\(\int_{-1}^{1}{T\left(\tau\right)\left(\left\|X\left(\tau\right)\right\|_{2}^{2}+\left\|Y\left(\tau\right)\right\|_{2}^{2}+\left\|\mathcal{M}\left(\tau\right)\right\|_{2}^{2}\right)\text{\ dτ}}\simeq\sum_{k=1}^{N}w_{k}T\left(\tau_{k}\right)\left(\left\|{\overset{\overline{}}{x}}_{k}\right\|_{2}^{2}+\left\|{\overset{\overline{}}{y}}_{k}\right\|_{2}^{2}+\left\|{\overset{\overline{}}{M}}_{k}\right\|_{2}^{2}\right)\) (33)