Biological control consequences
In addition to their evolutionary relevance, our findings are also
relevant from a biological control perspective. Strategies have been
implemented to monitor and control the cactus moth in both native and
non-native ranges. These include the sterile male technique (Hight,
Carpenter, Bloem & Bloem, 2005), and a pheromone-based attractant trap
for males (Heath et al., 2006). These strategies are set to be
complemented with biological control strategies using a parasitoid
natural enemy from the native range of C. cactorum , currently
under evaluation and being mass reared in quarantine in the United
States (Mengoni-Goñalons et al., 2014; Varone et al. 2015; Varone et al.
2020).
The use of pheromone-based attractants for males, together with
parasitoids, may be optimized by taking into account population genetic
structure of the target species, together with patterns of gene flow,
and the climatic factors that underpin range changes and population
genetic differentiation. In the context of C. cactorum , a word of
caution is warranted for the implementation of pheromone traps, as
potential pheromone specificity may be associated with divergent
lineages. In this case, the pheromone currently used in monitoringC. cactorum was developed based on virgin females from the East
lineage (Heath et al., 2006). With the evidence of strong genetic
structure within C. cactorum , additional field and laboratory
experiments may be necessary to test the effectiveness of pheromone
monitoring, specifically the Central and South lineages which are well
differentiated and where the impact of the moth is especially high in
Argentina (Varone et al., 2014). In a similar vein, although
bioinsecticides are not currently recommended for the control ofC. cactorum (Bloem, Mizell, Bloem, Hight & Carpenter, 2005),
differentiated populations may also tend to exhibit differential
susceptibility to bioinsecticides or synthetic insecticides (Ríos-Díez
& Saldamando-Benjumea, 2011; Arias et al., 2019). Taking into account
population structure within C. cactorum may enhance the
effectiveness of management strategies considering the specific lineages
identified herein.
Acknowledgements
We are grateful to Mariel Guala and Malena Fuentes Corona for fieldwork
support. We are also grateful to the Centro de Cómputo de Alto
Rendimiento (CeCAR) and Biocódices S.A. for granting use of
computational resources. Funding was obtained from FONCyT through grant
PICT1447/2016 awarded to G.L. and USDA APHIS-PPQ, Farm Bill 10201.
D.P.M. is the recipient of a PhD scholarship awarded by CONICET. V.N was
supported by a Juan de la Cierva-Formación postdoctoral fellowship
(grant FJC2018-035611-I) funded by MCIN/AEI/10.13039/501100011033. L.V.
and E.H. are members of Carrera del Investigador CONICET.
References
Agrain, F. A., Domínguez, C. M., Carrara, R., Griotti, M., &
Roig‐Juñent, S. A. (2021). Exploring the role of climatic niche changes
in the evolution of the southern South American genus Baripus(Coleoptera: Carabidae): optimization of non‐hereditary climatic
variables and phylogenetic signal measurement. Cladistics, 37 (6),
816-828.
Aiello‐Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B., &
Anderson, R. P. (2015). spThin: an R package for spatial thinning of
species occurrence records for use in ecological niche models.Ecography, 38 (5), 541-545.
Andrews, S., Krueger, F., Segonds-Pichon, A., Biggins, L., Krueger, C.,
& Wingett, S. (2010). FastQC. A quality control tool for high
throughput sequence data, 370.
Arias, O., Cordeiro, E., Corrêa, A. S., Domingues, F. A., Guidolin, A.
S., & Omoto, C. (2019). Population genetic structure and demographic
history of Spodoptera frugiperda (Lepidoptera: Noctuidae):
implications for insect resistance management programs. Pest
Management Science, 75 (11), 2948-2957.
Bandelt, H. J., Forster, P., & Röhl, A. (1999). Median-joining networks
for inferring intraspecific phylogenies. Molecular Biology and
Evolution, 16 (1), 37-48.
Barros, M. J., Silva-Arias, G. A., Fregonezi, J. N., Turchetto-Zolet, A.
C., Iganci, J. R., Diniz-Filho, J. A. F., & Freitas, L. B. (2015).
Environmental drivers of diversity in Subtropical Highland Grasslands.Perspectives in Plant Ecology, Evolution and Systematics, 17 (5),
360-368.
Bloem, S., R.F. Mizell, III, K.A. Bloem, S.D. Hight, & J.E. Carpenter.
2005. Laboratory evaluation of insecticides for control of the invasive
Cactoblastis cactorum (Lepidoptera: Pyralidae). Florida Entomologist
88(4): 395-400.
Bonatelli, I. A., Gehara, M., Carstens, B. C., Colli, G. R., & Moraes,
E. M. (2022). Comparative and predictive phylogeography in the South
American diagonal of open formations: Unravelling the biological and
environmental influences on multitaxon demography. Molecular
Ecology, 31 (1), 331-342.
Borer, M., Arrigo, N., Buerki, S., Naisbit, R. E., & Alvarez, N.
(2012). Climate oscillations and species interactions: large‐scale
congruence but regional differences in the phylogeographic structures of
an alpine plant and its monophagous insect. Journal of
Biogeography, 39 (8), 1487-1498.
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C. H., Xie, D.,
& Drummond, A. J. (2014). BEAST 2: a software platform for Bayesian
evolutionary analysis. PLoS Computational Biology, 10 (4),
e1003537.
Bouckaert, R. R., & Heled, J. (2014). DensiTree 2: seeing trees through
the forest. BioRxiv, 012401.
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S.,
Peterchmitt, J. Y., Abe-Ouchi, A., … & Zhao, Y. (2007). Results of
PMIP2 coupled simulations of the Mid-Holocene and Last Glacial
Maximum–Part 1: experiments and large-scale features. Climate of
the Past, 3 (2), 261-277.
Brooks, C. P., Ervin, G. N., Varone, L., & Logarzo, G. A. (2012).
Native ecotypic variation and the role of host identity in the spread of
an invasive herbivore, Cactoblastis cactorum. Ecology, 93 (2),
402-410.
Broquet, T. & Petit, E. J. (2009). Molecular estimation of dispersal
for ecology and population genetics. Annual Review of Ecology,
Evolution, and Systematics, 40 , 193–216
Brusquetti, F., Netto, F., Baldo, D., & Haddad, C. F. (2019). The
influence of Pleistocene glaciations on Chacoan fauna: genetic structure
and historical demography of an endemic frog of the South American Gran
Chaco. Biological Journal of the Linnean Society, 126 (3),
404-416.
Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N. A., &
RoyChoudhury, A. (2012). Inferring species trees directly from biallelic
genetic markers: bypassing gene trees in a full coalescent analysis.Molecular Biology and Evolution, 29 (8), 1917-1932.
Bucher, E. H. (1982). Chaco and Caatinga—South American arid savannas,
woodlands and thickets. In Ecology of tropical savannas (pp. 48-79).
Springer, Berlin, Heidelberg.
Calatayud‐Mascarell, A., Ferretti, N., Enguídanos, A., & Arnedo, M. A.
2022. Same place, different stories: Disparate evolutionary trends of
mygalomorph spiders from the Peripampasic orogenic arc. Journal of
Biogeography , 49 (7), 1234-1247.
Carnaval, A. C., Hickerson, M. J., Haddad, C. F., Rodrigues, M. T., &
Moritz, C. (2009). Stability predicts genetic diversity in the Brazilian
Atlantic forest hotspot. Science, 323 (5915), 785-789.
Caterino, M. S., & Sperling, F. A. (1999). PapilioPhylogeny based on
mitochondrial cytochrome oxidase I and II genes. Molecular
Phylogenetics and Evolution, 11 (1), 122-137.
Cobos, M. E., Peterson, A. T., Barve, N., & Osorio-Olvera, L. (2019).
kuenm: an R package for detailed development of ecological niche models
using Maxent. PeerJ, 7 , e6281.
Cook, K. H., & Vizy, E. K. (2006). South American climate during the
Last Glacial Maximum: delayed onset of the South American monsoon.Journal of Geophysical Research: Atmospheres, 111 (D2).
Crisci-V, J., Freire-E, S., Sancho, G., & Katinas, L. (2001).
Historical biogeography of the Asteraceae from Tandilia and Ventania
mountain ranges (Buenos Aires, Argentina). Caldasia, 23 (1),
21–41.
Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E.,
DePristo, M. A., … & 1000 Genomes Project Analysis Group. (2011). The
variant call format and VCFtools. Bioinformatics, 27 (15),
2156-2158.
Driscoe, A. L., Nice, C. C., Busbee, R. W., Hood, G. R., Egan, S. P., &
Ott, J. R. (2019). Host plant associations and geography interact to
shape diversification in a specialist insect herbivore. Molecular
Ecology, 28 (18), 4197-4211.
Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012).
Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular
Biology and Evolution, 29 (8), 1969-1973.
Eaton, D. A., & Overcast, I. (2020). ipyrad: Interactive assembly and
analysis of RADseq datasets. Bioinformatics, 36 (8), 2592-2594.
Ervin, G. N. (2012). Indian fig cactus (Opuntia ficus-indica (L.)
Miller) in the Americas: an uncertain history. Haseltonia,
2012 (17), 70-81.
Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC:
summarize analysis results for multiple tools and samples in a single
report. Bioinformatics, 32 (19), 3047-3048.
Excoffier, L., Dupanloup, I., Huerta-Sánchez, E., Sousa, V. C., & Foll,
M. (2013). Robust demographic inference from genomic and SNP data.PLoS Genetics, 9 (10), e1003905.
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial
resolution climate surfaces for global land areas. International
Journal of Climatology, 37 (12), 4302-4315.
Foll, M., & Gaggiotti, O. (2008). A genome-scan method to identify
selected loci appropriate for both dominant and codominant markers: a
Bayesian perspective. Genetics, 180 (2), 977-993.
Forbes, A. A., Devine, S. N., Hippee, A. C., Tvedte, E. S., Ward, A. K.,
Widmayer, H. A., & Wilson, C. J. (2017). Revisiting the particular role
of host shifts in initiating insect speciation. Evolution, 71 (5),
1126-1137.
Frichot, E., & François, O. (2015). LEA: An R package for landscape and
ecological association studies. Methods in Ecology and Evolution,
6 (8), 925-929.https://doi.org/10.1111/2041
Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G., & François, O.
(2014). Fast and efficient estimation of individual ancestry
coefficients. Genetics, 196 (4), 973-983.https://doi.org/10.1534/genetics.113.160572
Funk, D. J., Nosil, P., & Etges, W. J. (2006). Ecological divergence
exhibits consistently positive associations with reproductive isolation
across disparate taxa. Proceedings of the National Academy of
Sciences, 103 (9), 3209-3213.https://doi.org/10.1073/pnas.0508653103
Goudet, J. (2005). Hierfstat, a package for R to compute and test
hierarchical F‐statistics. Molecular Ecology Notes, 5 (1),
184-186.
Guo, Q. (2012). Incorporating latitudinal and central–marginal trends
in assessing genetic variation across species ranges. Molecular
Ecology, 21 (22), 5396-5403.
Hall, K. R., Anantharaman, R., Landau, V. A., Clark, M., Dickson, B. G.,
Jones, A., … & Shah, V. B. (2021). Circuitscape in Julia: empowering
dynamic approaches to connectivity assessment. Land, 10 (3), 301.
Heath, R. R., Teal, P. E., Epsky, N. D., Dueben, B. D., Hight, S. D.,
Bloem, S., … & Bloem, K. A. (2006). Pheromone-based attractant for
males of Cactoblastis cactorum (Lepidoptera: Pyralidae).Environmental Entomology, 35 (6), 1469-1476.
Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages.Nature, 405 (6789), 907-913.https://doi.org/10.1038/35016000
Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in
the Quaternary. Philosophical Transactions of the Royal Society of
London. Series B: Biological Sciences, 359 (1442), 183-195.
Hight, S. D., & Carpenter, J. E. (2009). Flight phenology of maleCactoblastis cactorum (Lepidoptera: Pyralidae) at different
latitudes in the southeastern United States. Florida Entomologist,
92 (2), 208-216.
Hight, S. D., Carpenter, J. E., Bloem, S., & Bloem, K. A. (2005).
Developing a sterile insect release program for Cactoblastis
cactorum (Berg) (Lepidoptera: Pyralidae): Effective overflooding ratios
and release-recapture field studies. Environmental Entomology,
34 (4), 850-856.
Hijmans, R. J., & van Etten, J. (2016). raster: Geographic data
analysis and modeling. R package, 734.
Hoffmann, J. H., Moran, V. C., Zimmermann, H. G., & Impson, F. A.
(2020). Biocontrol of a prickly pear cactus in South Africa:
Reinterpreting the analogous, renowned case in Australia. Journal
of Applied Ecology, 57 (12), 2475-2484.
Julien, MH and Griffiths, MW (1998), Biological Control of Weeds a World
Catalogue of Agents and their Target Weeds, 4th ed., CABI Publishing,
Wallingford, UK
Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W., & Prodöhl, P.
A. (2013). diveRsity: An R package for the estimation and exploration of
population genetics parameters and their associated errors.Methods in Ecology and Evolution, 4 (8), 782-788.
Keightley, P. D., Pinharanda, A., Ness, R. W., Simpson, F.,
Dasmahapatra, K. K., Mallet, J., … & Jiggins, C. D. (2015).
Estimation of the spontaneous mutation rate in Heliconius
melpomene . Molecular Biology and Evolution, 32 (1), 239-243.
Köhler, M., Esser, L. F., Font, F., Souza-Chies, T. T., & Majure, L. C.
(2020). Beyond endemism, expanding conservation efforts: What can new
distribution records reveal?. Perspectives in Plant Ecology,
Evolution and Systematics, 45 , 125543.
Laukkanen, L., Mutikainen, P., Muola, A., & Leimu, R. (2014).
Plant-species diversity correlates with genetic variation of an
oligophagous seed predator. PLoS One, 9 (4), e94105.
Lavinia, P. D., Barreira, A. S., Campagna, L., Tubaro, P. L., &
Lijtmaer, D. A. (2019). Contrasting evolutionary histories in
Neotropical birds: Divergence across an environmental barrier in South
America. Molecular Ecology, 28 (7), 1730-1747.
Leigh, J. W., & Bryant, D. (2015). POPART: full-feature software for
haplotype network construction. Methods in Ecology and Evolution,
6 (9), 1110-1116.
Lynch, M., & Conery, J. S. (2003). The origins of genome complexity.Science, 302 (5649), 1401–1404.
Marsico, T. D., Wallace, L. E., Ervin, G. N., Brooks, C. P., McClure, J.
E., & Welch, M. E. (2011). Geographic patterns of genetic diversity
from the native range of Cactoblastis cactorum (Berg) support the
documented history of invasion and multiple introductions for invasive
populations. Biological Invasions, 13 (4), 857-868.
McFadyen, R. E. (1985). Larval characteristics of Cactoblastis
spp.(Lepidoptera: Pyralidae) and the selection of species for biological
control of prickly pears (Opuntia spp.). Bulletin of
Entomological Research, 75 (1), 159-168.
McRae, B. H., & Beier, P. (2007). Circuit theory predicts gene flow in
plant and animal populations. Proceedings of the National Academy
of Sciences, 104 (50), 19885-19890.
McRae, B. H. (2006). Isolation by resistance. Evolution, 60 (8),
1551-1561.
Mengoni-Goñalons, C. M., Varone, L., Logarzo, G., Guala, M., Rodriguero,
M., Hight, S. D., & Carpenter, J. E. (2014). Geographical range and
laboratory studies on Apanteles opuntiarum (Hymenoptera:
Braconidae) in Argentina, a candidate for biological control ofCactoblastis cactorum (Lepidoptera: Pyralidae) in North America.Florida Entomologist , 1458-1468.
Morrone, J. J. (2014). Biogeographical regionalisation of the
Neotropical region. Zootaxa, 3782 (1), 1-110.
Mourelle, C., & Ezcurra, E. (1997). Differentiation diversity of
Argentine cacti and its relationship to environmental factors.Journal of Vegetation Science, 8 (4), 547-558.
Noguerales, V., Cordero, P. J., & Ortego, J. (2018). Inferring the
demographic history of an oligophagous grasshopper: Effects of climatic
niche stability and host-plant distribution. Molecular
Phylogenetics and Evolution, 118 , 343-356.
Noguerales, V., Meramveliotakis, E., Castro-Insua, A., Andújar, C.,
Arribas, P., Creedy, T. J., … & Papadopoulou, A. (2021). Community
metabarcoding reveals the relative role of environmental filtering and
spatial processes in metacommunity dynamics of soil microarthropods
across a mosaic of montane forests. Molecular Ecology .https://doi.org/10.1111/mec.16275
Nores, M. (1994). Quaternary vegetational changes and bird
differentiation in subtropical South America. The Auk, 111 (2),
499-503.
Ochoa, M. J., Targa, M. G., Abdala, G., Leguizamón, G. (2007, October).
Extending fruiting season of cactus pear (Opuntia ficus-índica(l.) miller) in Santiago del estero, Argentina. In VI International
Congress on Cactus Pear and Cochineal 811 (pp. 87-90).
Oliveira, E. A. D., Perez, M. F., Bertollo, L. A. C., Gestich, C. C.,
Ráb, P., Ezaz, T., … & Cioffi, M. B. (2020). Historical demography
and climate driven distributional changes in a widespread Neotropical
freshwater species with high economic importance. Ecography,
43 (9), 1291-1304.
Ortego, J., Céspedes, V., Millán, A., & Green, A. J. (2021). Genomic
data support multiple introductions and explosive demographic expansions
in a highly invasive aquatic insect. Molecular Ecology, 30 (17),
4189-4203.
Ortego, J., Gugger, P. F., Riordan, E. C., & Sork, V. L. (2014).
Influence of climatic niche suitability and geographical overlap on
hybridization patterns among southern Californian oaks. Journal of
Biogeography, 41 (10), 1895-1908.
Ortiz-Jaureguizar, E., & Cladera, G. A. (2006). Paleoenvironmental
evolution of southern South America during the Cenozoic. Journal
of Arid Environments, 66 (3), 498-532.
Pembleton, L. W., Cogan, N. O., & Forster, J. W. (2013). StAMPP: An R
package for calculation of genetic differentiation and structure of
mixed ploidy level populations. Molecular Ecology Resources,
13 (5), 946-952.
Peterman, W. E., Connette, G. M., Semlitsch, R. D., & Eggert, L. S.
(2014). Ecological resistance surfaces predict fine-scale genetic
differentiation in a terrestrial woodland salamander. Molecular
Ecology, 23 (10), 2402-2413.
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S., & Hoekstra,
H. E. (2012). Double digest RADseq: an inexpensive method for de novo
SNP discovery and genotyping in model and non-model species. PloS
ONE, 7 (5), e37135.
Pettey, F. W. (1948) The biological control of prickly pear in South
Africa. Science Bulletin, Department of Agriculture of the Union of
South Africa 271: 1–163
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum
entropy modeling of species geographic distributions. Ecological
Modelling, 190 (3-4), 231-259.
Poveda-Martínez, D., Aguirre, M. B., Logarzo, G., Hight, S. D.,
Triapitsyn, S., Diaz-Sotero, H., … & Hasson, E. (2020). Species
complex diversification by host plant use in an herbivorous insect: The
source of Puerto Rican cactus mealybug pest and implications for
biological control. Ecology and Evolution, 10 (19), 10463-10480.
Poveda-Martínez, D., Varone, L., Fuentes Corona, M., Hight, S., Logarzo,
G., & Hasson, E. (2022). Spatial and host related genomic variation in
partially sympatric cactophagous moth species. Molecular Ecology,
31 (1), 356-371.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A.,
Bender, D., … & Sham, P. C. (2007). PLINK: a tool set for
whole-genome association and population-based linkage analyses.The American Journal of Human Genetics, 81 (3), 559-575.
Raghu, S., & Walton, C. (2007). Understanding the ghost ofCactoblastis past: historical clarifications on a poster child of
classical biological control. BioScience, 57 (8), 699-705.
Ríos-Díez, J. D., & Saldamando-Benjumea, C. I. (2011). Susceptibility
of Spodoptera frugiperda (Lepidoptera: Noctuidae) strains from
central Colombia to two insecticides, methomyl and lambda-cyhalothrin: a
study of the genetic basis of resistance. Journal of Economic
Entomology, 104 (5), 1698-1705.
Rocha, A. V., Cabanne, G. S., Aleixo, A., Silveira, L. F., Tubaro, P.,
& Caparroz, R. (2020). Pleistocene climatic oscillations associated
with landscape heterogeneity of the South American dry diagonal explains
the phylogeographic structure of the narrow-billed woodcreeper
(Lepidocolaptes angustirostris, Dendrocolaptidae). Journal of
Avian Biology, 51 (9), 1–13.
Rodriguero, M. S., Lanteri, A. A., Guzmán, N. V., Carús Guedes, J. V.,
& Confalonieri, V. A. (2016). Out of the forest: past and present range
expansion of a parthenogenetic weevil pest, or how to colonize the world
successfully. Ecology and Evolution, 6 (15), 5431-5445.
Rosetti, N., Krohling, D., & Remis, M. I. (2022). Evolutionary history
and colonization patterns of the wing dimorphic grasshopperDichroplus vittatus in two Argentinean biomes. Scientific
Reports, 12 (1), 1-17.
Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S.,
Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6:
DNA sequence polymorphism analysis of large data sets. Molecular
Biology and Evolution, 34 (12), 3299-3302.
Sherpa, S., Renaud, J., Guéguen, M., Besnard, G., Mouyon, L., Rey, D.,
& Després, L. (2020). Landscape does matter: Disentangling founder
effects from natural and human aided post introduction dispersal during
an ongoing biological invasion. Journal of Animal Ecology, 89 (9),
2027-2042.
Simmonds, F. J., & Bennett, F. D. (1966). Biological control ofOpuntia spp. by Cactoblastis cactorum in the Leeward
Islands (West Indies). Entomophaga 11 : 183-189.
Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P.
(1994). Evolution, weighting, and phylogenetic utility of mitochondrial
gene sequences and a compilation of conserved polymerase chain reaction
primers. Annals of the Entomological Society of America, 87 (6),
651-701.
Slatkin, M. (1993). Isolation by distance in equilibrium and
non‐equilibrium populations. Evolution, 47 (1), 264-279.
Soley-Guardia, M., Carnaval, A. C., & Anderson, R. P. (2019).
Sufficient versus optimal climatic stability during the Late Quaternary:
using environmental quality to guide phylogeographic inferences in a
Neotropical montane system. Journal of Mammalogy, 100 (6),
1783-1807.
Speranza, P. R., Seijo, J. G., Grela, I. A., & Solis Neffa, V. G.
(2007). Chloroplast DNA variation in the Turnera sidoides L.
complex (Turneraceae): biogeographical implications. Journal of
Biogeography, 34 (3), 427-436.
Turchetto‐Zolet, A. C., Pinheiro, F., Salgueiro, F., & Palma‐Silva, C.
(2013). Phylogeographical patterns shed light on evolutionary process in
South America. Molecular Ecology, 22 (5), 1193-1213.
Varone, L., Acosta, M. M., Logarzo, G. A., Briano, J. A., Hight, S. D.,
& Carpenter, J. E. (2012). Laboratory performance of Cactoblastis
cactorum (Lepidoptera: Pyralidae) on South and North AmericanOpuntia species occurring in Argentina. Florida
Entomologist , 1163-1173.
Varone, L., Aguirre, M. B., Lobos, E., Ruiz Pérez, D., Hight, S. D.,
Palottini, F., … & Logarzo, G. A. (2019). Causes of mortality at
different stages of Cactoblastis cactorum in the native range.BioControl, 64 (3), 249-261.
Varone, L., Logarzo, G., Martínez, J. J., Navarro, F., Carpenter, J. E.,
& Hight, S. D. (2015). Field host range of Apanteles opuntiarum(Hymenoptera: Braconidae) in Argentina, a potential biocontrol agent ofCactoblastis cactorum (Lepidoptera: Pyralidae) in North America.Florida Entomologist, 98 (2), 803-806.
Varone, L., Logarzo, G. A., Briano, J. A., Hight, S. D., & Carpenter,
J. E. (2014). Cactoblastis cactorum (Berg) (Lepidoptera:
Pyralidae) use of Opuntia host species in Argentina.Biological Invasions, 16 (11), 2367-2380.https://doi.org/10.1007/s10530-014-0670-9
Varone, L., Mengoni Goñalons, C., Faltlhauser, A. C., Guala, M. E.,
Wolaver, D., Srivastava, M., & Hight, S. D. (2020). Effect of rearingCactoblastis cactorum on an artificial diet on the behaviour ofApanteles opuntiarum. Journal of Applied Entomology, 144 (4),
278-286.
Vidal, M. C., & Murphy, S. M. (2018). Bottom-up vs. top-down effects on
terrestrial insect herbivores: A meta-analysis. Ecology Letters,
21 (1), 138–150.https://doi.org/10.1111/ele.12874
Vidal, M. C., Quinn, T. W., Stireman III, J. O., Tinghitella, R. M., &
Murphy, S. M. (2019). Geography is more important than host plant use
for the population genetic structure of a generalist insect herbivore.Molecular Ecology, 28 (18), 4317-4334.
Wang, I. J., & Bradburd, G. S. (2014). Isolation by environment.Molecular Ecology, 23 (23), 5649-5662.
Wang, I. J. (2013). Examining the full effects of landscape
heterogeneity on spatial genetic variation: a multiple matrix regression
approach for quantifying geographic and ecological isolation.Evolution, 67 (12), 3403-3411.
Wang, I. J. (2020). Topographic path analysis for modelling dispersal
and functional connectivity: calculating topographic distances using the
topoDistance r package. Methods in Ecology and Evolution, 11 (2),
265-272.
Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the
analysis of population structure. Evolution , 1358-1370.
Werneck, F. P. (2011). The diversification of eastern South American
open vegetation biomes: historical biogeography and perspectives.Quaternary Science Reviews, 30 (13-14), 1630-1648.
Zimmerman, H. G., Moran, V. C., & Hoffmann, J. A. (2000) The renowned
cactus moth, Cactoblastis cactorum : its natural history and
threat to native Opuntia floras in Mexico and the United States of
America. Diversity and Distributions 6 : 259–269
Data Availability
The datasets generated during the current study for each one of the
analyses are available in Figshare
(https://figshare.com/s/a72fadc5a273aecbf346).
Raw reads are available at NCBI as BioProject PRJNA666743. The reference
draft genome is available at the NCBI under accession number
JADGIL010000000. Mitochondrial haplotypes are available at NCBI under
accession numbers OM176592-OM176657. Cactoblastis cactorum and
host species occurrences were retrieved from proper field records as
well as Gbif records
(https://www.gbif.org).
Supplementary data
Supplementary File