References
Alexander SPH, Christopoulos A,
Davenport AP, Kelly E, Mathie A, Peters JA, et al. (2019). THE
CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors. Br J
Pharmacol 176 Suppl 1: S21-S141.
Buritova J, Honore P, & Besson JM
(1995). Indomethacin reduces both Krox-24 expression in the rat lumbar
spinal cord and inflammatory signs following intraplantar carrageenan.
Brain Res 674: 211-220.
Celik MO, Labuz D, Henning K,
Busch-Dienstfertig M, Gaveriaux-Ruff C, Kieffer BL, et al.(2016). Leukocyte opioid receptors mediate analgesia via
Ca(2+)-regulated release of opioid peptides. Brain Behav Immun
57: 227-242.
Chen H, & Ikeda SR (2004). Modulation
of ion channels and synaptic transmission by a human sensory
neuron-specific G-protein-coupled receptor, SNSR4/mrgX1, heterologously
expressed in cultured rat neurons. J Neurosci 24: 5044-5053.
Chen SR, & Pan HL (2006). Loss of
TRPV1-expressing sensory neurons reduces spinal mu opioid receptors but
paradoxically potentiates opioid analgesia. J Neurophysiol 95:3086-3096.
Chen SR, Prunean A, Pan HM, Welker KL,
& Pan HL (2007). Resistance to morphine analgesic tolerance in rats
with deleted transient receptor potential vanilloid type 1-expressing
sensory neurons. Neuroscience 145: 676-685.
Corder G, Castro DC, Bruchas MR, &
Scherrer G (2018). Endogenous and Exogenous Opioids in Pain. Annu Rev
Neurosci 41: 453-473.
Corder G, Tawfik VL, Wang D, Sypek EI,
Low SA, Dickinson JR, et al. (2017). Loss of mu opioid receptor
signaling in nociceptors, but not microglia, abrogates morphine
tolerance without disrupting analgesia. Nat Med 23: 164-173.
Curtis MJ, Alexander S, Cirino G,
Docherty JR, George CH, Giembycz MA, et al. (2018). Experimental
design and analysis and their reporting II: updated and simplified
guidance for authors and peer reviewers. Br J Pharmacol 175:987-993.
Deacon RM (2013). Measuring motor
coordination in mice. J Vis Exp: e2609.
Decosterd I, & Woolf CJ (2000).
Spared nerve injury: an animal model of persistent peripheral
neuropathic pain. Pain 87: 149-158.
Dolphin AC, & Scott RH (1989).
Modulation of Ca2+-channel currents in sensory neurons by pertussis
toxin-sensitive G-proteins. Ann N Y Acad Sci 560: 387-390.
Dumas EO, & Pollack GM (2008).
Opioid tolerance development: a pharmacokinetic/pharmacodynamic
perspective. Aaps j 10: 537-551.
Guan Y, Liu Q, Tang Z, Raja SN,
Anderson DJ, & Dong X (2010). Mas-related G-protein-coupled receptors
inhibit pathological pain in mice. Proc Natl Acad Sci U S A
107: 15933-15938.
Harding SD, Sharman JL, Faccenda E,
Southan C, Pawson AJ, Ireland S, et al. (2018). The IUPHAR/BPS
Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the
new guide to IMMUNOPHARMACOLOGY. Nucleic Acids Res 46:D1091-d1106.
Hargreaves K, Dubner R, Brown F,
Flores C, & Joris J (1988). A new and sensitive method for measuring
thermal nociception in cutaneous hyperalgesia. Pain 32: 77-88.
Huang P, Chen C, & Liu-Chen LY
(2015). Detection of mu opioid receptor (MOPR) and its glycosylation in
rat and mouse brains by western blot with anti-muC, an affinity-purified
polyclonal anti-MOPR antibody. Methods Mol Biol 1230: 141-154.
Iwaszkiewicz KS, Schneider JJ, & Hua
S (2013). Targeting peripheral opioid receptors to promote analgesic and
anti-inflammatory actions. Front Pharmacol 4: 132.
Kayser V, Lee SH, & Guilbaud G
(1995). Evidence for a peripheral component in the enhanced
antinociceptive effect of a low dose of systemic morphine in rats with
peripheral mononeuropathy. Neuroscience 64: 537-545.
Kilkenny C, Browne W, Cuthill IC,
Emerson M, & Altman DG (2010). Animal research: reporting in vivo
experiments: the ARRIVE guidelines. Br J Pharmacol 160:1577-1579.
Kim AY, Tang Z, Liu Q, Patel KN, Maag
D, Geng Y, et al. (2008). Pirt, a phosphoinositide-binding
protein, functions as a regulatory subunit of TRPV1. Cell 133:475-485.
Koltzenburg M, Wall PD, & McMahon SB
(1999). Does the right side know what the left is doing? Trends Neurosci
22: 122-127.
Konig M, Zimmer AM, Steiner H, Holmes
PV, Crawley JN, Brownstein MJ, et al. (1996). Pain responses,
anxiety and aggression in mice deficient in pre-proenkephalin. Nature
383: 535-538.
Labuz D, Mousa SA, Schäfer M, Stein
C, & Machelska H (2007). Relative contribution of peripheral versus
central opioid receptors to antinociception. Brain Research
1160: 30-38.
Li Z, Tseng PY, Tiwari V, Xu Q, He
SQ, Wang Y, et al. (2017). Targeting human Mas-related G
protein-coupled receptor X1 to inhibit persistent pain. Proc Natl Acad
Sci U S A 114: E1996-e2005.
Machelska H, & Celik MO (2018).
Advances in Achieving Opioid Analgesia Without Side Effects. Front
Pharmacol 9: 1388.
Mansikka H, Zhao C, Sheth RN, Sora I,
Uhl G, & Raja SN (2004). Nerve injury induces a tonic bilateral
mu-opioid receptor-mediated inhibitory effect on mechanical allodynia in
mice. Anesthesiology 100: 912-921.
Martinez-Navarro M, Cabanero D,
Wawrzczak-Bargiela A, Robe A, Gaveriaux-Ruff C, Kieffer BL, et
al. (2020). Mu and delta opioid receptors play opposite nociceptive and
behavioural roles on nerve-injured mice. Br J Pharmacol 177:1187-1205.
McGrath JC, McLachlan EM, & Zeller R
(2015). Transparency in Research involving Animals: The Basel
Declaration and new principles for reporting research in BJP
manuscripts. Br J Pharmacol 172: 2427-2432.
Nakamura S, Senzaki K, Yoshikawa M,
Nishimura M, Inoue K, Ito Y, et al. (2008). Dynamic regulation of
the expression of neurotrophin receptors by Runx3. Development
135: 1703-1711.
National Academies of Sciences E, and
Medicine; Health and Medicine Division; Board on Health Sciences Policy;
Committee on Pain (2017). Pain Management and the Opioid Epidemic:
Balancing Societal and Individual Benefits and Risks of Prescription
Opioid Use. In Pain Management and the Opioid Epidemic: Balancing
Societal and Individual Benefits and Risks of Prescription Opioid Use.
eds Phillips J.K., Ford M.A., & Bonnie R.J. National Academies Press
(US): Washington (DC).
Pertovaara A, & Wei H (2001).
Peripheral effects of morphine in neuropathic rats: role of sympathetic
postganglionic nerve fibers. Eur J Pharmacol 429: 139-145.
Rittner HL, Mousa SA, Labuz D,
Beschmann K, Schafer M, Stein C, et al. (2006). Selective local
PMN recruitment by CXCL1 or CXCL2/3 injection does not cause
inflammatory pain. J Leukoc Biol 79: 1022-1032.
Rusin KI, & Moises HC (1995).
mu-Opioid receptor activation reduces multiple components of
high-threshold calcium current in rat sensory neurons. J Neurosci
15: 4315-4327.
Seibenhener ML, & Wooten MC (2015).
Use of the Open Field Maze to measure locomotor and anxiety-like
behavior in mice. J Vis Exp: e52434.
Severino A, Chen W, Hakimian JK,
Kieffer BL, Gaveriaux-Ruff C, Walwyn W, et al. (2018). Mu-opioid
receptors in nociceptive afferents produce a sustained suppression of
hyperalgesia in chronic pain. Pain 159: 1607-1620.
Shaqura MA, Zollner C, Mousa SA,
Stein C, & Schafer M (2004). Characterization of mu opioid receptor
binding and G protein coupling in rat hypothalamus, spinal cord, and
primary afferent neurons during inflammatory pain. J Pharmacol Exp Ther
308: 712-718.
Spahn V, Del Vecchio G, Labuz D,
Rodriguez-Gaztelumendi A, Massaly N, Temp J, et al. (2017). A
nontoxic pain killer designed by modeling of pathological receptor
conformations. Science 355: 966-969.
Stein C, & Machelska H (2011).
Modulation of peripheral sensory neurons by the immune system:
implications for pain therapy. Pharmacol Rev 63: 860-881.
Stein C, Schafer M, & Machelska H
(2003). Attacking pain at its source: new perspectives on opioids. Nat
Med 9: 1003-1008.
Sternini C, Patierno S, Selmer IS, &
Kirchgessner A (2004). The opioid system in the gastrointestinal tract.
Neurogastroenterol Motil 16 Suppl 2: 3-16.
Stevens CW, Kajander KC, Bennett GJ,
& Seybold VS (1991). Bilateral and differential changes in spinal mu,
delta and kappa opioid binding in rats with a painful, unilateral
neuropathy. Pain 46: 315-326.
Sun J, Chen SR, Chen H, & Pan HL
(2019). mu-Opioid receptors in primary sensory neurons are essential for
opioid analgesic effect on acute and inflammatory pain and
opioid-induced hyperalgesia. J Physiol 597: 1661-1675.
Tallarida RJ (2006). An overview of
drug combination analysis with isobolograms. J Pharmacol Exp Ther
319: 1-7.
Tan M, Groszer M, Tan AM, Pandya A,
Liu X, & Xie CW (2003). Phosphoinositide 3-kinase cascade facilitates
mu-opioid desensitization in sensory neurons by altering
G-protein-effector interactions. J Neurosci 23: 10292-10301.
Tiwari V, Anderson M, Yang F, Tiwari
V, Zheng Q, He SQ, et al. (2018). Peripherally Acting mu-Opioid
Receptor Agonists Attenuate Ongoing Pain-associated Behavior and
Spontaneous Neuronal Activity after Nerve Injury in Rats. Anesthesiology
128: 1220-1236.
Tiwari V, He SQ, Huang Q, Liang L,
Yang F, Chen Z, et al. (2020). Activation of micro-delta opioid
receptor heteromers inhibits neuropathic pain behavior in rodents. Pain
161: 842-855.
Tiwari V, Yang F, He SQ, Shechter R,
Zhang C, Shu B, et al. (2016). Activation of Peripheral mu-opioid
Receptors by Dermorphin [D-Arg2, Lys4] (1-4) Amide Leads to
Modality-preferred Inhibition of Neuropathic Pain. Anesthesiology
124: 706-720.
Uchida H, Sasaki K, Ma L, & Ueda H
(2010). Neuron-restrictive silencer factor causes epigenetic silencing
of Kv4.3 gene after peripheral nerve injury. Neuroscience 166:1-4.
Wei F, Zou S, Young A, Dubner R, &
Ren K (1999). Effects of four herbal extracts on adjuvant-induced
inflammation and hyperalgesia in rats. J Altern Complement Med
5: 429-436.
Weibel R, Reiss D, Karchewski L,
Gardon O, Matifas A, Filliol D, et al. (2013). Mu opioid
receptors on primary afferent nav1.8 neurons contribute to
opiate-induced analgesia: insight from conditional knockout mice. PLoS
One 8: e74706.
Xu B, Zhang M, Shi X, Zhang R, Chen
D, Chen Y, et al. (2020). The multifunctional peptide DN-9
produced peripherally acting antinociception in inflammatory and
neuropathic pain via mu- and kappa-opioid receptors. Br J Pharmacol
177: 93-109.