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Summary
Optical cables are enormous transmission media which carries high-speed data across transatlantic, intercontinental, international boundaries and cities.  The optical cable is essential in data communication.  The cable has become an indispensable component in optical communications infrastructure; hence, conscious efforts are always adopted to prevent or minimize faults in the optical network infrastructure. Typically, tracing fault in the underground optical network has been difficult even though optical time-domain reflectometer (OTDR) has been used to measure the distance of faults in the underground fiber cable. The methodologies deployed in the reviewed literature indicate a vast gap between the fault distance measured by the OTDR and the actual distance of fault. This paper observed the difficulties involved in tracing the actual spot of fault in the underground optical networks. The difficulty of tracing these underground faults mostly result in an undue delay and loss of revenue. This research presents a machine learning (ML) approach to predict the actual location of a fiber cable fault in an underground optical transmission link. Linear regression in the python sci-kit learn library was used to predict the actual location of a fault in an underground optical network. The MSE and MAE evaluation matrix used provided good accuracy results of  0.061291 and 0.080143, respectively. The result obtained in this paper indicates that faults in underground optical networks can be found quickly to avoid the delays in the fault tracing process, which leads to an excessive revenue loss.
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1  |  INTRODUCTION

Machine learning (ML) applications in optical communications and networking are gaining more attention, particularly in the areas of nonlinear transmission systems, optical transmission amplification, passive optical performance monitoring, and cross-layer network optimizations for software-defined networks, fault detection and identification of Bit Error Rate (BER),1 Quality of Transmission 2 (QoT) and signal amplification 3. Several ML techniques 4 have been deployed to solve problems relating to optical communications infrastructure. The process of using ML technique to predict optical network performance has reached a stage where complex network management, fault tracing, configurations and coding schemes have high accuracy5. Not much has been done with ML in tracing fault in underground optical networks. Hard failures6 in underground optical networks are complicated to trace as the optical time-domain reflectometer (OTDR) measurements provide the distance of the fiber cable buried in the earth. The major problem the telecommunications companies experience in underground fault tracing is how to find the exact spot of the cable cut on earth. Long-haul underground optical networks have fiber optics cables laid in trenches of 1.2m deep inside the earth. This mode of transmission has encountered several challenges which include most predominantly fiber cable cuts which result in disruption of communication services7. 

        In underground optical transmission, it is usually strenuous to trace hard failures in the fiber cable buried in the earth when the cable is not visible on the earth surface. Tracing the exact spot of fault in the fiber cable requires some form of digging along the optical cable transmission path to identify the exact cable cut point. This situation causes enormous revenue loss due to delays in tracing and repairing the fault7,8. 
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The OTDR measurements alone have not been useful in tracing fault in underground optical infrastructure. This research provides a solution to the problem by using machine learning modelling to predict the actual fault location when there is a fiber cable cut in underground optical infrastructure. The identified drawbacks in the present approach of tracing faults in underground optical networks include the inconsistencies between the measured value of OTDR and the actual distance of fault, excessive delay in pinpointing the exact spot of fault on earth's surface, waste of resources and the economic losses9.

        Many solutions, especially the use of OTDR  for determining the precise length of fiber cable cuts in underground optical transmission systems have been developed 10, 11 and the application of ML to trace faults in soft and hard failures of optical transmission infrastructures12, 13. Thus, telecommunication companies have over the years relied on OTDR due to its preciseness in estimating the distance of fault in fiber cables. The solution made it possible to measure the length of fault in the fiber cable using the OTDR device. The imprecise and inaccurate nature of OTDR measurement of tracing faults in the underground optical transmission system has made it impossible to identify the exact locations of the fiber cuts on earth, resulting in extra costs and workforce hours for the telecommunication companies. These extra costs include the cost implication of delay in resolving the faults, negative impact on the company's brand, and the additional cost of digging and covering unaffected areas, among others. OTDR provides an estimated distance of fiber cable at which faults occurs, but the actual distance of fault on earth, and the estimated fiber cable distance varies considerably. Various research works have been carried out in this domain to resolve these problems, but all the reviewed works provided an estimated fault distance of the underground fiber cable. The previous research works include fault tracing using OTDR14, photon probe fault locator15, Raman-based fiber sensors3, Tunable optical time-domain reflectometer (T-OTDR), Correlation technique utilizing traffic signal, step frequency method. 16 published their work on Fault Detection Technique in an underground fiber network, emphasizing mainly on the limitations and drawbacks on the practical approach of measurement of OTDR, which focused not only on the distance of the fiber optics cable (FOC) alone but the Euclidean distance on the earth surface 17 from the optical transmitter to the point of the fiber cable cut. The solution provided by 16 also introduced several cut points along the fiber cable transmission path, which eventually increased the losses in the FOC network. 

       Other researchers proposed embedded OTDR software on Small Factor Pluggable (SFP) module to be deployed at the end-to-end nodes in the FOC network infrastructure, to monitor and report the distance of fault in the transmission link. The embedded OTDR in SFP module was to reduce fault down-time and the delays in fault tracing in the underground optical networks 18. 
 
        In their study, 19 investigated the application of ML-based techniques for soft-failure detection, identification and causes of failures based on continuous monitoring of BER. The authors further explored the trade-off between the accuracy and complexity provided by different ML algorithms using several model parameters, such as BER sampling time and amount of BER data needed to train the models. Predicting imminent transmission failures that could disrupt the optical network operations by continuous monitoring of the active optical links is essential. Monitoring optical network infrastructure to identify and localize failures during active operation intelligently has been achieved by the use of ML-based techniques20.

       An optical network generates a large number of different data streams which must be fetched, processed, and analyzed promptly by ML techniques to ensure optical network QoT. In order to enable data-driven ML analysis, it is important to explore several aspects of network data, including its extent, monitoring, query mechanisms, storage, and representation attributes21. Generally, as long the underground fiber cable cut remains unsolved, the telecommunications company loses huge revenue and users also suffer unnecessarily as a result of the devastating impact of the fault. This paper uses the ML technique to predict the actual location of faults in underground optical networks by applying a simple linear regression predictive model. The input dataset of the single-layer perceptron (SLP) neural network (NN) structure applied sigmoid activation function to obtain useful output value with reasonable accuracy.

2 |  FAULT DETECTION IN UNDERGROUND OPTICAL NETWORKS

Failures in optical networks are mostly characterized by losses which hugely affects the quality of transmission and quality of service. The primary classification of these failures is hard failures which is a sudden event such as fiber cuts, power outages, etc1. Soft failures are gradual transmission degradation due to equipment malfunctioning or filter misalignment. Failures in optical networks are caused by different sources such as filters misalignment, amplifier malfunctioning, fiber bends, etc. During network operations, several kinds of soft failures affect the signal quality and induce anomalies in the BER at the receiver, ultimately leading to packet losses or even service disruption. Hence, the techniques for soft failure detection, localization and identification are crucial, as it is used to perform traffic re-routing and rapid failure recovery. Hard failure in underground optical networks such as fiber cable cut and bends has been traced and identified using OTDR device 22. 
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2.1 | OTDR
The OTDR device is used to trace faults in optical cables14, 23. The scientific principle employed by OTDR device to measure the distance of faults in optical cables is Rayleigh scattering and Fresnel reflection techniques. The device is also used to verify splice loss, measures the length and finds faults in optical cables. OTDRs are also commonly used to establish the integrity of fiber cables when it is newly installed. The OTDR's operating principle is based on the measurement of the Raleigh backscattering signal, which is generated by sending a high power optical pulse from the OTDR through the optical fiber. When the light reaches the faulty spot in the fiber cable, it gets reflected back to the OTDR. This backscattered light measured by the sensitive optic receiver is converted to digital form and averaged to improve the signal to noise ratio. The resultant signal is displayed as a graph called a Trace. The trace is a visual representation of the backscattering coefficient created by the OTDR to determine the activities of the backscattered light. The trace shows the activities such as cuts, splice loss, bends, attenuation and distance of fault in the optical networks 24.          

         The OTDR measurements deliver much valuable information such as optical power loss (dB), attenuation (dB/km), bending, stressing and breaks. Fresnel reflection is a discrete reflection which uses the activity of the backscattered light to determine the distance of the light signal, which travels back from the fault point to the optical transmitter. These fault locations are caused by a change in reverse coefficient elements such as air gap or severe particles obstructing the free flow of the light signal. At these points, there is always a strong light signal reflected back 25. However, by using the information of Fresnel reflection, OTDR can predict the soft and hard failures in the optical network infrastructure. The device measures the distance of the light source (optical transmitter) to the faulty zone.
          
          Beside Rayleigh scattering, other famous scientific principles used in tracing faults in optical networks include Raman scattering, Mie scattering and Brillouin scattering  26. All these principles, when deployed in OTDR, measures the distance of the underground fiber cable. 

2.2  |  Application of Machine Learning in Optical-Network Failures
         The adoption of the ML approach in the field of optical networks has been inspired by the exceptional growth and the complexity faced by the continuous expansion of optical networks infrastructure. The increase in such complexity is as a result of the introduction of a massive number of adaptable and interdependent system parameters such as routing, configurations, modulation, symbol rate, coding schemes, etc. These parameters are managed by the usage of coherent transmission and reception technologies, advanced digital signal processing, and compensation of nonlinear effects in optical fiber propagation. Optical signals are usually affected by fiber nonlinearity. 
     
          ML applications in optical networks provide several advantages such as traffic prediction and virtual topology design, failure detection, fault localization and flow classification. Binary support vector-machine (SVM), Random Forest, Multiclass SVM,  Neural Networks are some ML techniques used in optical network fault detection. At the same time, Neural Networks, logistics and linear regressions are predominantly deployed in optical network fault identification 19, 20, 27, 28, 29. ML technique has been deployed in this paper to help predict the actual distance of fault when the value of OTDR measurement is known. Using the ML technique to trace faults in underground optical cables is expected to be done without much delay, resulting in reduced loss of revenue. 

2.2.1 | Simple Linear Regression model
         Simple Linear Regression (SLR) model is the most intuitive and ubiquitous ML algorithm, which uses one or more independent variables to predict a dependent variable 30. Simple Linear Regression models a target value based on independent variables. The model performs tasks to predict a dependent variable value (yi) based on a given independent variable (xi). So, the regression technique finds out a linear relationship between the OTDR measured value as xi (input) and the actual location of a fiber cable cut, yi (output). Hence, SLR is given by:

                                                                          yi =  + .xi                                                                                                                                                     (1)   

where  is the intercept and  is the coefficient of xi

         In the simple linear regression model applied in this paper, the training data were defined as xi, which was the input value obtained from the OTDR measurement, and yi is the actual location (predicted value). To achieve the best fit of the predicted value, yi, for the regression model in (1); given xi as the dependent variable,  and  values must reach its best in the specified epoch. Ones the best of  and  values were found, the best fit for the simple linear regression was achieved.  



2.2.2 |  Single-Layer Perceptron Neural Network

          Single-Layer Perceptron Neural Network (SLP NN) is an ML technique which has an input layer and an output layer of processing units with no feedback connections. The SLP NN structure for the linear regression prediction consists of two input units 31. The input units to the SLP are the number of coiled cables before the underground fault (x1) with weighted value (w1) and the measure of OTDR (x2) with its weighted value (w2). The single hidden layer computes the input value by applying the sigmoid activation function to the expected predictive distance of the underground fault to achieve ypred as indicated in figure 1. 
[image: ]
Figure 1: The SLP structure of the predictive model

                                                                                                                                                            
 represents the actual distance between the optical transmitter and the point of fiber cable cut
 represents the measurement of OTDR and its weighted value

3  |  PROPOSED MODEL
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Figure 2: Underground FOC transmission link

        The identified drawbacks in computing the actual location on earth of fault tracing in optical networks have severe effects on the efficiency of fault location process. It is as a result of these inefficiencies that this paper adopted an ML predictive model which can compute the actual location of the fault on earth based on the measured distance of OTDR. 

        Figure 2 represents an underground optical transmission link between node A and node B with three chambers which contains a coiled FOC of length q. The distance between any two chambers in the link has an equidistance of length p. the depth of the underground FOC from the surface of the earth is 1.2m (this value has no significance in the modelling of the ML predictive technique in this paper). The link also has some spliced closures fixed along the transmission path due to the splicing of other forms of hard failures. In case the link experience a cut in the earth at point x, and the underground cable is not visible to the surface of the earth; location the spot of the FOC cut underground is much complicated. The paper develops an intelligent system to solve this problem. The parameters extracted from the link AB were essential is the prediction of the actual distance.



Parameter of  figure 2: 
a. the stock of coiled FOC in each duct well (chamber) is q =15m.
b. The stock of fiber cable between the two chambers is p=1000m.
c. The OTDR measurement between the optical transmitter, A, and the fiber cable cut point is x
d. Earth distance of the transmission link is the Euclidean distance between the optical transmitter A and the optical receiver B.
e. The stock of fiber cable in each splice closure is 1m
f. The actual fault distance of earth is Ed = ypred

3.1 |  Effect of the coiled cable on fault tracing
       The difficulty in tracing the precise location of faults in the underground fiber optics cable (FOC) has been attributed to the number of coiled fiber cables placed in the various chambers (C) along the optical transmission link AB. The coiled fiber cables accounted for the inconsistencies in the OTDR measurement and the actual fault location. The proposed predictive model considered the number of chambers in the optical transmission link, the coiled fiber cable, the number of chambers between the optical transmitter and the spot of fault in the underground optical network as shown in figure 2.

3.2  |  Number of Chambers in the Optical Transmission Link
        In the single-mode underground transmission system, chambers are placed at equal intervals, p, along the optical transmission path AB. The chambers contain coiled optical cable of length, q. This indicates that each chamber contains an equal length of coiled optical cable at the time of installation. This phenomenon is done to allow slag in the underground optical cable.

         The number of chambers in the transmission link between A and x has been represented mathematically as Cx =Ci 
where Cx is the summation of the chambers between A and x; i=0,1,2,…,n  
                                                                                
(3)


In figure 2, the number of chambers between A and x plays a critical role in computing the exact location of the fault on earth. Having Ci, q and p between A and x optimize the process of predictability of the precise spot of the fault on earth. 

3.3  |  Distance on Earth
Computing the exact location on the earth distance (Ed) is critical in the fault tracing process of underground optical networks. As indicated in figure 2, Ed in the underground optical cable transmission is the point between the optical transmitter to the point of the cable cut. Ed is the predicted distance, ypred. The essential parameters of determining the fault distance are the length of the coiled cable in the chambers and the measurement of the OTDR device. In the instances where there are no chambers between the cable cut point and the optical transmitter, the actual location is given by;
                                                                        Ed = x                                                                                                                 (4)
Where x is the distance between the optical transmitter and the cut point of the underground optical cable.

4  |  ML MODEL FOR FAULT TRACING OF UNDERGROUND OPTICAL NETWORKS
         In order to resolve the problem of delays and loss of revenue in the process of tracing fault in the underground optical network infrastructure, there is the need to adopt the technique of an intelligent system to aid the process. The intelligent system uses three main algorithms to learn the behaviour of the input data. These main algorithms include supervised, unsupervised and re-enforcement learning techniques 4, 32-35. SLR supervised predictive model was adopted by the paper to predict the actual location of the fault, based on the SLP neural networks 36-37. 

        The datasets collected from the field were fed into the predictive model; datasets were preprocessed and transformed by normalization. Data pattern were extracted based on the SLR analytics by dividing the data into training and testing dataset. The partitioned dataset was taken through several epochs to produce the expected output. Python Scikit learning library was used for SLR modelling. The proposed ML framework to predict the actual location of the fault in the underground optical network is summarized in figure 3.
[image: ]
Figure 3: Proposed framework for exact fault location in FOC

4.1  |  Data Collection
The input data used for the experiment were collected from the field. The data collection was done on a real-time basis as faults occurred at various locations of the optical network infrastructure, which belong to one of the telecommunication companies in Ghana. The dataset was collected over eight (8) weeks in three regions of Ghana. Some of the optical links had multiple mobile network operators, which causes the impact of faults to be severe. The datasets we collected over the period were 1250. The features of the datasets were five (5); thus, the region, OTDR measurements, actual distance, number of splice closures and the stock of cable in each chamber. The regional distribution of the datasets in the eight regions has been presented in Table 1. The actual fault tracing process in the underground optical network has been very complicated to determine due to the nonlinearity of the underground optical cable. ML technique has been deployed in this paper as a means to trace fault in the underground optical network to enhance the process and thereby reduce the delays associated with the fault tracing procedure.  

Table 1: The observed fiber cable cut in each region
	Region
	Region1
	Region2
	Region3
	Region4
	Region5
	Region6
	Region7
	Region8
	Total cable cuts

	Fiber cable cut
	366
	234
	214
	232
	238
	72
	88
	44
	1250



       In this work, the value of y is the computed distance of the fault on the earth. The x and y values ranged from 1m to 50,000m. The SLP NN applied in the linear regression predictive model had an input variable xi = [x1, x2] and the weight wi = [w1, w2] as indicated in equation (2). SLR performs well when the dataset has linearly separable nature of the relationship among the variables. We adopted SLR because we found it more appropriate for our model due to its ability to implement, interpret and efficiently train the dataset we used.

4.2  |  Data Transformation

The input dataset was taken through selection, data cleansing, normalization function was also used in each of the input variables which transformed them into a value between 0 and 1. The data preprocessing was performed to remove outliers.

4.3  |  Pattern Extraction
In ML modelling, data partitioning is essential. The overall dataset was partitioned into training and test dataset; the more training dataset a model has, the better the model becomes, hence 80% (1000) and 20% (250) of the original dataset respectively was implemented in the SLR model. By using SLP learning technique, SLR predictive model was applied to train the partitioned data. The practical approach to the ML modelling, applied a regression analysis in which the data was integrated into a sigmoid activation function, as shown in equation (4).







                                                                                                                                                                          (4)
 
By achieving the best-fit regression values, the model aimed to predict y value such that the error difference between the predicted value and actual value is minimum. It is crucial to update  and  values, to reach the best value that can minimize the error between predicted y value (pred) and actual y value (yi) computed by equation 5 to 13.




                                                                                                                                                                           

                                                                                                                                                                   

                                                                                                                                                         

                                                                                                                                                  

A partial derivative was also applied in the regression analysis to improve the accuracy of the result.
                                                                                                                                                            

                                                                                                                                                                        

                                                                                                          
                                                                                                                   
where J is the cost function
The partial derivatives are the gradient descent, and it was used to update the values of  and  .  is the specified learning rate. A lower learning rate was chosen to get the cost function closer to the minima, but it took more time to reach the minima. A tremendous learning rate was not applied because it converged quickly, and it tends to overshoot the minima. 

5  | RESULTS AND DISCUSSION
      The regression equations (1) was used to predict the actual location of the fault in the underground optical network. The predicted value and actual value are shown in table 1 and figure 3. As indicated in the figure, the simple regression model better fits than the actual value. The values in table 2 are normalized data measured in meters.  The goal of adopting normalization was to change the values of numeric columns in the dataset to a common scale, without distorting differences in the ranges of values. In ML, it is common practice to scale the dataset to a range that ensures better modelling. Normalization is the process we adopted to transform the dataset into the range of [0, 1].

Table 2: The actual and predicted values of fault distance (m).
	        Actual Values (yi)
	Predicted Values (ypred)

	
0.039656982
	0.030709101

	0.089107197
	0.077275265

	0.037703717
	0.028475712

	0.086880799
	0.070173088

	-0.024037119
	0.015633724

	0.069267752
	0.024539363

	0.066537393
	0.042177778

	               3.69546E-05
	2.15985E-05

	0.030504379
	0.012639084

	0.081982683
	0.061063093

	0.031220966
	0.024215522

	0.07001415
	0.064332775

	0.084927534
	0.075608599

	0.039656982
	0.038586711

	-0.001637077
	0.001002021

	-0.007129979
	0.001830821

	0.0779012
	0.052456728

	0.066537393
	0.082137521

	0.0298648
	0.010608599

	0.0298648
	0.010887772

	0.000316188
	0.000238414

	0.122042494
	0.221173311



       At the same time, the actual values randomly fluctuate irregularly and are independent of each other with no abnormalities, as indicated in the horizontal and vertical axis of figure 4. Hence, it is feasible and effective to use the simple linear regression model to predict the actual distance of an underground optical network. There were few observed outliers in the actual distance prediction. In figure 4, the y-axis represents the distance of the cable cut, and x-axis represents the number of faults. These outliers had an insignificant effect on the error margin of the entire process. In SLR data analysis, 38,39 argued that it is a common practice to identify outliers in data analyses. That notwithstanding, outliers are of interest because they could significantly affect the results of research. However, an outlier, rather than being due to a measurement error, could be due to some interesting changes or behaviour in the data generating process, and it is often of interest to investigate such changes. The publication of 40, suggested a method called Massive Unsupervised Outlier Detection, (MUOD) for detecting outlying curves in functional data sets. MUOD is an unsupervised algorithm which automatically detects magnitude, shape, and amplitude of outliers. 

        The outliers identified in the predicted values were as a result of the input dataset of the SLR model. Some of the underground transmission links have had several cuts and splicing joints. The underground FOC repairing process requires extra cable to be inserted to allow efficient splicing process or some cables drawn from the coiled cable in the nearby cambers to enable flexibility in cable splicing. These measurement errors in the data collection process brought about some outliers and may be corrected when the model is fully implemented on the field. This is the reason why we adopted ML, which is essential because as the predictive model is exposed to new data, the model would be able to adapt independently. The model learns from the previous computations to produce reliable, repeatable decisions and results of the exact distance of fault on earth.
[image: ]
Figure 4: The actual and predicted values of underground optical networks

The best cost function was obtained by improving the values of  and  such that the mean square error (MSE) value settled at minima, as indicated in the error values in table 3.

Table 3: The cost functions of the predictive model

	MAE
	MSE
	R2
	EVS

	0.080143
	0.061291
	0.000357
	0.079361



MAE: is the absolute error, which is translated as the absolute percentage error; ie, MAEx100 
MSE: Mean square error is the cost function
R2: The ratio between predicted variation and actual variations, 

                                                                                                                                                                                                    
where,
                                                                                                                                                                               
and,
                                                                                                                                                                               
The accuracy obtained in the test indicates how close the predicted values are to the real values. The result obtained in the simple linear regression prediction has the value that can be used for fault tracing in the underground optical networks. Even though the predictive model had outliers at the output, the evaluation matrix deployed suppressed it the residual effect of the outliers on the final results. The values obtained for the evaluation matrix MSE and MAE were  0.061291 and 0.080143, respectively; indicating the predictive model is good for prediction of the exact distance of faults in underground fiber cable cut. 
      
       That notwithstanding, the ML model deployed produced smaller errors margins that have the ability to precisely predict the exact distance of fault in underground optical networks. When the variables of the fault are available, our empirical ML model has the tendency to provide the result of the exact location quickly than to deploy any conventional mathematical computations. The modelling would be achieved quickly when the input variables are updated according to the observed variables of the new faults. The use of ML modelling is this research was significant because the model overcomes the delays in tracing faults in underground fault using only the measurements of the OTDR device. As the delays in the faults tracing process have been overcome by the model used, there will be a significant reduction in the loss of revenue and the harmful effect on customer experience will be heavily minimized. The attainment of this research result is a great achievement which supports the novelty of our aim to deploy the ML model to determine the exact distance of faults in underground optical networks. 

6  |  CONCLUSION
An intelligent model based on a single-layer perceptron neural network technique was applied in simple linear regression predictive model to predict the precise distance of fault in an underground fiber cable cut. The evaluation of the test data shows that the simple linear regression model is capable of predicting the location of an underground fiber cable cut correctly. In this case, OTDR measurement must be made available to predict the actual distance of fault on earth whenever a failure occurs in the underground optical networks. The solution provided in this paper will help the telecommunication industry players to reduce significantly the time used in tracing fault; this means the loss of revenue which arise as a result of delays in the fault tracing and repairing process, will also reduce significantly.
        At the same time, the simple linear regression prediction method achieved in this paper does not only apply to the prediction of faults in underground optical networks, but also other underground transmission infrastructures. The primary evaluation matrix employed in the predictive model were MSE and MAE, and it provided good accuracy results of  0.061291 and 0.080143, respectively. The result obtained in the paper has provided an excellent research opening to apply other ML techniques to predict faults in the underground optical networks. Using the ML model to determine the exact distance of fault in underground optical networks has been a great achievement which has a high tendency to overcome the difficulty in tracing fault in underground optical networks. The correlation between some the predicted values and the actual value were higher than then expected values; as the outliers were few and had no significant influence on the overall predicted values. 
However, the attainment of this research result is a great achievement which supports the novelty of our aim to deploy ML model to determine the exact distance of faults in underground optical networks in an effort to overcome the delays in the fault tracing process. The relevance of this result is essential for the MNOs whose long-haul network infrastructure is underground fiber cables.
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