(10) |
\(\left\{\begin{matrix}\begin{matrix}\frac{dx(t)}{\text{dτ}}=\sigma\left(t\right)-\delta\left(t\right)x\left(t\right)+\rho(t)\frac{y\left(t\right)}{y\left(t\right)+\eta}-\mu x(t)y(t)\\
\frac{dy(t)}{\text{dτ}}=\alpha y\left(t\right)\left(1-\beta y\left(t\right)\right)-x\left(t\right)y\left(t\right)\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\\
\end{matrix}\\
\frac{d\sigma(t)}{\text{dτ}}=\mu_{\sigma}v_{v}\left(t\right)\left(1-\frac{\sigma(t)}{k_{\sigma}}\right)\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\\
\frac{d\delta(t)}{\text{dτ}}=\mu_{\delta}v_{v}\left(t\right)\left(1-\frac{\delta(t)}{k_{\delta}}\right)\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\\
\end{matrix}\right.\ \) |
(11) |
|
(12) |
|
(13) |
|