References
Bolinder, M. A., Angers, D. A., Giroux, M., & Laverdière, M. R. (1999).
Estimating C inputs retained as soil organic matter from corn (Zea Mays
L.). Plant and Soil , 215 (1), 85–91.
https://doi.org/10.1023/A:1004765024519
Bordonal, R. de O., Carvalho, J. L. N., Lal, R., de Figueiredo, E. B.,
de Oliveira, B. G., & La Scala, N. (2018). Sustainability of sugarcane
production in Brazil. A review. Agronomy for Sustainable
Development , 38 (2). https://doi.org/10.1007/s13593-018-0490-x
Bordonal, R. de O., Menandro, L. M. S., Barbosa, L. C., Lal, R., Milori,
D. M. B. P., Kolln, O. T., … Carvalho, J. L. N. (2018). Sugarcane
yield and soil carbon response to straw removal in south-central Brazil.Geoderma , 328 , 79–90.
https://doi.org/10.1016/j.geoderma.2018.05.003
Carvalho, João Luís Nunes, Nogueirol, R. C., Menandro, L. M. S.,
Bordonal, R. de O., Borges, C. D., Cantarella, H., & Franco, H. C. J.
(2017). Agronomic and environmental implications of sugarcane straw
removal: a major review. GCB Bioenergy , 9 (7), 1181–1195.
https://doi.org/10.1111/gcbb.12410
Carvalho, João Luís Nunes, Menandro, L. M. S., de Castro, S. G. Q.,
Cherubin, M. R., Bordonal, R. de O., Barbosa, L. C., … Castioni,
G. A. F. (2019). Multilocation Straw Removal Effects on Sugarcane Yield
in South-Central Brazil. Bioenergy Research .
https://doi.org/10.1007/s12155-019-10007-8
Carvalho, Joao L.N., Hudiburg, T. W., Franco, H. C. J., & DeLucia, E.
H. (2017). Contribution of above- and belowground bioenergy crop
residues to soil carbon. GCB Bioenergy , 9 (8), 1333–1343.
https://doi.org/10.1111/gcbb.12411
Carvalho, João Luís Nunes, Otto, R., Franco, H. C. J., & Trivelin, P.
C. O. (2013). Input of sugarcane post-harvest residues into the soil.Scientia Agricola , 70 (5), 336–344.
https://doi.org/10.1590/S0103-90162013000500008
Castioni, G. A. F., Cherubin, M. R., Bordonal, R. de O., Barbosa, L. C.,
Menandro, L. M. S., & Carvalho, J. L. N. (2019). Straw Removal Affects
Soil Physical Quality and Sugarcane Yield in Brazil. Bioenergy
Research , 789–800. https://doi.org/10.1007/s12155-019-10000-1
Cerri, C. C., Galdos, M. V., Maia, S. M. F., Bernoux, M., Feigl, B. J.,
Powlson, D., & Cerri, C. E. P. (2011). Effect of sugarcane harvesting
systems on soil carbon stocks in Brazil: An examination of existing
data. European Journal of Soil Science , 62 (1), 23–28.
https://doi.org/10.1111/j.1365-2389.2010.01315.x
Cherubin, M. R., Lisboa, I. P., Silva, A. G. B., Varanda, L. L.,
Bordonal, R. O., Carvalho, J. L. N., … Cerri, C. E. P. (2019).
Sugarcane Straw Removal: Implications to Soil Fertility and Fertilizer
Demand in Brazil. BioEnergy Research .
https://doi.org/10.1007/s12155-019-10021-w
Companhia Nacional de Abastecimento - CONAB. (2019).ACOMPANHAMENTO DA SAFRA BRASILEIRA Cana-de-açúcar - Safra 2019/20,
n.2 - Segundo levantamento . Brasília.
Dieckow, J., Bayer, C., Conceição, P. C., Zanatta, J. A., Martin-Neto,
L., Milori, D. B. M., … Hernani, L. C. (2009). Land use, tillage,
texture and organic matter stock and composition in tropical and
subtropical Brazilian soils. European Journal of Soil Science ,60 (2), 240–249. https://doi.org/10.1111/j.1365-2389.2008.01101.x
Dignac, M.-F., Derrien, D., Barré, P., Barot, S., Cécillon, L., Chenu,
C., … Basile-Doelsch, I. (2017). Increasing soil carbon storage:
mechanisms, effects of agricultural practices and proxies. A review.Agronomy for Sustainable Development , 37 (2), 14.
https://doi.org/10.1007/s13593-017-0421-2
Ellert, B. H., & Bettany, J. R. (1995). Calculation of organic matter
and nutrients stored in soils under contrasting management regimes.Canadian Journal of Soil Science , 75 (4), 529–538.
https://doi.org/10.4141/cjss95-075
FAO. (2019). Recarbonization of global soils . Retrieved from
http://doi.wiley.com/10.2136/sssabookser5.3.c34
Goldemberg, J., & Guardabassi, P. (2010). The potential for
first-generation ethanol production from sugarcane. Biofuels,
Bioproducts and Biorefining , 4 (1), 17–24.
https://doi.org/10.1002/bbb.186
Ipcc, A., & Report, S. (2019). Climate Change and Land - IPCC
Special Report on Climate Change, Desertification, Land Degradation,
Sustainable Land Management, Food Security, and Greenhouse gas fluxes in
Terrestrial Ecosystems .
Johnson, J. M. F., Novak, J. M., Varvel, G. E., Stott, D. E., Osborne,
S. L., Karlen, D. L., … Adler, P. R. (2014). Crop Residue Mass
Needed to Maintain Soil Organic Carbon Levels: Can It Be Determined?Bioenergy Research , 7 (2), 481–490.
https://doi.org/10.1007/s12155-013-9402-8
Kopittke, P. M., Dalal, R. C., Hoeschen, C., Li, C., Menzies, N. W., &
Mueller, C. W. (2020). Soil organic matter is stabilized by
organo-mineral associations through two key processes: The role of the
carbon to nitrogen ratio. Geoderma , 357 (June 2019),
113974. https://doi.org/10.1016/j.geoderma.2019.113974
Kravchenko, A. N., Guber, A. K., Razavi, B. S., Koestel, J., Quigley, M.
Y., Robertson, G. P., & Kuzyakov, Y. (2019). Microbial spatial
footprint as a driver of soil carbon stabilization. Nature
Communications , 10 (1), 1–10.
https://doi.org/10.1038/s41467-019-11057-4
La Scala, N., Bolonhezi, D., & Pereira, G. T. (2006). Short-term soil
CO2 emission after conventional and reduced tillage of a no-till sugar
cane area in southern Brazil. Handbook of Environmental Chemistry,
Volume 5: Water Pollution , 91 (1–2), 244–248.
https://doi.org/10.1016/j.still.2005.11.012
Lal, R. (2004). Soil carbon sequestration impacts on global climate
change and food security. Science , 304 (5677), 1623–1627.
https://doi.org/10.1126/science.1097396
Lorenz, K., Lal, R., & Ehlers, K. (2019). Soil organic carbon stock as
an indicator for monitoring land and soil degradation in relation to
United Nations’ Sustainable Development Goals. Land Degradation
and Development , 30 (7), 824–838.
https://doi.org/10.1002/ldr.3270
Menandro, L. M. S., Cantarella, H., Franco, H. C. J., Kölln, O. T.,
Pimenta, M. T. B., Sanches, G. M., … Carvalho, J. L. N. (2017).
Comprehensive assessment of sugarcane straw: implications for biomass
and bioenergy production. Biofuels, Bioproducts and Biorefining ,11 (3), 488–504. https://doi.org/10.1002/bbb.1760
Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays,
D., Chambers, A., … Winowiecki, L. (2017). Soil carbon 4 per
mille. Geoderma , 292 , 59–86.
https://doi.org/10.1016/j.geoderma.2017.01.002
Nelson, D. W., & Sommers, L.E. (1996). Total Carbon , Organic
Carbon , and Organic Matter . Methods of soil analysis. Chapter
34 (5), 961-1010.
Neufeldt, H., Resck, D. V. S., & Ayarza, M. A. (2002). Texture and
land-use effects on soil organic matter in Cerrado Oxisols, Central
Brazil. Geoderma , 107 (3–4), 151–164.
https://doi.org/10.1016/S0016-7061(01)00145-8
Oliveira, D. M. S., Williams, S., Cerri, C. E. P., & Paustian, K.
(2017). Predicting soil C changes over sugarcane expansion in Brazil
using the DayCent model. GCB Bioenergy , 9 (9), 1436–1446.
https://doi.org/10.1111/gcbb.12427
R Development Core Team. (2019). A language and environment for
statistical computing. R Foundation for Statistical Computing. Retrieved
from https://www.r-project.org/
Robertson, F. A., & Thorburn, P. J. (2007). Management of sugarcane
harvest residues: Consequences for soil carbon and nitrogen.Australian Journal of Soil Research , 45 (1), 13–23.
https://doi.org/10.1071/SR06080
Ruiz Corrêa, S. T., Barbosa, L. C., Menandro, L. M. S., Scarpare, F. V.,
Reichardt, K., de Moraes, L. O., … Carvalho, J. L. N. (2019).
Straw Removal Effects on Soil Water Dynamics, Soil Temperature, and
Sugarcane Yield in South-Central Brazil. Bioenergy Research .
https://doi.org/10.1007/s12155-019-09981-w
Sanderman, J., Hengl, T., & Fiske, G. J. (2017). Soil carbon debt
of 12,000 years of human land use . (4), 1–7.
https://doi.org/10.1073/pnas.1706103114
Satiro, L. S., Cherubin, M. R., Safanelli, J. L., Lisboa, I. P., Rocha
Junior, P. R. da, Cerri, C. E. P., & Cerri, C. C. (2017). Sugarcane
straw removal effects on Ultisols and Oxisols in south-central Brazil.Geoderma Regional , 11 , 86–95.
https://doi.org/10.1016/j.geodrs.2017.10.005
Silva-Olaya, A. M., Cerri, C. E. P., La Scala, N., Dias, C. T. S., &
Cerri, C. C. (2013). Carbon dioxide emissions under different soil
tillage systems in mechanically harvested sugarcane. Environmental
Research Letters , 8 (1).
https://doi.org/10.1088/1748-9326/8/1/015014
Sousa Junior, J. G. d. A., Cherubin, M. R., Oliveira, B. G., Cerri, C.
E. P., Cerri, C. C., & Feigl, B. J. (2018). Three-Year Soil Carbon and
Nitrogen Responses to Sugarcane Straw Management. Bioenergy
Research , 11 (2), 249–261.
https://doi.org/10.1007/s12155-017-9892-x
Souza, R. A., Telles, T. S., Machado, W., Hungria, M., Filho, J. T., &
Guimarães, M. de F. (2012). Effects of sugarcane harvesting with burning
on the chemical and microbiological properties of the soil.Agriculture, Ecosystems and Environment , 155 , 1–6.
https://doi.org/10.1016/j.agee.2012.03.012
Spohn, M. (2020). Phosphorus and carbon in soil particle size fractions:
A synthesis. Biogeochemistry , 147 (3), 225–242.
https://doi.org/10.1007/s10533-019-00633-x
Tenelli, S., de Oliveira Bordonal, R., Barbosa, L. C., & Carvalho, J.
L. N. (2019). Can reduced tillage sustain sugarcane yield and soil
carbon if straw is removed? Bioenergy Research .
https://doi.org/10.1007/s12155-019-09996-3
Thornthwaite, C. W. (1948). An Approach toward a Rational Classification
of Climate. Geographical Review , 38 (1), 55–94.
https://doi.org/10.2307/210739
Vermeulen, S., Bossio, D., Lehmann, J., Luu, P., Paustian, K., Webb, C.,
… Warnken, M. (2019). A global agenda for collective action on
soil carbon. Nature Sustainability , 2 (1), 2–4.
https://doi.org/10.1038/s41893-018-0212-z
Xu, H., Sieverding, H., Kwon, H., Clay, D., Stewart, C., Johnson, J. M.
F., … Wang, M. (2019). A global meta-analysis of soil organic
carbon response to corn stover removal. GCB Bioenergy ,11 (10), 1215–1233. https://doi.org/10.1111/gcbb.12631
Zhao, X., Liu, B‐Y., Liu, S‐L, L., Qi, J-Y., Wang, X., Chao, P., Li,
S-S., Zhang, X-Z., Yang, X-G., Lal, R., Chen, F. & Zhang, H-L. (2020).
Sustaining crop production in China’s cropland by crop residue
retention: A meta‐analysis. Land Degrad Dev. , 31, 694– 709.
https://doi.org/10.1002/ldr.3492