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ABSTRACT. The aim of this paper is to apply the Differential Transformation Method (DTM)
to analyze and obtain the solution for the mathematical model described by the system of non-
linear ordinary differential equations which describe the epidemiology of the most threatening
virus called Corona-virus later labeled as COVID-19. Finally, the present study may help
you to examine the wild class of real world models and also aid to predict their behavior with
respect to parameters considered in the model. The purpose of this study is to estimate the
effectiveness of preventive measures, predicting future outbreaks and potential control strate-
gies using the mathematical model.
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1. INTRODUCTION

The new Severe Acute Respiratory Syndrome Corona-virus (SARS-CoV-2), which causes
the COVID-19 disease, was first reported in December 2019 at Wuhan city, China. This
new pathogen has spread rapidly around more than 200 countries. The disease was named
as Corona-virus disease 2019 (COVID—19) by the World Health Organization (WHO) on 11
February 2020. Since then it killed over 9,391 on March 19 over the infected cases of 2,23, 082
people in more than 180 countries [30,31]. Moreover, while referring website of WHO it gives
the information that globally, as of 2 : 00 am CEST, 27 April 2020, there have been 2,858, 635
confirmed cases of COVID—19, including 1, 96, 295 deaths in more than 213 countries. As on
date, there is no particular treatment, medicine or vaccine to cure infected patients completely
and every day, there is always exponential increase in the death of the deceased people. More
precisely, the economy of each infected country is decreased due to this cruel virus infection rate.
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Initially, every infected person has high fever, cough and shortness in the breath. The virus
transmitted by touching the body of diseased patients to the uninfected person to his/her eyes,
nose, mouth and some other parts. In order to control the spread of the virus, each country
has taken almost all initializations and public health concerns are being paid globally on how
many people are infected and suspected to prevent or avoid its effects on humankind. Since
the start of the outbreak in Wuhan, several modeling groups around the world have reported
estimations and predictions for the COVID-19 (formerly called 2019-nCov) epidemic in journal
publications or on websites, one can refer [6,9,10,13,19,20,22,25].

Mathematical models play an increasingly important role in our understanding of the trans-
mission and control of infectious diseases. Epidemiological models are studied by Mathematics
are constructive in comprising, proposing, planning, implementing, testing theories, prevention,
evaluating a variety of detection, therapy and control programs. On the other hand, to study,
examine, analyze, predict and capture the behaviour of viruses, diseases, threads and others,
the mathematics is the only tool that can help us in systematics, effective and accurate man-
ner without much expense. To detect and cure those diseases properly, we need an effective
method to solve these models. For the solution of the system of linear and nonlinear differential
equations, there are many methods like exact, approximate and purely numerical, stochastic
models are available. Most of these are computationally intensive or need complicated symbolic
computations. Generally, the exact solutions of these models are unavailable and usually are
very tough.

The concept of differential transform method was first proposed by Zhou [33] in 1986 and
it was applied to solve linear and non-linear initial value problems in electric circuit anal-
ysis and later it was used to solve linear and non-linear initial value problems, boundary
value problems, fractional order derivative problems, fluid flow models and so on, one can
refer [1,5,12,15,21,23,24, 26,28, 32| and references therein for history and properties of DTM.
Also, at the present time, this method get much attention to solve SIS (susceptible-infected-
susceptible) and SI (susceptible-infected) epidemic models |2, 3], SIR (susceptible-infected-
recovered) epidemic models [16,27], influenza epidemic model [18], compartmental models [7],
transmission of seasonal diseases model [4], analysis of computer virus propagation model [24],
the transmission dynamical of syphilis disease model [17], SEIR (susceptible-exposed - infected-
recovered) epidemic model [14], SAEIQRS (susceptible-antidotal-exposed-infected-quarantined-
recovered-susceptible) model [8] and for HBV infection model [11], also one can refer the refer-
ences therein for more details. To speak about the advantages and generic nature of the DTM,
it is worthwhile to mention that the method can be applied to linear and nonlinear ODEs
not requiring discretization, linearization or perturbation. Using DTM method, a closed form
series solution or an approximate solution can be obtained. This method obtains an analytical
solution in the form of a polynomial and it is possible to obtain highly accurate results or exact

solutions for linear and non-linear differential equations. Another important advantage is that,
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this method is capable of reducing the size of computational work and still accurately provides
the series solution with fast convergence rate.

Motivated by the above useful applications of the differential transformation method, in this
paper we study the solutions of the dynamics of novel corona-virus model suggested by Khan
et al. [19] in the form of the system of the nonlinear differential equations and approximating

the solutions in a sequence of time intervals.

2. MATHEMATICAL FORMULATION

The emergence and reemergence of Corona-virus epidemics sparked renewed concerns from
global epidemiology researchers, public health administrators and Mathematical Modeling re-
searchers to model this . In the present investigation, we consider the compartmental math-
ematical model (epidemic model) has been developed by Khan and Atangana [19] for under-
standing the transmission of virus and presented and derived some interesting results for the
projected model by comparison with some practical values (see also |9, 20, 25,29]). In this
epidemic model a total number of populations N at a time ¢, is divided into the following six
compartments: s(t) the susceptible people; e(t) the exposed people; i(t) the infected strength;
a(t) the asymptotically infected people; r(t) the recovered people; m(t) the reservoir. The
system of nonlinear ordinary differential equations representing this epidemic model as follows:

% = p— sy = 250 (i(t])\fﬁ“(t)) — e s(t) m(t) (2.1)
% _ 35 ("(’?Vwa(m boest)mlt) — (1—9)0e(t) — D aelt) — 7 elt) (2.2)
Um q-0)oelt) — (p+7)iC) (23)
% — ael) - (0+7)al) (2.4)
% = pi(t) + oa(t) — ~r(t) (2.5)
dd—T = 7i(t) + ra(t) — wm(t), (2.6)

where b is the rate of birth; + is rate of death of infected population; ¢ is the transmission
coefficient; S is transmissibility multiple; « is the transmission rate becomes infected; 6 is the
incubation period; ¥ is the amount of asymptomatic infection; ¢ is the disease transmission
coefficient; p is recovery rate; o is asymptotically infected population; 7, k is the influence of
virus to m by i and a; w is the rate of virus removing from m. Parameterized in equations (2.1)
— (2.6) and their corresponding values are 7 = m; 0 = 0.05; 8 = 0.02; ¢ = 0.000001231;
Y = 0.1243; 0 = 0.00047876; o = 0.005; p = 0.09871; o = 0.854302; 7 = 0.000398; ~ = 0.001;

and w = 0.01, where the total population may vary with time (¢) (see for details [19]).
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3. THE PRELIMINARIES OF DIFFERENTIAL TRANSFORMATION METHOD

The differential transformation of the kth derivative of u(z) is defined by

Uk) = i{dk“(x)]xo (3.1)

k!'| dxk

from (3.1), we have

ZU SL’ — .730 (32)

which is called inverse differential transformation of U(k). In real applications, the function
u(z) can be expressed as a finite series and equation (3.2) can be written as

Z U(k)(z — xo). (3.3)
Also, from (3.1) and (3.2), we have
u(z) = ;(x _ xg)k% [dd@;(f)} - (3.4)

(1) If 2(z) = u(x) £ v(x), then Z(k) = U(k) £ V (k).

(2) If z(z) = a u(zx), then Z(k) = a U(k).

(3) If 2(z) = ¥/ (z), then Z(k) = (k+ 1)U(k+ 1)

(4) If z(z) = u"(z), then Z(k) = (k+ 1)(k+2)U(k + 2).

(5) If z(z) = uD(x), then Z(k) = (k+ 1)(k+2)...(k + DUk +1).

(6) If z(z) = u(z) v(x), then Z(k) = lz: Ul) V(k—=1).

(7) If Z(ZL‘) = Ul(l') Ug( ) ( ) then Z( ) l OlZO Ul( ) UQ(ZQ - l1> Ug(k’ - lg)
l _ _ ). where N 1 k=1

(8) If 2(z) = a ', then Z(k) = a 0(k — 1), where 6(k — 1) : { 0 kL

Let S(k), E(k), I(k), A(k), R(k) and M (k) denote the differential transformations of s(t),
e(t), i(t), a(t), r(t) and m(t) in (2.1) — (2.6) respectively, where by using the fundamental
operations of differential transformation method, discussed in Section 3. According to the

properties of DTM recurrence relations to each equations of the system (2.1) — (2.6) as follow:

S(k+1) = %H bo(k) — ~vS(k) — % > SWI(k—1)— 5 > S(A(k—1)

ST SOME—1) (3.5)
>
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E(k+1) = /%1 %Z STk —1) + %5 ST S Ak - 1)

+e ) SOM(k —1) — (1 —0)0E(k) — YaE(k) —vE(k)| (3.6)

1

I(k+1) = Pl (1 =)0E(k) — (p+)I(k)] (3.7)
Ak +1) = %ﬂ WaB(k) — (o +7)Ak)] (3.8)
Rk+1) = %ﬂ pI(k) + o A(k) — YR(E)] (3.9)

M(k+1) = i [P I(R) + RA(K) — wM(R)] (3.10)

Now, we consider the initial conditions from [19] and which reduces to S(0) = 8065518,
E(0) = 200000, I(0) = 282, A(0) = 200, R(0) = 0 and M (0) = 50000. Further, we take the
parameter values from [19] to solve S(k+1), E(k+1), I(k+1), A(k+1), R(k+1) and M (k+1)
in (3.5) - (3.10) up to order 8, we get, S(k), E(k), I(k), A(k), R(k) and M (k) respectively.

Then the closed form of the solution, where k£ = 10, can be written as

s(t) =Y S(k)t" = 8065518 — 5151695.006 ¢ + 1647850.696 > — 351931.7622 £°

+56459.66043 t* — 7257.897144 t° + 778.8488888 16
—71.77726570t" + 5.800643600 t® — 0.4175203379 ¢°
+0.02701660132¢'% 4 - - - (3.11)

200000 + 380795.3031 ¢ — 271129.8299 +* 4 87137.53825¢% —

o
—~
~
~—
Il
NgE
&
—~
Sy
~—
~
=
Il

18271.48902 t* + 2853.138204 t° — 355.5944795 5 +
36.92883852¢7 — 3.291065554 2 + 0.2569489397 +° —
0.01777491064 ¢ + - - - (3.12)

i(t) =Y I(k)t* = 282—106.7610111 ¢+ 115.9054943 > — 64.00490509 ¢*

119.94874561 t* — 4.228838665 t° 4 0.6757598593 t°
—0.08654949496 7 + 0.009247930669 t* — 0.0008478548171 ¢*
40.00006808127079 ¢ + - - - (3.13)

a(t) =Y A(k) t* = 200 — 162.0035330 ¢ + 234.2876001 £* — 167.9646758 ¢*

+73.65009513 t* — 23.35742853 7 + 5.868299490 ¢°
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—1.231653765t" + 0.2232606744 t® — 0.03573855517 ¢°
40.005132006682 t'0 + - - - (3.14)

r(t) =Y R(k)t* = 198.6966200¢ — 131.8145616 t* + 95.89204214 ¢°

—51.29034776 t* + 18.89883129 > — 5.213404673 ¢°
+1.155609013 " — 0.2159729001 t® + 0.03514531611 ¢°
—0.005090163792 0 + - .. (3.15)

m(t) =Y M(k)t* = 50000 — 499.6877640 ¢ + 2.396191612¢* + 0.08548535690 *

—0.04857337040 t* + 0.01641508592 t° — 0.004200776197 t°
+0.0008827513823 t" — 0.0001593659972 ¢
+0.00002539277898 t” — 0.000003632992918 +'° 4 --- . (3.16)

4. RESULTS AND DISCUSSION

In this section, we evaluated the tabular values and figures obtained by DTM. Tables 1, 2,
3, 4, 5 and 6 shows the solution for s(t), e(t), i(t), a(t), r(t) and m(t) respectively obtained by
DTM and we depict the solution by for s(t), e(t), i(t), a(t), r(t) and m(t) in Figures 1, 2, 3, 4,
5 and 6 respectively.

8.x 1074

t s(t)

0.1 | 7.566480648 x 106
0.2 | 7.098365634 x 106 70
0.3 | 6.659254141 x 106
0.4 | 6.247346598 x 10° s(t)
0.5 | 5.860955252 x 106
0.6 | 5.498497206 x 106
0.7 | 5.158487910 x 106 5. 106+
0.8 | 4.839535025 x 106
0.9 | 4.540332696 x 106 )
1.0 | 4.259656173 x 106 f

Table 1. Table of sus-
ceptible population s(t)

6.% 1074

Figure 1. Numerical
solutions for susceptible

s(t) population in a time ¢
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380000

t e(t)

0.1 | 2.354535705 x 10°
0.2 | 2.659826240 x 10°
0.3 | 2.920483024 x 103
0.4 | 3.140742187 x 10° e(®
0.5 | 3.324492988 x 10°
0.6 | 3.475304168 x 10°

360000 4

340000

3200004

300000

280000 4

260000

0.7 | 3.596448396 x 10° 0

0.8 | 3.690924934 x 10° 2200001

0.9 | 3.761480636 x 10° 200000+
1.0 | 3.810629429 x 10° f

Table 2. Table of ex-

Figure 2. Numerical so-
posed population e(t)

lutions for exposed e(t)

population in a time ¢

280 4

t i(t)
0.1 | 272.4209022
0.2 | 264.8025853 270,
0.3 | 258.8268418
0.4 | 254.2141774 i)
0.5 | 250.7198173
0.6 | 248.1300873
0.7 | 246.2591305 1o
0.8 | 244.9459370
0.9 | 244.0516559 ;
1.0 | 243.4571635 t

Table 3. Table of in-
fected population i(t)

Figure 3. Numerical so-
lutions for infected i(t)
population in a time ¢
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t

a(t)

0.1

185.9816952

0.2

175.7378062

0.3

168.4936076

0.4

163.6032820

0.5

160.5306375

0.6

158.8325586

0.7

158.1448128

0.8

158.1698947

0.9

158.6666358

1.0

159.4413577

Table

asymptotically

4. Table

population a(t)

infected

t

r(t)

0.1

18.64246419

0.2

35.15754875

0.3

49.96169589

0.4

63.38636395

0.5

75.69301790

0.6

87.08575830

0.7

97.72193365

0.8

107.7210279

0.9

117.1720707

1.0

126.1397705

Table 5. Table of recov-

ered population r(t)

2004

180 4

ﬂ{t) 180+

160 -

Figure 4. Numerical so-
lutions for asymptotically
infected a(t) population
in a time ¢

100
801
(t) 4
40

204

Figure 5. Numerical so-
lutions for recovered r(t)

population in a time ¢
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50000

t m(t)
0.1 ]49950.05527
0.2 | 49900.15891

49500

0.3 | 49850.31129 o500
0.4 | 49800.51266 )
0.5 | 49750.76327 w700,
0.6 | 49701.06323

0.7 | 49651.41269 19600-

0.8 1 49601.81166
0.9 | 49552.26020
1.0 | 49502.75832 | *
Table 6. Table of reser-

voir population m(t)

Figure 6. Numerical so-
lutions for reservoir m(t)

population in a time ¢

5. CONCLUSION

Differential transformation method has been successfully applied to solve the dynamic model
of Corona-virus (COVID-19) with given initial conditions is effectively analysed. This method
provides an explicit solution which is very useful for understanding and analyzing this epidemic
model based on Corona-virus.The evolution of the deadly disease and highly effective virus in
the current period, where thousands and thousands of people were died till date. The obtained
consequences show that, the considered method is highly well ordered and effective to analyse
the real time world problems. Based on the discussion in this paper it can be concluded that
the DTM is the mathematical tool, which enables one to find approximate accurate analytical
solutions for epidemiological models represented by systems of nonlinear ordinary differential

equations.
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