of approaches have been used to process large camera trap datasets including 67 

expert processing, trained volunteers, untrained volunteers, and automated processing using 68 

computer vision and machine learning (Table 1), each with benefits and drawbacks 69 

(Norouzzadeh et al., 2017; Tulloch et al., 2013; Jordan et al., 2011; Mitchell et al., 2017; 70 

Ellwood, Crimmins, & Miller-Rushing 2017; Torney et al., 2019; Swanson et al., 2016; Kosmala 71 

et al., 2016; Silvertown, 2009; Willi et al., 2018, Tabak et al., 2018). Crowdsourcing, the process 72 

of outsourcing a task to a large number of people, generally through an online platform, has 73 

become a new approach to citizen science. Numerous publications suggest that multiple non-74 

expert volunteers can be as accurate as a single expert for tasks such as reviewing camera trap 75 

images, aerial survey images, and astronomic imagery (Spielman, 2014; Swanson et al., 2016; 76 

Torney et al., 2019). This ‘wisdom of crowds’ allows outsourcing of analytical tasks to non-77 

expert volunteers by aggregating responses to produce accurate, usable, and meaningful data 78 

products (Swanson et al., 2016; Tulloch et al., 2013; Kosmala et al., 2016).  79 

While there are published examples documenting accurate analysis of outputs from citizen 80 

science camera trap projects (Swanson et al., 2016), there is a deficiency of evidence-based and 81 

standardized best-practice camera trapping protocols that would maximize non-expert image 82 

classification accuracy and species detectability. Given the prominence and scale of camera trap 83 

usage, volume of image generation, and utility of using citizen science approaches, there is a 84 

clear and pressing need to standardize camera trap protocols in order to maximize citizen 85 

scientist accuracy. Meeting this need would increase the use and acceptance of citizen scientists 86 

as a reliable approach to monitoring biodiversity trends (Steenweg et al., 2016), among other 87 

applications. 88 
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 This paper aims to provide insight on protocols to increase data quality and reliability 89 

from citizen scientist classification of camera trap images. Here, we analyze how habitat type 90 

and camera trap settings, including sensor sensitivity and images per burst, influence non-expert 91 

accuracy. We compare the accuracy of three citizen science camera trap projects: Snapshot 92 

Serengeti (SS), Wildwatch Kenya (WWK), and AmazonCam Tambopata (ACT) in order to 93 

designate best practice methods in camera trap protocols to improve citizen scientist accuracy. 94 

 95 

Materials and Methods 96 

The Zooniverse Interface 97 

Zooniverse (www.zooniverse.org) is an online citizen science interface that promotes volunteer 98 

involvement as a crowdsourcing method for data processing (Cox et al., 2015). Zooniverse users 99 

can range in age and expertise (Raddick et al., 2010). The prompts and tutorials set up by each 100 

project are meant to successfully guide even the most inexperienced users through the 101 

classification process. In the case of the three Zooniverse projects discussed here, volunteers 102 

classify species, number of individuals, whether there are young present, and (for SS and WWK 103 

only) the behavior exhibited for each photo that appears on the screen. There are guides (Fig. 1a, 104 

1b & 1c) to help users identify the species. Volunteers can also classify images that do not 105 

contain any animals (i.e. an ‘empty’ image). Each Zooniverse project can customize their 106 

retirement rules. For example, after each image is circulated to multiple volunteers, the image 107 

will retire after meeting the criteria determined by the project, e.g. the first five of classifications 108 

are ‘nothing here’, there are >five non-consecutive classifications of ‘nothing here’, there are 109 

five matching classifications of a certain species, or there are 10 total classifications without any 110 

http://www.zooniverse.org/
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consensus on a species.  111 

 112 

Snapshot Serengeti 113 

Snapshot Serengeti hosts images collected from a camera trap study conducted in the Serengeti 114 

National Park, Northern Tanzania (~1.5 million hectares) in order to evaluate spatial and 115 

temporal inter-species dynamics (Swanson et al., 2015). This area consists of mostly savanna 116 

grasslands and woodlands habitat. A total of 225 Scoutguard (SG565) camera traps were set out 117 

across a 1,125 km2 grid, offering systematic coverage of the entire study area. 1.2 million image 118 

sets were collected between June 2010 and May 2013 (Swanson et al., 2015). The cameras were 119 

set to capture either one or three (majority three) images per burst and were set to ‘low’ 120 

sensitivity to minimize misfires due to vegetation (Swanson et al., 2015). On 121 

www.snapshotserengeti.org, each camera trap photo was viewed and classified by 11-57 122 

volunteers (mean= 26) before it was retired (Swanson et al., 2016). This large range resulted 123 

from the SS volunteers classifying images faster than they were being collected (Swanson et al., 124 

2016). SS accrued over 28,000 volunteers, who completed the classification of all 1.2 million 125 

images collected as of May 2013, however this project is ongoing. 126 

 127 

Wildwatch Kenya 128 

Wildwatch Kenya houses images from a camera trap survey focused on reticulated giraffe 129 

(Giraffa reticulata – Fennessy et al., 2016) being conducted in two locations in Northern Kenya: 130 

Loisaba Conservancy (~23,000 ha) and Namunyak Community Conservancy (~405,000 ha). 131 

Loisaba Conservancy is characterized by a mix of savanna grasslands (Open Grasslands) and 132 

mixed acacia woodlands (Acacia reficiens-Acacia mellifera Open/Sparse Woodlands) habitat 133 

http://www.snapshotserengeti.org/
http://www.snapshotserengeti.org/
http://www.snapshotserengeti.org/
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(Unks, R. personal comment, 2016) whereas Namunyak Community Conservancy is composed 134 

of much more diverse vegetation classes ranging from various shrublands (Grewia spp, Boscia 135 

coriacea, A. refeciens), deciduous bushland, and dense evergreen forest (Chafota, 1998). At 136 

Loisaba Conservancy, 80 cameras were set out across a 207 km2 grid, offering systematic 137 

coverage of the entire study area. Within Namunyak Conservancy, 50 cameras were set out 138 

across a 207 km2 grid, covering only 5% of the entire area, due to the challenging terrain and 139 

limited mobility of the research team. All cameras deployed were Bushnell Trophy Cam HD 140 

cameras. Since February 2016, approximately 2 million images have been collected thus far. 141 

Cameras were set to collect one image per burst, and were set to ‘auto’ sensitivity, meaning the 142 

camera adjusted the trigger signal based its current operating temperature (Bushnell, 2014). On 143 

www.wildwatchkenya.org, each photo was circulated to 10-20 volunteers (mean= 10), depending 144 

on agreement between volunteers, before it was retired. Since 2017, WWK has accrued over 145 

16,700 volunteers, and classified over 1.2 million images as of January 2020.  146 

 147 

AmazonCam Tambopata 148 

AmazonCam Tambopata classifies images from a camera trap survey being conducted within 149 

two protected areas in Peru: the Tambopata National Reserve (~275,000 ha) and the Bahuaja 150 

Sonene National Park (~1.1 million ha). The study’s focus is to increase knowledge on 151 

Amazonian rainforest habitat and wildlife, with specific focus on quantifying jaguar populations 152 

in the area. 85 cameras have been set out across a 300 km2 grid, offering systematic coverage of 153 

1.5% of the total area. All cameras deployed were Bushnell Trophy Cam HD cameras. 154 

Approximately 500,000 image sets were collected between July 2016 and December 2018. The 155 

cameras were set to capture three images per burst with ‘normal’ sensitivity, an intermediate 156 
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sensitivity level (Bushnell, 2014). On ACT, each camera trap photo was circulated to 10-30 157 

volunteers (mean=13) before it was retired, depending on agreement amongst volunteers. ACT 158 

has accrued over 11,000 volunteers, who completed the classification of 10,000 images as of 159 

November 2019. 160 

 161 

Data Aggregation 162 

A simple plurality algorithm was implemented on SS, WWK, and ACT, converting the multiple 163 

volunteer answers into one aggregated answer. This aggregated answer reports the species that 164 

had a majority of the votes for each photo. For example, if a photo had 15 total classifications 165 

from the 15 volunteers, where three classification were dik dik (Madoqua kirkii), five 166 

classifications were gazelle (Gazella thomsonii or Gazella granti), and seven were impala 167 

(Aepyceros melampus), the plurality algorithm would report the photo to contain an impala 168 

(Swanson et al., 2016). This aggregated answer is hereafter referred to as the non-expert answer 169 

(NEA). 170 

 171 

Part I: Accuracy Assessment  172 

Photos from each of the three projects were classified by experts into expert-verified datasets, 173 

“Expert Answers” (EA). For each project, the NEA was compared to EA. The proportion of 174 

images where the NEA and the EA agreed is reported as the overall accuracy. For WWK and 175 

ACT, when NEA and the EA disagreed, the photo was labeled as ‘false species’ if the NEA 176 

falsely identified the species present, or ‘false empty’ if the NEA falsely reported that there was 177 

no species in the image. The rates of overall accuracy across the three projects, and the rates of 178 
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false empties and false species between WWK and ACT were compared. Images where the NEA 179 

reported more than one species present were excluded from the analysis.  180 

For SS, a panel of five experts reviewed a randomly sampled set of 3,829 images to 181 

determine overall accuracy (Swanson et al., 2016). Each image was classified by one expert and 182 

was subsequently reviewed by a second expert if the image was flagged as difficult. The experts 183 

either had extensive formal training, passed qualification exams, or had years of experience 184 

identifying African wildlife – see Swanson et al. (2016). For this set, false species and false 185 

empty levels were not analyzed because the study aimed to quantify overall accuracy and species 186 

level accuracy based on false positives and false negatives. 187 

For WWK a panel of three experts reviewed a set of 127,669 images. We removed 84 188 

images that the expert determined to be unidentifiable and limited analysis to the 24,039 images 189 

that contained only one type of species. Each photo was classified by at least one expert with 190 

training and/or significant experience identifying African wildlife.  191 

In the case of ACT, a panel of three experts reviewed a random subset of 4,040 images 192 

that contained only one type of species. Images of arboreal species were removed since the other 193 

datasets did not include arboreal species, leaving 2,598 images of terrestrial species for analysis. 194 

The experts either had significant experience identifying wildlife in the Peruvian Amazon or 195 

underwent extensive training.  196 

 197 

Part II: Wildwatch Kenya Extended Classification Set Analysis 198 

In order to look further into WWK’s lower rate of overall accuracy as compared to SS and ACT, 199 

and abundance of false empties compared to ACT, a separate analysis with a subset of 21,530 200 

WWK images was conducted. This subset represented the images that had at least one citizen 201 
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scientist classification of either a reticulated giraffe, a zebra (Equus quagga or Equus grevvi), an 202 

elephant (Loxodonta africana), a gazelle, an impala, or a dik dik, and also had only one type of 203 

species present. These wildlife species were chosen because they had the highest frequency of 204 

appearance in WWK’s images, thus eliminating the possibility of inaccuracy due to rareness of 205 

the species as reported in Swanson et al. (2016). This methodology allowed scrutiny of images 206 

that potentially contain wildlife but were listed as empty by the aggregated NEA because not 207 

enough volunteers recognized that there was an animal in the photo. For example, in an image 208 

containing a giraffe traveling in the far background, there was one citizen science classification 209 

of ‘giraffe’, but nine classifications of ‘empty’. In this case, the NEA would classify this photo as 210 

empty because most citizen scientists did not notice the giraffe in the background. Utilizing this 211 

methodology, we hoped to recover as many wildlife photos as possible that would have 212 

otherwise been weeded out by the plurality algorithm in order to quantify these incidences. This 213 

subset of photos will hereafter be referred to as the Extended Classification Set.  214 

An expert reviewed the images from the Extended Classification Set and determined the 215 

images that actually contained either a giraffe, a zebra, an elephant, a gazelle, an impala, or a dik 216 

dik. The aggregated NEA of those images were then compared to the EA to determine if the 217 

NEA agreed or disagreed with the EA. Similar to the above analysis, the proportion of photos 218 

that agreed were represented as the overall accuracy rate for each of the six listed species, and 219 

photos that disagreed were broken up by false empty and false species.  220 

 221 

Part III: Reason for False Image Classification 222 

For images where the NEA and EA disagreed within ACT and the WWK Extended 223 

Classification Set, an expert conducted an additional review to determine the most likely reason 224 
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for disagreement: distance (species was far in the background), night time (image was too dark to 225 

determine species), partial view (only a portion of the species was captured in the frame), close 226 

up (species was too close to the camera), hidden (vegetation or other obstacle impeding view of 227 

the species), or misidentification (species was confused with another species).  228 

229 

Results 230 

Part I: Overall Accuracy Assessment 231 

When comparing the overall accuracy between WWK, SS, and ACT (images where the NEA 232 

and EA agreed/ total number of images), the NEA for WWK were the least accurate (83.4%; 233 

n=20,050), followed by ACT (93.5%; n=2,430), then SS (97.9%; n=3,749) (Swanson et al., 234 

2016). The proportions of false species images for WWK and ACT are 2% (n=403) and 4% 235 

(n=116) respectively. The proportions of false empties were WWK 15% (n=3,586) and ACT 2% 236 

(n=52). There was significant difference in overall accuracy between WWK, SS, and ACT 237 

(pairwise comparison of proportions; p  0.0002)(R Core Team, 2018; Ford, 2016). There was 238 

also significant difference in false empties and false species rates between WWK and ACT (two 239 

proportion Z-test; p  0.0002; p  0.0002). WWK’s false empty images also constituted nearly 240 

90% of its total error.  241 

 242 

Part II: Wildwatch Kenya Extended Classification Set Analysis 243 

The expert reviewed the Extended Classification Set and determined that 12,197 of the 21,530 244 

images actually contained images of either a giraffe, a zebra, an elephant, a gazelle, an impala, or 245 

a dik dik. The overall accuracy of these 12,197 images was 75.7%, representing a 7.7% accuracy 246 

decrease from Part I WWK analysis. However, the rates of false species error are very low for 247 
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each species ( 6%; Fig. 2). This suggests that when the citizen scientists recognized that there 248 

was an animal in the image, they frequently classified the species correctly. Using pairwise 249 

comparison of proportions, we determined that the proportion of false empty images was 250 

significantly higher than the proportion of false species images (p < 0.0002) for every species 251 

analyzed, meaning there were many images where the NEA reported a blank image, but the 252 

expert reported a species. For the photos that the expert determined to have gazelle, the citizen 253 

scientists labeled over half (55%) as empty. To examine this discrepancy further, WWK’s two 254 

different sampling sites were analyzed separately (Fig. 3). Loisaba had a significantly higher 255 

proportion of false empties (27%) compared to Namunyak (9.6%) (p < 0.0002).  256 

 257 

Part III: Reason for False Image Classification 258 

The false species and false empty images were reviewed by the expert post-hoc to determine the 259 

most likely reason that the photo was incorrectly classified. In Loisaba, nearly half of the false 260 

species (45%) and false empty (42%) images were because the animal was far off in the distance 261 

(Fig. 4). For Namunyak, a majority of the false empty (61%), and the most frequent reason for 262 

false species (38%), were due to a partial view of the animal, mostly from the individual entering 263 

or exiting the frame (Fig. 4). In comparison, none of the error within ACT was due to distance, 264 

as the depth and width of view was limited by the dense vegetation. 265 

  266 

Discussion 267 

Of the three studies, WWK had the lowest accuracy levels, with the error mainly due to the high 268 

number of false empty images (15%). This suggests that WWK volunteers were simply not 269 

seeing animals in the frame, and falsely classifying the photo to be empty. Comparatively, ACT 270 
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had a much lower rate of false empties (2%). If WWK were able to increase species detectability, 271 

and thus reduce the number of false empty images to this same rate of 2%, WWK’s overall 272 

accuracy would increase to 96.3%. Comparing the differences between these projects (Table 2), 273 

we suggest that WWK error, and the resulting discrepancy in accuracy, can be attributed to three 274 

factors: the number of images taken per trigger, the camera sensitivity, and the habitat types. 275 

 Overall accuracy was increased when cameras were set to take three images per trigger 276 

rather than one single image. Small species (e.g. small rodents) or species that appear small in an 277 

image due to the distance from the camera are most easily detected by observers based on pixels 278 

changing in consecutive images of the same scene. In SS and ACT, the three consecutive photos 279 

per trigger instance were presented in Zooniverse as a slideshow, showing the volunteers small 280 

changes in the frames from one photo to the next while for WWK a single image was presented. 281 

Because the images on Zooniverse are presented to the volunteers in random order, change-282 

detection from one image to the next was not possible. In contrast, the experts reviewing the 283 

WWK photos viewed images in order of progression and could detect the animals due to changes 284 

in pixels from one image to the next.  285 

We further predict that three photos sequence will reduce misidentifications due to 286 

‘partial view’ and ‘hidden’ because the animal will likely come into full view within the three-287 

photo sequence, rather than a single frame only showing a small portion of the body (Rovero, 288 

Zimmermann, Berzi, & Meek, 2013). Because ‘distance’, ‘hidden’, and ‘partial view’ were the 289 

most frequently cited reason for false empty error within WWK, using three photos would have 290 

significantly increased WWK’s overall accuracy. We suggest that the use of three consecutive 291 

photos per trigger instance increases accuracy of citizen science classifications of wildlife 292 

images.  293 
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Further, because there wasn’t an “I don’t know” option within WWK, it is possible that 294 

some false empties from ‘partial view’ resulted from volunteers opting for an ‘empty’ 295 

classification rather than taking a guess of what the species is (Swanson et al., 2016). Including 296 

an “I don’t know” option could decrease the number of false empties because experts would be 297 

able to go through the images marked as unsure and determine the correct classification, rather 298 

than having these images marked as ‘empty’ by the plurality algorithm. However, it should be 299 

noted that having an “I don’t know” option may also discourage citizen scientists from taking 300 

their best guess (Swanson et al., 2015). 301 

The WWK images from Loisaba Conservancy had a higher rate of false empties 302 

compared to Namunyak Conservancy. The camera trap methodology was the same at both sites, 303 

apart from the habitat type (Table 2). Thus, we can attribute this increased rate of inaccuracy to 304 

the open, grassy habitat in Loisaba (Fig. 3 & 4). In open habitat, images triggered by heat or 305 

vegetation capture animals in the background of the frame at distances that would not otherwise 306 

trigger the camera (Rovero et al., 2013; Koivuniemi, Auttila, Niemi, Levänen, & Kunnasranta, 307 

2016; Wearn & Glover-Kapfer 2019). WWK volunteers often missed the classification of such 308 

animals in the distance because there was only one photo per image set, rather than three, 309 

causing an increased rate of false empty classification due to ‘distance’. This rate of misfires, and 310 

the subsequent rate of false empty images were not seen within ACT rainforest habitat, where 311 

dense vegetation blocks wind currents and keeps the foliage still. ACT cameras only misfired 312 

17.8% of the time, while WWK camera misfired 81% of the time, and SS cameras misfiring at a 313 

lesser rate of 74% (Swanson et al., 2015).  314 

Camera trap sensitivity settings also affect accuracy rates. When camera sensitivity is set 315 

to ‘high’, camera misfiring due to moving vegetation or heat is increased. In ‘low’ sensitivity, 316 
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smaller or rapidly moving animals may not trigger the camera. Standard camera-trapping 317 

protocols recommend a ‘high’ sensitivity setting for warm climates (Meek, Fleming, & Ballard, 318 

2012; Rovero & Zimmerman, 2016). However, based on the WWK results, the high sensitivity 319 

setting caused the camera to misfire frequently. Of the 127,669 WWK images reviewed by the 320 

expert, only 19% (n=24,039) contained species, and 81% (n=103,630) of the photos were 321 

assumed to be misfires. As such, we recommend that the cameras be tested on a number of 322 

different sensitivity settings before selecting a final setting for the study site, with consideration 323 

of environmental context, the species of interest, and the method of image classification. In this 324 

study, we were not able to quantify if a lower sensitivity setting would have missed species 325 

images for the three projects. 326 

A recent focus of camera trap literature has been on automatic classification through 327 

machine learning. Deep convolutional neural networks are trained to automatically and 328 

accurately identify, count, and describe species in camera trap images (Norouzzadeh et al., 329 

2018). However, a drawback of automatic classification is the need for a large set of pre-330 

classified images for baseline training data (Willi et al., 2019). Crowdsourced citizen science can 331 

quickly produce the training data for deep learning models, making its use still relevant. In 332 

addition, combining automation and crowdsourcing may improve automatic classification 333 

accuracy, and significantly decrease time commitment of volunteers (Willi et al., 2019). 334 

Automated classification integration could be a next development for crowdsourcing platforms 335 

like Zooniverse, where pre-trained models are added into data-processing pipelines and the 336 

resulting predictions are combined with citizen scientist classification predictions. For example, 337 

WWK has already begun this cross-method analysis by utilizing automated classification models 338 

from Willi et al. (2019) to pre-process out empty images with confidence >0.80, thus only 339 
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uploading images for citizen science classification with high confidence of containing an animal, 340 

or a low confidence that it’s empty. This significantly reduces the time commitment and fatigue 341 

for volunteers and increases volunteer engagement by removing empty images. 342 

Overall, WWK consensus answers had high species classification accuracy. However, there 343 

was a discrepancy in the overall accuracy between WWK and both SS and ACT because 344 

WWK’s aggregated NEA often reported the photo as empty, when in fact it contained a species. 345 

Thus, WWK’s aggregated NEA currently underestimates the number of species images captured. 346 

The evidence presented here shows that WWK’s error is due to single photo per trigger instance 347 

versus the three photos per trigger instance, camera misfires caused by Loisaba’s open, grassy 348 

habitat, which captured animals too far in the distance for citizen scientists to see, and to WWK’s 349 

cameras set on auto sensitivity, which often defaulted to ‘high’ due to Northern Kenya’s warm 350 

climate. Our analyses provide a foundation from which to develop standardized, evidence-based 351 

best-practices for camera trap-based studies that engage citizen scientists. Implementation of our 352 

findings should result in increases in species detectability and image classification accuracy, 353 

which are both critical for meeting research goals. Optimizing citizen science accuracy and 354 

validating the resulting data will increase the usability of non-expert data for applied science. 355 

Once validated, tapping into volunteer participation can exponentially increase the speed at 356 

which scientific data is collected and processed at little to no cost, and has the potential to 357 

revolutionize the way we think about science. 358 
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 554 

 555 

Table 1: Camera trap image classification comparison, where ‘expert’ classifications refer to one 556 

professional with extensive background or training in wildlife identification (Swanson et al., 557 

2016), ‘volunteer’ classifications are non-expert citizen scientists that have undergone training 558 

(Tulloch et al., 2013), ‘crowdsourced’ classifications are multiple, aggregated volunteer answers 559 

combined to obtain one best answer (Swanson et al., 2013), and ‘automated’ classifications 560 

utilize machine learning algorithms to automatically identify species within images (Willi et al., 561 

2018). 562 

 Expert Trained Volunteer Crowdsourced Automated 

Pros • High accuracy and 

precision 

• Trusted by the 

scientific 

community 

• Cost-effectiveb 

• Time-efficientb 

• Increases scientific 

and environmental 

literacy among the 

publicc,d 

• Spreads awareness 

about the objectives 

of a research 

projectb,c,d 

• Accuracy comparable to 

single expert answersb,f,g,h 

• Cost-effectiveb 

• Time-efficientb 

• Increases scientific and 

environmental literacy 

among the publicc,d 

• Spreads awareness about 

the objectives of a 

research projectb,c,d 

• Technological 

advancements are 

increasing 

availability and 

utilityb,I,j 

• Cost-effectivek 

• Most time-

efficientk 

• Substantially 

reduce human 

effortk 

• Evidence of high 

accuracya,k 

https://www.zooniverse.org/projects/sandiegozooglobal/wildwatch-kenya
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Cons • Significant time 

commitmenta 

• Significant 

financial 

commitmenta 

• Single experts are 

subject to fatigue 

with timel  

• Often results in 

unanalyzed dataa 

• Subject to errorg 

• Distrust by scientific 

communityh 

• Efficiency is poorly 

understood by the 

scientific communitye 

• Limited by shortage 

of volunteersk 

• Requires effort to 

manage and engage 

the volunteersg 

• Subject to error 

• Distrust by scientific 

communityh 

• Efficiency is poorly 

understood by the 

scientific communitye 

• Often requires utilization 

of external platformsg 

• Limited by shortage of 

volunteersk and inability 

of smaller projects to 

recruit a large volunteer 

basea 

• Large sets of 

labeled training 

data requiredk 

• Accuracy possibly 

overestimated 

when applying 

existing models to 

new datasetsk 

• Novel technology 

• Requires domain 

knowledgek 

• Low accuracy for 

rare speciesk 

 563 

Norouzzadeh et al., 2017a; Tulloch et al., 2013b; Jordan et al., 2011c; Mitchell et al., 2017d; Ellwood et al., 2017e; 564 

Torney et al., 2019f; Swanson et al., 2016g; Kosmala et al., 2016h; Silvertown 2009i; Dickinson et al., 2010j; Willi et 565 

al., 2018k, Tabak et al., 2018l 566 

 567 



 

25 

Fig. 1:      568 

 569 

Fig. 1: Zooniverse interfaces of Snapshot Serengeti, Wildwatch Kenya, and AmazonCam 570 

Tambopata. Users classify images by clicking on the appropriate species from the list or by 571 

filtering using the appropriate physical attributes. 572 
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Table 2: Camera trap sensitivity setting, number of images that were captured per trigger event, 573 

camera trap sensitivity setting, and habitat types of the three citizen science projects. 574 

 575 

Project Number of Images per 

Trigger 

Camera Sensitivity  Habitat Type 

 

Snapshot 

Serengeti 

 

1-3 (majority 3) 

 

Low 

 

Savanna Grasslands 

and Savanna 

Woodlands 

Wildwatch Kenya 1 Auto Loisaba: Savanna 

Grasslands 

Namunyak: Savanna 

Woodlands 

AmazonCam 

Tambopata 

  

3 Medium Rainforest 

 576 

Table 3: Comparison of accuracy and inaccuracy rates between the each Zooniverse project 577 

(Wildwatch Kenya, Snapshot Serengeti, and AmazonCam) showing where the expert answer did 578 

not agree with the aggregated volunteer answer (“Number Incorrect”), and the reason for the 579 

citizen science inaccuracy. (See Swanson et al., 2016 for details Snapshot Serengeti accuracy 580 

rates). 581 

 582 

Site Total 

Expert 

Verified 

Images 

Analyzed 

Number 

Incorrect 

Number 

False 

Species 

Number 

False 

Empty 

Prop 

Correct 

Prop 

Incorrect 

Prop 

False 

Species 

Prop 

False 

Empty 

Wildwatch 

Kenya  

24039 3989 403 3586 0.83 0.17 0.02 0.15 
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WWK 

Extended 

Classification  

Loisaba 

Namunyak 

12197 

 

 

      9199 

2998 

2974 

 

 

      2649 

325 

190 

 

 

        

152 

38 

2787 

 

 

        

2499 

288 

0.76 

 

 

     0.71 

0.89 

0.24 

 

 

       0.29 

0.11 

0.02 

 

 

      0.02 

0.01 

0.23 

 

 

        

0.27 

0.10 

AmazonCam 2598 168 116 52 0.94 0.06 0.04 0.02 

Snapshot 

Serengeti  

 

3829 79   0.98 0.02   

 583 

Fig. 2: 584 

 585 

Fig. 2: Comparison of the overall NEA false empty and false species images within WWK 586 

Extended Classification Set.  587 



 

28 

Fig. 3:588 

 589 

 590 

Fig. 3: Comparison of the proportions of overall accuracy (a), false empty images (b) and false 591 

species images (c) between WWK Loisaba and WWK Namunyak sites for each of the six 592 

species analyzed to differentiate the effect of different habitat types. Namunyak’s values for 593 

zebra removed due to the low sample size.  594 

 595 

 596 
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Fig. 4:597 

 598 

Fig. 4: ‘False empty’ proportion of WWK Extended Classification Set images for WWK Loisaba 599 

and WWK Namunyak sites. These ‘false empty’ categories include: close up (species was too 600 

close to the camera), distance (species was far in the background of the image), hidden 601 

(vegetation or other obstacle impeding view of the species), misidentification (species was 602 

confused with another species), night (image was too dark to determine species), or partial view 603 

(only a portion of the species was captured in the frame). 604 
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