References
Alexander SPH, Christopoulos A, Davenport AP, Kelly E, Mathie A, Peters JA, et al. (2019). THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors. Br J Pharmacol 176 Suppl 1: S21-S141.
Buritova J, Honore P, & Besson JM (1995). Indomethacin reduces both Krox-24 expression in the rat lumbar spinal cord and inflammatory signs following intraplantar carrageenan. Brain Res 674: 211-220.
Celik MO, Labuz D, Henning K, Busch-Dienstfertig M, Gaveriaux-Ruff C, Kieffer BL, et al.(2016). Leukocyte opioid receptors mediate analgesia via Ca(2+)-regulated release of opioid peptides. Brain Behav Immun 57: 227-242.
Chen H, & Ikeda SR (2004). Modulation of ion channels and synaptic transmission by a human sensory neuron-specific G-protein-coupled receptor, SNSR4/mrgX1, heterologously expressed in cultured rat neurons. J Neurosci 24: 5044-5053.
Chen SR, & Pan HL (2006). Loss of TRPV1-expressing sensory neurons reduces spinal mu opioid receptors but paradoxically potentiates opioid analgesia. J Neurophysiol 95:3086-3096.
Chen SR, Prunean A, Pan HM, Welker KL, & Pan HL (2007). Resistance to morphine analgesic tolerance in rats with deleted transient receptor potential vanilloid type 1-expressing sensory neurons. Neuroscience 145: 676-685.
Corder G, Castro DC, Bruchas MR, & Scherrer G (2018). Endogenous and Exogenous Opioids in Pain. Annu Rev Neurosci 41: 453-473.
Corder G, Tawfik VL, Wang D, Sypek EI, Low SA, Dickinson JR, et al. (2017). Loss of mu opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat Med 23: 164-173.
Curtis MJ, Alexander S, Cirino G, Docherty JR, George CH, Giembycz MA, et al. (2018). Experimental design and analysis and their reporting II: updated and simplified guidance for authors and peer reviewers. Br J Pharmacol 175:987-993.
Deacon RM (2013). Measuring motor coordination in mice. J Vis Exp: e2609.
Decosterd I, & Woolf CJ (2000). Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain 87: 149-158.
Dolphin AC, & Scott RH (1989). Modulation of Ca2+-channel currents in sensory neurons by pertussis toxin-sensitive G-proteins. Ann N Y Acad Sci 560: 387-390.
Dumas EO, & Pollack GM (2008). Opioid tolerance development: a pharmacokinetic/pharmacodynamic perspective. Aaps j 10: 537-551.
Guan Y, Liu Q, Tang Z, Raja SN, Anderson DJ, & Dong X (2010). Mas-related G-protein-coupled receptors inhibit pathological pain in mice. Proc Natl Acad Sci U S A 107: 15933-15938.
Harding SD, Sharman JL, Faccenda E, Southan C, Pawson AJ, Ireland S, et al. (2018). The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Res 46:D1091-d1106.
Hargreaves K, Dubner R, Brown F, Flores C, & Joris J (1988). A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32: 77-88.
Huang P, Chen C, & Liu-Chen LY (2015). Detection of mu opioid receptor (MOPR) and its glycosylation in rat and mouse brains by western blot with anti-muC, an affinity-purified polyclonal anti-MOPR antibody. Methods Mol Biol 1230: 141-154.
Iwaszkiewicz KS, Schneider JJ, & Hua S (2013). Targeting peripheral opioid receptors to promote analgesic and anti-inflammatory actions. Front Pharmacol 4: 132.
Kayser V, Lee SH, & Guilbaud G (1995). Evidence for a peripheral component in the enhanced antinociceptive effect of a low dose of systemic morphine in rats with peripheral mononeuropathy. Neuroscience 64: 537-545.
Kilkenny C, Browne W, Cuthill IC, Emerson M, & Altman DG (2010). Animal research: reporting in vivo experiments: the ARRIVE guidelines. Br J Pharmacol 160:1577-1579.
Kim AY, Tang Z, Liu Q, Patel KN, Maag D, Geng Y, et al. (2008). Pirt, a phosphoinositide-binding protein, functions as a regulatory subunit of TRPV1. Cell 133:475-485.
Koltzenburg M, Wall PD, & McMahon SB (1999). Does the right side know what the left is doing? Trends Neurosci 22: 122-127.
Konig M, Zimmer AM, Steiner H, Holmes PV, Crawley JN, Brownstein MJ, et al. (1996). Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature 383: 535-538.
Labuz D, Mousa SA, Schäfer M, Stein C, & Machelska H (2007). Relative contribution of peripheral versus central opioid receptors to antinociception. Brain Research 1160: 30-38.
Li Z, Tseng PY, Tiwari V, Xu Q, He SQ, Wang Y, et al. (2017). Targeting human Mas-related G protein-coupled receptor X1 to inhibit persistent pain. Proc Natl Acad Sci U S A 114: E1996-e2005.
Machelska H, & Celik MO (2018). Advances in Achieving Opioid Analgesia Without Side Effects. Front Pharmacol 9: 1388.
Mansikka H, Zhao C, Sheth RN, Sora I, Uhl G, & Raja SN (2004). Nerve injury induces a tonic bilateral mu-opioid receptor-mediated inhibitory effect on mechanical allodynia in mice. Anesthesiology 100: 912-921.
Martinez-Navarro M, Cabanero D, Wawrzczak-Bargiela A, Robe A, Gaveriaux-Ruff C, Kieffer BL, et al. (2020). Mu and delta opioid receptors play opposite nociceptive and behavioural roles on nerve-injured mice. Br J Pharmacol 177:1187-1205.
McGrath JC, McLachlan EM, & Zeller R (2015). Transparency in Research involving Animals: The Basel Declaration and new principles for reporting research in BJP manuscripts. Br J Pharmacol 172: 2427-2432.
Nakamura S, Senzaki K, Yoshikawa M, Nishimura M, Inoue K, Ito Y, et al. (2008). Dynamic regulation of the expression of neurotrophin receptors by Runx3. Development 135: 1703-1711.
National Academies of Sciences E, and Medicine; Health and Medicine Division; Board on Health Sciences Policy; Committee on Pain (2017). Pain Management and the Opioid Epidemic: Balancing Societal and Individual Benefits and Risks of Prescription Opioid Use. In Pain Management and the Opioid Epidemic: Balancing Societal and Individual Benefits and Risks of Prescription Opioid Use. eds Phillips J.K., Ford M.A., & Bonnie R.J. National Academies Press (US): Washington (DC).
Pertovaara A, & Wei H (2001). Peripheral effects of morphine in neuropathic rats: role of sympathetic postganglionic nerve fibers. Eur J Pharmacol 429: 139-145.
Rittner HL, Mousa SA, Labuz D, Beschmann K, Schafer M, Stein C, et al. (2006). Selective local PMN recruitment by CXCL1 or CXCL2/3 injection does not cause inflammatory pain. J Leukoc Biol 79: 1022-1032.
Rusin KI, & Moises HC (1995). mu-Opioid receptor activation reduces multiple components of high-threshold calcium current in rat sensory neurons. J Neurosci 15: 4315-4327.
Seibenhener ML, & Wooten MC (2015). Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice. J Vis Exp: e52434.
Severino A, Chen W, Hakimian JK, Kieffer BL, Gaveriaux-Ruff C, Walwyn W, et al. (2018). Mu-opioid receptors in nociceptive afferents produce a sustained suppression of hyperalgesia in chronic pain. Pain 159: 1607-1620.
Shaqura MA, Zollner C, Mousa SA, Stein C, & Schafer M (2004). Characterization of mu opioid receptor binding and G protein coupling in rat hypothalamus, spinal cord, and primary afferent neurons during inflammatory pain. J Pharmacol Exp Ther 308: 712-718.
Spahn V, Del Vecchio G, Labuz D, Rodriguez-Gaztelumendi A, Massaly N, Temp J, et al. (2017). A nontoxic pain killer designed by modeling of pathological receptor conformations. Science 355: 966-969.
Stein C, & Machelska H (2011). Modulation of peripheral sensory neurons by the immune system: implications for pain therapy. Pharmacol Rev 63: 860-881.
Stein C, Schafer M, & Machelska H (2003). Attacking pain at its source: new perspectives on opioids. Nat Med 9: 1003-1008.
Sternini C, Patierno S, Selmer IS, & Kirchgessner A (2004). The opioid system in the gastrointestinal tract. Neurogastroenterol Motil 16 Suppl 2: 3-16.
Stevens CW, Kajander KC, Bennett GJ, & Seybold VS (1991). Bilateral and differential changes in spinal mu, delta and kappa opioid binding in rats with a painful, unilateral neuropathy. Pain 46: 315-326.
Sun J, Chen SR, Chen H, & Pan HL (2019). mu-Opioid receptors in primary sensory neurons are essential for opioid analgesic effect on acute and inflammatory pain and opioid-induced hyperalgesia. J Physiol 597: 1661-1675.
Tallarida RJ (2006). An overview of drug combination analysis with isobolograms. J Pharmacol Exp Ther 319: 1-7.
Tan M, Groszer M, Tan AM, Pandya A, Liu X, & Xie CW (2003). Phosphoinositide 3-kinase cascade facilitates mu-opioid desensitization in sensory neurons by altering G-protein-effector interactions. J Neurosci 23: 10292-10301.
Tiwari V, Anderson M, Yang F, Tiwari V, Zheng Q, He SQ, et al. (2018). Peripherally Acting mu-Opioid Receptor Agonists Attenuate Ongoing Pain-associated Behavior and Spontaneous Neuronal Activity after Nerve Injury in Rats. Anesthesiology 128: 1220-1236.
Tiwari V, He SQ, Huang Q, Liang L, Yang F, Chen Z, et al. (2020). Activation of micro-delta opioid receptor heteromers inhibits neuropathic pain behavior in rodents. Pain 161: 842-855.
Tiwari V, Yang F, He SQ, Shechter R, Zhang C, Shu B, et al. (2016). Activation of Peripheral mu-opioid Receptors by Dermorphin [D-Arg2, Lys4] (1-4) Amide Leads to Modality-preferred Inhibition of Neuropathic Pain. Anesthesiology 124: 706-720.
Uchida H, Sasaki K, Ma L, & Ueda H (2010). Neuron-restrictive silencer factor causes epigenetic silencing of Kv4.3 gene after peripheral nerve injury. Neuroscience 166:1-4.
Wei F, Zou S, Young A, Dubner R, & Ren K (1999). Effects of four herbal extracts on adjuvant-induced inflammation and hyperalgesia in rats. J Altern Complement Med 5: 429-436.
Weibel R, Reiss D, Karchewski L, Gardon O, Matifas A, Filliol D, et al. (2013). Mu opioid receptors on primary afferent nav1.8 neurons contribute to opiate-induced analgesia: insight from conditional knockout mice. PLoS One 8: e74706.
Xu B, Zhang M, Shi X, Zhang R, Chen D, Chen Y, et al. (2020). The multifunctional peptide DN-9 produced peripherally acting antinociception in inflammatory and neuropathic pain via mu- and kappa-opioid receptors. Br J Pharmacol 177: 93-109.