\(\left\{\begin{matrix}\begin{matrix}\sum_{j=1}^{N}{\overset{\overline{}}{x}}_{j}D_{k,j}=T\left(\tau_{k}\right)\left(\sigma-\delta{\overset{\overline{}}{x}}_{k}+\rho{\overset{\overline{}}{x}}_{k}\frac{{\overset{\overline{}}{y}}_{k}}{{\overset{\overline{}}{y}}_{k}+n}-\mu{\overset{\overline{}}{x}}_{k}{\overset{\overline{}}{y}}_{k}-K_{x}{\overset{\overline{}}{M}}_{k}{\overset{\overline{}}{x}}_{k}\right),k=1,2,\ldots,N.\\ \sum_{j=1}^{N}{\overset{\overline{}}{y}}_{j}D_{k,j}=T\left(\tau_{k}\right)\left(\alpha{\overset{\overline{}}{y}}_{k}\left(1-\beta{\overset{\overline{}}{y}}_{k}\right)-{\overset{\overline{}}{x}}_{k}{\overset{\overline{}}{y}}_{k}-K_{y}{\overset{\overline{}}{M}}_{k}{\overset{\overline{}}{y}}_{k}\right),k=1,2,\ldots,N.\\ \begin{matrix}\sum_{j=1}^{N}{\overset{\overline{}}{M}}_{j}D_{k,j}=\ T\left(\tau_{k}\right)\left(-\xi{\overset{\overline{}}{M}}_{k}+{{\overset{\overline{}}{v}}_{M}}_{k}\right),k=1,2,\ldots,N.\\ \overset{\overline{}}{x_{0}}=x_{0},\ \ \ k=1,2,\ldots,N,\\ \end{matrix}\\ \end{matrix}\\ \overset{\overline{}}{y_{0}}=y_{0},\ \ \ k=1,2,\ldots,N,\\ \overset{\overline{}}{M_{0}}=z_{0},\ \ \ k=1,2,\ldots,N.\\ \end{matrix}\right.\ \) (35)