(21) \(\left\{\begin{matrix}\dot{X}(\tau)=T\left(\tau\right)\left(\sigma-\delta X\left(\tau\right)+\rho X\left(\tau\right)\frac{Y\left(\tau\right)}{Y\left(\tau\right)+n}-\mu X\left(\tau\right)Y\left(\tau\right)-K_{x}\mathcal{M}\left(\tau\right)X\left(\tau\right)\right)\\ \begin{matrix}\dot{Y}\left(\tau\right)=T\left(\tau\right)\left(\text{αY}\left(\tau\right)\left(1-\beta Y\left(\tau\right)\right)-X\left(\tau\right)Y\left(\tau\right)-K_{y}\mathcal{M}\left(\tau\right)Y\left(\tau\right)\right)\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\\ \dot{\mathcal{M}}\left(\tau\right)=T\left(\tau\right)\left(-\xi\mathcal{M}\left(\tau\right)+V_{M}\left(\left(\tau\right)\right)\right)\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\\ X\left(-1\right)=\alpha,\ \tau\in[-1,\ 1)\\ \end{matrix}\\ \begin{matrix}Y\left(-1\right)=\alpha,\tau\in[-1,\ 1)\\ \mathcal{M}\left(-1\right)=\alpha,\ \tau\in[-1,\ 1)\\ \end{matrix}\\ \end{matrix}\right.\ \)
(22)
(23)
(24)
(25)
(26)