
Received 07 Mayl 2020; Revised X XXXX XXXX; Accepted X XXXX XXXX

DOI: xxx/xxxx

ARTICLE TYPE

Dynamics of an Intra-host Diffusive Pathogen Infection Model

Shohel Ahmed* | Shah Abdullah Al Nahian

1Department of Mathematics, Bangladesh
University of Engineering and Technology,
Dhaka-1000, Bangladesh

Correspondence
*Shohel Ahmed, Department of
Mathematics, Bangladesh University of
Engineering and Technology, Dhaka-1000,
Bangladesh. Email:
shohel2443@math.buet.ac.bd

Summary

In this paper, we first propose a diffusive pathogen infection model with general inci-
dence rate which incorporates cell-to-cell transmission. By applying the theory of
monotone dynamical systems, we prove that the model admits the global threshold
dynamics in terms of the basic reproduction number (0), which is defined by the
spectral radius of the next generation operator. Then, we derive a discrete counter-
part of the continuous model by nonstandard finite difference scheme. The results
show that the discrete model preserves the positivity and boundedness of solutions
in order to ensure the well-posedness of the problem. Moreover, this method pre-
serves all equilibria of the original continuous model. By constructing appropriate
Lyapunov functionals for both models, we show that the global threshold dynamics
is completely determined by the basic reproduction number. Further, with the help
of sensitivity analysis we also have identified the most sensitive parameters which
effectively contribute to change the disease dynamics. Finally, we conclude the paper
by an example and numerical simulations to improve and generalize some known
results.
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1 INTRODUCTION

Over the past few decades, there has been a great effort in the mathematical modelling of within-host pathogen infection models.
These models have been used to describe the dynamics inside the host of various infectious diseases such as HIV, HCV, HBV
and HTLV, etc. The classical model for within-host virus dynamics is a system of three ordinary differential equations1,2, where
the key assumption is that cells and viruses are well mixed, and ignores the mobility of viruses. To study the influences of spatial
structures of virus dynamics, Wang andWang3 proposed the following diffusive system by assuming the motion of virus follows
the Fickian diffusion4

⎧

⎪

⎪

⎨

⎪

⎪

⎩

)S(x, t)
)t

=Λ − �1SV − dSS,

)I(x, t)
)t

=�1SV − dII,

)V (x, t)
)t

= D3ΔV + �I − dV V .

(1)

where S, I and V are the concentrations of susceptible or uninfected cells, infected cells and free pathogens at the position x
at time t, respectively. The susceptible cells are produced at a constant rate Λ and are infected by free virions at a rate �1SV .
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Parameters dS , dI and dV represent the death rates of uninfected cells, infected cells and free virus, respectively. The free virions
are produced from the infected cells at a rate �I . D3 is the diffusion coefficient and Δ is the Laplacian operator.
Notice that the above system (1) only focus on virus-to-cell spread in the bloodstream even though some literatures reveal

that cell-to-cell (infected source cell and a susceptible target cell) transmission is vital to spread of virus in vivo5,6,7,8. An
understanding of viral cell-to-cell spreading will enhance our ability to intervene in the efficient spreading of viral infections.
For more information on dealing with target cell dynamics and cell-to-cell transmission one can refer9,10,11,12,13,14,15,16,17 and
references therein. On the other hand, the bilinear incidence rate is a simple description of the infection in system (1). As
mentioned in14,18, a general incidence rate may help us to gain the unification theory by the omission of unessential details.
Hence, inspired by the aforementioned work, in this article we propose the following pathogen infection model on domain
Q = ℝ+ × Ω,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

)S(x, t)
)t

= D1ΔS + Λ − Sf (V ) − Sg(I) − dSS, x ∈ Ω, t > 0,

)I(x, t)
)t

= D2ΔI + Sf (V ) + Sg(I) − (
 + dI )I, x ∈ Ω, t > 0,

)V (x, t)
)t

= D3ΔV + �I − dV V , x ∈ Ω, t > 0.

(2)

Here D1 and D2 are the diffusion coefficients of susceptible and infected cells, respectively19 with 
 is the lysis rate of infected
cells20. The incidences are assumed to be the nonlinear responses to the concentrations of virus particles and infected cells,
taking the forms Sf (V ) and Sg(I), where f (V ) and g(I) denote the force of infection by virus particles and infected cells and
satisfy the following properties21:

(C1) f (0) = g(0) = 0 and f (V ), g(I) > 0, for V , I > 0;

(C2) f ′(V ), g′(I) < 0 and f ′′(V ), g′′(I) ≤ 0, for V , I ≥ 0.

Based on condition (C1) and (C2), it follows from the Mean Value Theorem that

f ′(V )V ≤ f (V ) ≤ f ′(0)V , g′(I)I ≤ g(I) ≤ g′(0)I, for V , I ≥ 0 (3)

Biologically, condition (C1) and (C2) indicates that: (i) the disease cannot spread if there is no infection; (ii) the incidences
Sf (V ) and Sg(I) become faster as the densities of the virus particles and infected cells increase; (iii) the per capita infection

rates by virus particles and infected cells will slow down due to certain inhibition effect since (3) implies that
(

f (V )
V

)′

≤ 0

and
(

g(I)
I

)′

≤ 0. Obviously, the incidence rate with above conditions contains the bilinear and the saturation incidences such

as f (V ) = �1V or
�1V
1 + V

and g(I) = �2I or
�1I
1 + I

, where incidence rates �1, �2 > 0. In this paper, we consider the system (2)
with initial conditions as follows

S(x, 0) = '1(x) ≥ 0, I(x, 0) = '2(x), V (x, 0) = '3(x), x ∈ Ω, (4)

where S0(x), I0(x), V0(x) ∈ C2(Ω) ∩ C0(Ω), and homogoneous Neumann boundary conditions
)S
)�

= )I
)�

= )V
)�

= 0, x ∈ )Ω, t > 0, (5)

where Ω is an open bounded subset of ℝn with piecewise smooth boundary )Ω and � being the unit outer normal to )Ω.
Generally, the exact solution for a system like (2) is difficult or even impossible to be determined. It is a natural requirement

of an adequate numerical method that it possess the discrete equivalents of the qualitative properties the continuous system
satisfies. However, how to select the proper discrete scheme so that the global dynamics of solutions of the corresponding
continuous models can be efficiently preserved is still an open problem22. Actually, Mickens has made an attempt in this regard,
by proposing a robust non-standard finite difference (NSFD) scheme23, which has been widely employed in the study of different
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models24,25,26,27,28,29. Motivated by the work of23, we apply the NSFD scheme to discretize system (2) and obtain

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Sk+1n − Skn
Δt

= D1

Sk+1n+1 − 2S
k+1
n + Sk+1n−1

(Δx)2
+ Λ − Sk+1n f (V k

n ) − S
k+1
n g(Ikn ) − dSS

k+1
n ,

Ik+1n − Ikn
Δt

= D2

Ik+1n+1 − 2I
k+1
n + Ik+1n−1

(Δx)2
+ Sk+1n f (V k

n ) + S
k+1
n g(Ikn ) − (
 + dI )I

k+1
n ,

V k+1
n − V k

n

Δt
= D3

V k+1
n+1 − 2V

k+1
n + V k+1

n−1

(Δx)2
+ �Ik+1n − dV V k+1

n .

(6)

Here, we set the spatial domain x ∈ Ω = [a, b] where a, b ∈ ℝ and Δx = (b− a)∕M be the space step-size generatingM equal
sub-interval over the domain and the length of uniform time intervals be Δt. We denote approximations of S(xn, tk), I(xn, tk)
and V (xn, tk) by Skn , I

k
n and V k

n , respectively at each mesh point {(xn, tk), n ∈ {0, 1,⋯ ,M}, k ∈ ℕ} with xn = a + nΔx and
tk = kΔt. The discrete initial and boundary conditions

S0n = '1(xn) > 0, I0n = '2(xn) > 0 and V 0
n = '3(xn) > 0 (7)

and
Sk−1 = S

k
0 , S

k
M = SkM+1, I

k
−1 = I

k
0 , I

k
M = IkM+1, V

k
−1 = V

k
0 , V

k
M = V k

M+1, (8)
respectively. Our aim is to show that the discretized system (6) which derived by using NSFD scheme can efficiently preserves
the global asymptotic stability of the equilibria to the original system (2). The rest of this paper is organized as follows. In Section
2, we study the dynamical behavior of the continuous system (2), such as the existence of positive solutions and its uniqueness,
the existence of equilibria, basic reproduction number, local stability and global stability. In Section 3, we investigate the global
dynamics of discrete system (6). Numerical simulations are carried out to validate the theoretical results in section 4 and a brief
conclusion finishes the paper.

2 DYNAMICAL BEHAVIOR OF THE CONTINUOUS SYSTEM

2.1 Existence, Uniqueness and Positivity
To discuss the dynamical behavior of system (2), first we give the definition of upper and lower solution.

Definition 1. Let (Ŝ, Î , V̂ ) and (Š, Ǐ , V̌ ) in C(Ω̄ × [0,∞)) ∩ C1,2(Ω × [0,∞)) are a pair of upper and lower solution to the
problem (2), if Š ≤ Ŝ, Ǐ ≤ Î , V̌ ≤ V̂ in Ω̄ × [0,∞) and the following differential inequalities hold:

)Ŝ(x, t)
)t

≥ D1ΔŜ + Λ − Ŝf (V̌ ) − Ŝg(Ǐ) − dS Ŝ,

)Î(x, t)
)t

≥ D2ΔÎ + Ŝf (V̂ ) + Ŝg(Î) − (
 + dI )Î ,

)V̂ (x, t)
)t

≥ D3ΔV̂ + �Î − dV V̂ ,

)Š(x, t)
)t

≤ D1ΔŠ + Λ − Šf (V̂ ) − Šg(Î) − dS Š,

)Ǐ(x, t)
)t

≤ D2ΔǏ + Šf (V̌ ) + Šg(Ǐ) − (
 + dI )Ǐ ,

)V̌ (x, t)
)t

≤ D3ΔV̌ + �Ǐ − dV V̌ ,

for (x, t) ∈ Ω × (0,∞) and
)Š
)�

≤ 0 ≤ )Ŝ
)�
, )Ǐ

)�
≤ 0 ≤ )Î

)�
, )V̌

)�
≤ 0 ≤ )V̂

)�
, (x, t) ∈ )Ω × (0,∞),

Š(x, t) ≤ '1(x, t) ≤ Ŝ(x, t), Ǐ(x, t) ≤ '2(x, t) ≤ Î(x, t),
V̌ (x, t) ≤ '3(x, t) ≤ V̂ (x, t), (x, t) ∈ Ω̄ × (0,∞).
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It is easy to see that 0 = (0, 0, 0) and K = (K1, K2, K3) are a pair of coupled lower-upper solutions to problem (2), where

M1 = max
{

Λ
d
, ‖'1‖C(Ω̄,ℝ)

}

,

M2 = max
{

Λ
d
, ‖'2‖C(Ω̄,ℝ)

}

,

M3 = max
{

�Λ
dV d

, ‖'1‖C(Ω̄,ℝ)

}

and d = min{dS , dI}. Using the following lemma provided by Redinger30, we get the existence and uniqueness of the solution.

Lemma 1. Let Û and Ǔ be a pair of coupled upper and lower solutions for problem (2) and suppose that the initial functions
'i, (i = 1, 2, 3) are Hölder continuous in Ω̄. Then problem (2) has exactly one regular solutionU (x, t) = (S(x, t), I(x, t), V (x, t))
satisfying Ǔ ≤ U ≤ Û in Ω̄ × [0,∞).

Hence, 0 ≤ S(x, t) ≤M1, 0 ≤ I(x, t) ≤M2, 0 ≤ V (x, t) ≤M3 for (x, t) ∈ Ω̄ × [0,∞). And also, by the maximum principle,
if 'i(x, 0) ≠ 0, (i = 1, 2, 3), we have S(x, t) > 0, I(x, t) > 0, V (x, t) > 0 for all t > 0, x ∈ Ω̄.

2.2 Equilibria and Basic reproduction number
It is easy to verify that system (2) always has a disease-free equilibrium E0(S0, 0, 0) with S0 =

Λ
dS

, and if exists the endemic
equilibrium E∗(S∗, I∗, V ∗) satisfies

⎧

⎪

⎨

⎪

⎩

Λ − Sf (V ) − Sg(I) − dSS = 0,
Sf (V ) + Sg(I) − (
 + dI )I = 0,
�I − dV V = 0.

(9)

In order to find the basic reproduction number (0) for the system (2), we obtain the following linear system at E0 for the
infected classes:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

)I(x, t)
)t

= D2ΔI + S0f ′(0)V + S0g′(0)I − (
 + dI )I, x ∈ Ω, t > 0,

)V (x, t)
)t

= D3ΔV + �I − dV V , x ∈ Ω, t > 0,

)I
)�

= )V
)�

= 0, x ∈ )Ω, t > 0.

(10)

Substituting I(x, t) = e�t 2(x) and V (x, t) = e�t 3(x) into (10), we obtain the following cooperative eigenvalue problem:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

� 2(x) = D2Δ 2(x) + S0f ′(0) 3(x) + S0g′(0) 2(x) − (
 + dI ) 2(x), x ∈ Ω,
� 3(x) = D3Δ 3(x) + � 2(x) − dV  3(x), x ∈ Ω,
) 2(x)
)�

=
) 3(x)
)�

= 0, x ∈ )Ω.

(11)

By31(Theorem 7.6.1), we conclude that (11) has a principal eigenvalue �(S0, f ′(0), g′(0)) with a positive eigenfunction. Now
we are in a position to apply the ideas and the theory in32 to define0 for the model (2). Let T̃ ∶ C(Ω̄,ℝ2)→ C(Ω̄,ℝ2) be the
solution semigroup of the following reaction-diffusion system:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

)I(x, t)
)t

= D2ΔI − (
 + dI )I, x ∈ Ω, t > 0,

)V (x, t)
)t

= D3ΔV + �I − dV V , x ∈ Ω, t > 0,

I(x, 0) =  2(x), V (x, 0) =  3(x), x ∈ Ω, t > 0,
)I
)�

= )V
)�

= 0, x ∈ )Ω.

(12)

Thus, with initial infectionΨ(x) = ( 2(x),  3(x)), the distribution of those infectionmembers becomes T̃ (t)Ψ(x) as time evolves.
As in32, the matrices F and V defined as

F (x) =
(

S0g′(0) S0f ′(0)
0 0

)

, V (x) =
(


 + dI 0
−� dV

)

.
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Therefore, the distribution of total new infections is
∞

∫
0

F (x)T̃ (t)Ψ(x)dt,

Then, we define

L(Ψ)(x) ∶=

∞

∫
0

F (x)T̃ (t)Ψ(x)dt = F (x)

∞

∫
0

T̃ (t)Ψ(x)dt.

It is clear that L is a positive and continuous operator which maps the initial infection distribution Ψ to the distribution of the
total infective members produced during the infection period. Applying the idea of next generation operators32, we define the
spectral radius of L as the basic reproduction number

0 ∶= �(L).

By some calculations, we obtain that

0 =
S0�f ′(0)
dV (
 + dI )

+
S0g′(0)
(
 + dI )

∶= 01 +02,

where 01 and 02 are partial basic reproduction numbers induced by virus-to-cell transmission and cell-to-cell transmission,
respectively. The following theorem now prove regarding the meaningful steady states.

Theorem 1. If 0 < 1, then the disease-free equilibrium E0(S0, 0, 0) is the only equilibrium of the system (2); when 0 > 1,
it also has a unique endemic equilibrium E∗(S∗, I∗, V ∗) where

S∗ =
Λ − (
 + dI )I∗

dS
and V ∗ = �I∗

dV
Proof. It is easy to proof for the case0 < 1. Consider0 > 1, it follows from (9) that

S =
Λ − (
 + dI )I

dS
and V = �I

dV
Let

(I) =
Λ − (
 + dI )I

dS

(

f
(

�I
dV

)

+ g(I)
)

− (
 + dI )I.

With (0) = 0, 
( Λ

 + dI

)

= −Λ < 0 and

′(0) = Λ
dS

(

�
dV
f ′(0) + g′(0)

)

− (
 + dI ) = (
 + dI )(0 − 1) > 0,

Hence, equation (I) = 0 has at least one positive root I∗ ∈
(

0, Λ

 + dI

)

. That implies the existence of positive equilibrium
of the system (2). In order to show that the positive equilibrium is unique, we use

S∗f (V ∗) + S∗g(I∗) = (
 + dI )I∗,
�I∗ = dV V ∗.

Then

′(I∗) = −

 + dI
dS

(

f
(

�I∗

dV

)

+ g(I∗)
)

+ S∗
(

�
dV
f ′
(

�I∗

dV

)

+ g′(I∗)
)

− (
 + dI )

= −

 + dI
dS

(

f
(

�I∗

dV

)

+ g(I∗)
)

+ S∗

I∗

(

�I∗

dV
f ′
(

�I∗

dV

)

− f
(

�I∗

dV

)

+ I∗g′(I∗) − g(I∗)
)

.

According to equation (3), we have

V f ′(V ) ≤ f (V ) and Ig′(I) ≤ g(I), for V , I ≥ 0 (13)

which implies that ′(I∗) < 0. If there exists the second positive equilibrium E⋄(S⋄, I⋄, V ⋄), then one has ′(I⋄) < 0. But
which contradict the conditions (13). This completes the proof.
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2.3 Local Stability
Let 0 = �0 < �i < �i+1, i = 1, 2⋯ be the eigenvalues of −Δ on Ω with homogeneous Neumann boundary condition, E(�i)
the space of eigenfunctions corresponding to �i and

{

�ij ∶ j = 1, 2,⋯ , dim E(�i)
}

an orthogonal basis of E(�i). Then
X = [C1(Ω)]3 can be decomposed as

X =
∞
⨁

i=1
Xi, Xi =

dim E(�i)
⨁

i=1
Xij

where Xij =
{

c�ij ∶ c ∈ ℝ3}. Then we can prove the local stability of equilibrium as in33,34.

Theorem 2. If0 < 1, then the disease-free equilibrium E0 of system (2) is locally asymptotically stable.

Proof. The linearization of system (2) at E0 can be expressed by
)Z(x, t)
)t

= ΔZ(x, t) +Z(x, t),

where Z = (S, I, V ), = diag(D1, D2, D3) and

 =
⎛

⎜

⎜

⎝

−dS −S0g′(0) −S0f ′(0)
0 S0g′(0) − (
 + dI ) S0f ′(0)
0 � −dV

⎞

⎟

⎟

⎠

.

Therefore, the characteristic equation at E0 is

(� + dS + �iD1)[(� − S0g′(0) + 
 + dI + �iD2)(� + dV + �iD3) − �S0f ′(0)] = 0. (14)

It is obvious that (14) has an eigenvalue �1 = −(dS + �iD1). The other two eigenvalues �2 and �2 are roots of

�2 − [S0g′(0) − (
 + dI + �iD2) − (dV + �iD3)]� − (S0g′(0) − (
 + dI + �iD2))(dV + �iD3) − �S0f ′(0) = 0.

It is easy to see that

�2 + �3 = S0g′(0) − (
 + dI + �iD2) − (dV + �iD3)
= S0g′(0) − (
 + dI + dV ) − �i(D2 +D3)
< S0g

′(0) − (
 + dI ) − �i(D2 +D3)
= (
 + dI )(02 − 1) − �i(D2 +D3),

and

�2�3 = dV (
 + dI ) − dV S0g′(0) − �S0f ′(0) + �iD2(dV + �iD3) + �iD3(
 + dI − S0g′(0))
= dV (
 + dI )(1 −0) + �iD3(
 + dI )(1 −02) + �iD2(dV + �iD3).

Since 02 < 0 < 1, we have �2 + �3 < 1 and �2�3 > 0. This gives that Re(�2) < 0 and Re(�3) < 0. Thus, all eigenvalues of
(14) have a negative real parts when0 < 1. Hence, E0 is locally asymptotically stable. This completes the proof.

Now we turn our attention to the endemic equilibrium E∗.

Theorem 3. If0 > 1, then the endemic equilibrium E∗ of system (2) is locally asymptotically stable.

Proof. Linearizing system (2) at E∗ gives
)Z(x, t)
)t

= ΔZ(x, t) + Z(x, t),

where

 =
⎛

⎜

⎜

⎝

−(f (V ∗) + g(I∗) + dS) −S∗g′(I∗) −S∗f ′(V ∗)
f (V ∗) + g(I∗) S∗g′(I∗) − (
 + dI ) S∗f ′(V ∗)

0 � −dV

⎞

⎟

⎟

⎠

.

Thus, the characteristic equation at E∗ is

Q(�) = �3 +Q2�
2 +Q1� +Q0 = 0, (15)
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where

Q2 = f (V ∗) + g(I∗) + dS + �iD1 − S∗g′(I∗) + 
 + dI + �iD2 + dV + �iD3,
Q1 = (f (V ∗) + g(I∗) + dS + �iD1)(
 + dI + �iD2 + dV + �iD3) − �S∗f ′(V ∗)

+ (
 + dI + �iD2)(dV + �iD3) − (dS + �iD1 + dV + �iD3)S∗g′(I∗),
Q0 = (f (V ∗) + g(I∗) + dS + �iD1)(
 + dI + �iD2)(dV + �iD3)

− (dS + �iD1)[�S∗f ′(V ∗) + (dV + �iD3)S∗g′(I∗)].

From (9) and (13), we get

�S∗f ′(V ∗) ≤ �S∗ f (V
∗)

V ∗ = (
 + dI )dV
f (V ∗)

f (V ∗) + g(I∗)
,

S∗g′(I∗) ≤ S∗ g(I
∗)

I∗
= (
 + dI )

g(I∗)
f (V ∗) + g(I∗)

.

Hence,

Q2 ≥ f (V ∗) + g(I∗) + dS + �iD1 − (
 + dI )
g(I∗)

f (V ∗) + g(I∗)
+ 
 + dI + �iD2 + dV + �iD3

= f (V ∗) + g(I∗) + dS + �iD1 + (
 + dI )
f (V ∗)

f (V ∗) + g(I∗)
+ �iD2 + dV + �iD3,

Q1 ≥ (f (V ∗) + g(I∗) + dS + �iD1)(
 + dI + �iD2 + dV + �iD3) − (
 + dI )dV
f (V ∗)

f (V ∗) + g(I∗)

+ (
 + dI + �iD2)(dV + �iD3) − (dS + �iD1 + dV + �iD3)(
 + dI )
g(I∗)

f (V ∗) + g(I∗)
= (f (V ∗) + g(I∗))(
 + dI + �iD2 + dV + �iD3) + (dS + �iD1)(�iD2 + dV + �iD3)

+ �iD2(dV + �iD3) + (
 + dI )(dS + �iD1 + �iD3)
f (V ∗)

f (V ∗) + g(I∗)
,

and

Q0 ≥ (f (V ∗) + g(I∗) + dS + �iD1)(
 + dI + �iD2)(dV + �iD3)

− (dS + �iD1)
[

(
 + dI )dV
f (V ∗)

f (V ∗) + g(I∗)
+ (dV + �iD3)(
 + dI )

g(I∗)
f (V ∗) + g(I∗)

]

= (f (V ∗) + g(I∗))(
 + dI + �iD2)(dV + �iD3)

+ (dS + �iD1)
[

�iD2(dV + �iD3) + �iD3(
 + dI )
f (V ∗)

f (V ∗) + g(I∗)

]

> 0.

Hence, Q2Q1 −Q0 > 0. Then, by using Routh-Hurwitz criterion we claim that all eigenvalues of (15) have negative real parts.
Thus, the endemic equilibrium E∗ of system (2) is locally asymptotically stable when0 > 1. This completes the proof.

2.4 Global Stability
Now, we discuss the global stability of the equilibria for the system (2) by considering Lyapunov functional based on the Volterra
functionΦ(x) = x−1−ln x. Clearly,Φ(x) ≥ 0 for all x > 0 and the equality holds if and only if x = 1. In presence of diffusion,
the aim is to show that every solution of the system (2) with a positive initial value that is different from the equilibrium point
will converge to the equilibrium.

Theorem 4. If0 ≤ 1, then the disease-free equilibrium E0 of system (2) is globally asymptotically stable.

Proof. Define a Lyapunov function

(t) = ∫
Ω

1(x, t)dx,

Where

1(x, t) = S0Φ
(

S(x, t)
S0

)

+ I(x, t) + BV (x, t)
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and B is a positive constant to be determined later. Then, along the solutions of the system (2), we have
)1(x, t)

)t
=
(

1 −
S0
S

)

)S
)t
+ )I
)t
+ B)V

)t

=
(

1 −
S0
S

)

(D1ΔS + Λ − Sf (V ) − Sg(I) − dSS)

D2ΔI + Sf (V ) + Sg(I) − (
 + dI )I + BD3ΔV + B(�I − dV V ).

By equation (3) and choosing B = (
 + dI − S0g′(0))∕�, we obtain
)1(x, t)

)t
≤ −

dS
S
(S0 − S)2 +

dV (
 + dI )
�

(R0 − 1)V

+
(

1 −
S0
S

)

D1ΔS +D2ΔI + BD3ΔV .

Using Green’s formula and the Neumann boundary conditions in (5), we obtain

∫
Ω

(

1 −
S0
S

)

D1ΔSdx = −D1 ∫
Ω

∇
(

1 −
S0
S

)

∇Sdx = −D1 ∫
Ω

S0
S2

|∇S|2dx ≤ 0,

and

∫
Ω

ΔIdx = ∫
Ω

ΔV dx = 0.

Using above conditions, we obtain
d(t)
dt

= ∫
Ω

)1(x, t)
)t

dx ≤ ∫
Ω

(

−
dS
S
(S0 − S)2 +

dV (
 + dI )
�

(R0 − 1)V −
D1S0
S2

|∇S|2
)

dx

Therefore, d(t)
dt

≤ 0 whenever 0 ≤ 1. It follows that the largest invariant subset of
{d(t)

dt
= 0

}

is the singleton E0.
By LaSalle’s Invariance Principle35, the infection-free equilibrium of the system (2) is globally asymptotically stable when
0 ≤ 1.

Next, we turn our attention to show the global stability of the endemic equilibrium E∗.

Theorem 5. If0 > 1, then the endemic equilibrium E∗ is globally asymptotically stable by considering a Lyapunov function
as

(t) = ∫
Ω

1(x, t)dx,

with

1(x, t) = S∗Φ
(

S
S∗

)

+ I∗Φ
(

I
I∗

)

+
S∗f (V ∗)
dV

Φ
(

V
V ∗

)

.

Note that, (t) is non-negative and is strictly minimized at the unique equilibrium (S∗, I∗, V ∗), i.e. it is a valid Lyapunov
function.

Proof. According to (2), we
)1(x, t)

)t
=
(

1 − S∗

S

)

)S
)t
+
(

1 − I∗

I

)

)I
)t
+
S∗f (V ∗)
dV V ∗

(

1 − V ∗

V

)

)V
)t

=
(

1 − S∗

S

)

(D1ΔS + dSS∗ + S∗f (V ∗) + S∗g(I∗) − Sf (V ) − Sg(I) − dSS)

+
(

1 − I∗

I

)

(D2ΔI + Sf (V ) + Sg(I) − (
 + dI )I)

+
S∗f (V ∗)
dV V ∗

(

1 − V ∗

V

)

(D3ΔV + �I − dV V )
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=
(

1 − S∗

S

)

(dSS∗ − dSS) + S∗g(I∗)
(

2 − S∗

S
+
g(I)
g(I∗)

−
Sg(I)I∗

S∗g(I∗)I
− I
I∗

)

+ S∗f (W ∗)
(

3 − S∗

S
+
f (V )
f (V ∗)

−
Sf (V )I∗

S∗f (V ∗)I
− V ∗I
V I∗

− V
V ∗

)

+
(

1 − S∗

S

)

D1ΔS +
(

1 − I∗

I

)

D2ΔI +
S∗f (V ∗)
dV V ∗

(

1 − V ∗

V

)

D3ΔV

= −
dS
S
(S − S∗)2 − S∗g(I∗)

(

Φ
(

S∗

S

)

+ Φ
(

Sg(I)I∗

S∗g(I∗)I

)

+ Φ
(

I
I∗

)

− Φ
(

g(I)
g(I∗)

))

− S∗f (V ∗)
(

Φ
(

S∗

S

)

+ Φ
(

Sf (V )I∗

S∗f (V ∗)I

)

+ Φ
(

V ∗I
V I∗

)

+ Φ
(

V
V ∗

)

− Φ
(

f (V )
f (V ∗)

))

+
(

1 − S∗

S

)

D1ΔS +
(

1 − I∗

I

)

D2ΔI +
S∗f (V ∗)
dV V ∗

(

1 − V ∗

V

)

D3ΔV .

Using Green’s formula and the Neumann boundary conditions in (5), we obtain

∫
Ω

(

1 − S∗

S

)

D1ΔSdx = −D1 ∫
Ω

∇
(

1 − S∗

S

)

∇Sdx = −D1 ∫
Ω

S∗

S2
|∇S|2dx ≤ 0,

similarly

∫
Ω

(

1 − I∗

I

)

D2ΔIdx = −D2 ∫
Ω

∇
(

1 − I∗

I

)

∇Idx = −D2 ∫
Ω

I∗

I2
|∇I|2dx ≤ 0,

S∗f (V ∗)
dV V ∗ ∫

Ω

(

1 − V ∗

V

)

D3ΔV dx = −
D3S∗f (V ∗)
dV V ∗ ∫

Ω

∇
(

1 − V ∗

V

)

∇V dx = −
D3S∗f (V ∗)

dV ∫
Ω

1
V 2

|∇V |2dx ≤ 0,

By assumption (C2), we get

Φ
(

f (V )
f (V ∗)

)

− Φ
(

V
V ∗

)

=
f (V )
f (V ∗)

− V
V ∗ + ln

(

V f (V ∗)
V ∗f (V )

)

≤ f (V )
f (V ∗)

− V
V ∗ +

V f (V ∗)
V ∗f (V )

− 1

=
(

f (V )
f (V ∗)

− V
V ∗

)(

1 −
f (V ∗)
f (V )

)

≤ 0.

Similarly, we have

Φ
(

g(I)
g(I∗)

)

− Φ
(

I
I∗

)

≤
(

g(I)
g(I∗)

− I
I∗

)(

1 −
g(I∗)
g(I)

)

≤ 0.

Using above conditions, we conclude that
d(t)
dt

=∫
Ω

)1(x, t)
)t

dx

≤∫
Ω

[

−
dS
S
(S − S∗)2 − S∗g(I∗)

(

Φ
(

S∗

S

)

+ Φ
(

Sg(I)I∗

S∗g(I∗)I

))

− S∗f (V ∗)
(

Φ
(

S∗

S

)

+ Φ
(

Sf (V )I∗

S∗f (V ∗)I

)

+ Φ
(

V ∗I
V I∗

))

−
D1S∗

S2
|∇S|2 −

D2I∗

I2
|∇I|2 −

D3S∗f (V ∗)
dV V 2

|∇V |2
]

dx

≤ 0.

Furthermore we have d(t)
dt

= 0 only at steady state E∗ = (S∗, I∗, V ∗). Therefore, by Lyapunov’s direct method, the steady
state solution E∗ is globally asymptotically stable.
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3 DYNAMICAL BEHAVIOR OF THE DISCRETIZED MODEL

In preceding section, we have shown that the global asymptotic stability of the equilibria for the continuous system (2) is
completely determined by the basic reproduction number (0) using appropriate Lyapunov functionals. This arises a natural
question that whether the global asymptotic stability of the equilibria of the discrete system (6) can be preserved. In this section,
we will discuss this problem. Clearly, the discretized system (6) has the same two steady states as the continuous system (2). In
the following theorem, we show the system (6) is non-negative and bounded.

Theorem 6. For any Δt > 0 and Δx > 0, the solution of system (6)-(8) is non-negative and bounded for all k ∈ ℕ.

Proof. The positivity of the solutions of the discretized system (6) can be proved using the M-matrix theory26. From the first
equation of system (6), we get

kSk+1 = Sk + �Δt,

where

k =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ak0 a 0 ⋯ 0 0 0
a ak1 a ⋯ 0 0 0
0 a ak2 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ akM−2 a 0
0 0 0 ⋯ a akM−1 a
0 0 0 ⋯ 0 a akM

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

� = (Λ,Λ,⋯ ,Λ)T and the coefficients a = −D1Δt∕(Δx)2, ak0 = 1 + D1Δt∕(Δx)2 + Δt(f (V k
0 ) + g(I

k
0 ) + dS), a

k
M = 1 +

D1Δt∕(Δx)2 + Δt(f (V k
M ) + g(I

k
M ) + dS) and a

k
i = 1 + 2D1Δt∕(Δx)2 + Δt(f (V k

i ) + g(I
k
i ) + dS) with i = 1, 2,⋯ ,M − 1. It is

clear thatk is a strictly diagonally dominant matrix. Thus, the first equation of system (6) is equivalent to

Sk+1 = (k)−1(Sk + �Δt) > 0.

From the second equation of the system (6), we have

Ik+1 = Ik + ΔtT k+1,

where T k+1 = (Sk+10 (f (V k
0 ) + g(I

k
0 )), S

k+1
1 (f (V k

1 ) + g(I
k
1 )),⋯ , Sk+1M (f (V k

M ) + g(I
k
M )))

T and

 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b1 b2 0 ⋯ 0 0 0
b2 b3 b2 ⋯ 0 0 0
0 b2 b3 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ b3 b2 0
0 0 0 ⋯ b2 b3 b2
0 0 0 ⋯ 0 b2 b1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

with b1 = 1+D2Δt∕(Δx)2 +Δt(
 + dI ), b2 = −D2Δt∕(Δx)2 and b3 = 1+ 2D2Δt∕(Δx)2 +Δt(
 + dI ). Since  is a M-matrix,
we get

Ik+1 = −1(Ik + ΔtT k+1).

Similarly, from the third equation of system (6), we have

V k+1 = V k + �ΔtIk+1,
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where

 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c1 c2 0 ⋯ 0 0 0
c2 c3 c2 ⋯ 0 0 0
0 c2 c3 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 0 0 ⋯ c3 c2 0
0 0 0 ⋯ c2 c3 c2
0 0 0 ⋯ 0 c2 c1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

with c1 = 1 +D3Δt∕(Δx)2 + dVΔt, c2 = −D3Δt∕(Δx)2 and c3 = 1 + 2D3Δt∕(Δx)2 + dVΔt. Since  is a M-matrix, we obtain

V k+1 = −1(V k + �ΔtIk+1).

Since all parameters in the system (6) are positive, it is easy to see that the solution remains non-negative for all k ∈ ℕ.
Next, we prove the boundedness of the solution. Define a sequence {Gk} as follows:

k =
M
∑

n=0
(Skn + I

k
n ).

It follows from the first two equations of system (6) that

k+1 −k = Λ(M + 1)Δt − dSΔt
M
∑

n=0
Sk+1n − (
 + dI )Δt

M
∑

n=0
Ik+1n

≤ Λ(M + 1)Δt − dΔtk+1.

where d = min{dS , dI}. Hence, we have

k+1 ≤ Λ(M + 1)Δt
1 + dΔt

+ k

1 + dΔt
.

By mathematical induction, we obtain

lim sup
k→+∞

k ≤ N(M + 1).

By the third equation of the system (6), we get
M
∑

n=0
V k+1
n = �Δt

1 + dVΔt

M
∑

n=0
Ik+1n + 1

1 + dVΔt

M
∑

n=0
V k
n .

Since {Gk} is bounded, there exists a positive constant � such that
∑M
n=0 I

k
n ≤ �. Thus, we have

lim sup
k→+∞

M
∑

n=0
V k+1
n ≤ ��

dV
.

This completes the proof.

3.1 Global Stability
In this section, we establish the global asymptotic stability of the steady states E0 and E∗ of the discrete system (6), by
constructing discrete Lyapunov functions.

Theorem 7. For anyΔt > 0 andΔx > 0, if0 ≤ 1, then the disease-free equilibriumE0 of system (6) is globally asymptotically
stable.

Proof. Define a discrete Lyapunov function as follows

k =
M
∑

n=0

1
Δt

[

S0Φ

(

Skn
S0

)

+ (1 + �0Δt)Ikn + �1(1 + �2Δt)V
k
n

]

,
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where �0, �1 and �2 are positive constant to be determined later. Applying the inequality ln x ≤ x − 1, the difference of k
satisfies

k+1 − k =
M
∑

n=0

1
Δt

[

Sk+1n − Skn + S0 ln

(

Skn
Sk+1n

)

+ (1 + �0Δt)(Ik+1n − Ikn ) + �1(1 + �2Δt)(V
k+1
n − V k

n )
]

≤
M
∑

n=0

1
Δt

[(

1 −
S0
Sk+1n

)

(Sk+1n − Skn ) + (1 + �0Δt)(I
k+1
n − Ikn ) + �1(1 + �2Δt)(V

k+1
n − V k

n )
]

=
M
∑

n=0

[(

1 −
S0
Sk+1n

)

(Λ − Sk+1n f (V k
n ) − S

k+1
n g(Ikn ) − dSS

k+1
n ) + Sk+1n f (V k

n ) + S
k+1
n g(Ikn )

− (
 + dI )Ik+1n + �0(Ik+1n − Ikn ) + �1(�I
k+1
n − dV V k+1

n ) + �1�2(V k+1
n − V k

n )
]

+k

=
M
∑

n=0

[

−
dS
Sk+1n

(Sk+1n − S0)2 + S0f (V k
n ) + S0g(I

k
n ) − (
 + dI )I

k+1
n + �0(Ik+1n − Ikn )

+ �1(�Ik+1n − dV V k+1
n ) + �1�2(V k+1

n − V k
n )
]

+k,

where

k =
M
∑

n=0

1
(Δx)2

[

D1

(

1 −
S0
Sk+1n

)

(

Sk+1n+1 − 2S
k+1
n + Sk+1n−1

)

+D2
(

Ik+1n+1 − 2I
k+1
n + Ik+1n−1

)

+ �1D3
(

V k+1
n+1 − 2V

k+1
n + V k+1

n−1

)

]

=
M
∑

n=0

1
(Δx)2

[

D1
(

Sk+1n+1 − 2S
k+1
n + Sk+1n−1

)

− S0D1

(

Sk+1n+1

Sk+1n
− 2 +

Sk+1n−1

Sk+1n

)

+D2
(

Ik+1n+1 − 2I
k+1
n + Ik+1n−1

)

+ �1D3
(

V k+1
n+1 − 2V

k+1
n + V k+1

n−1

)

]

Using the arithmetic-geometric inequality

2 −
Sk+1n+1

Sk+1n
−
Sk+1n

Sk+1n+1

≤ 0, for n ∈ {0, 1,⋯ ,M − 1}, (16)

we get

k ≤ 1
(Δx)2

[

D1
(

Sk+1M+1 − S
k+1
M + Sk+1−1 − Sk+10

)

− S0D1

(

Sk+1−1

Sk+10

− 2 +
Sk+1M+1

Sk+1M

)

+D2
(

Ik+1M+1 − I
k+1
M + Ik+1−1 − Ik+10

)

+ �1D3
(

V k+1
M+1 − V

k+1
M + V k+1

−1 −W k+1
0

)

]

= 0.

By using equation (3), we obtain

k+1 − k ≤
M
∑

n=0

[

−
dS
Sk+1n

(Sk+1n − S0)2 + S0f ′(0)V k
n + S0g

′(0)Ikn − (
 + dI )I
k+1
n + �0(Ik+1n − Ikn )

+ �1(�Ik+1n − dV V k+1
n ) + �1�2(V k+1

n − V k
n )
]

.

Letting �0 = S0g′(0), �1 = (
 + dI − S0g′(0))∕� and �2 = dV , we get

k+1 − k ≤
M
∑

n=0

[

−
dS
Sk+1n

(Sk+1n − S0)2 +
dV (
 + dI )

�
(0 − 1)V k

n

]

.

If0 ≤ 1, for all k ∈ ℕ we get

k+1 − k ≤ 0,
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which gives that {k}k∈ℕ is a monotone decreasing sequence. That means there exists a constant ̃ ≥ 0 such that limk→+∞ k =
̃ and we have limk→+∞(k+1 − k) = 0. Arguing on the lines of26 to system (6), we obtain

lim
k→+∞

Skn = S0, lim
k→+∞

Ikn = 0 and lim
k→+∞

V k
n = 0,

for all n ∈ {0, 1,⋯ ,M} and when0 ≤ 1. This completes the proof.

Next, we discuss the global stability of the endemic equilibrium E∗ when0 > 1.

Theorem 8. For any Δt > 0 and Δx > 0, then the endemic equilibrium E∗ of system (6) is globally asymptotically stable when
0 > 1.

Proof. We define the following discretized Lyapunov function

k =
M
∑

n=0

1
Δt

[

S∗Φ

(

Skn
S∗

)

+ (I∗ + S∗g(I∗)Δt)Φ

(

Ikn
I∗

)

+
S∗f (V ∗)
dV

(1 + dVΔt)Φ

(

V k
n

V ∗

)

]

.

Obviously,k ≥ 0 for all k ∈ ℕ with the equality holds if and only if Skn = S
∗, Ikn = I

∗ and V k
n = V

∗ for all n ∈ {0, 1,⋯ ,M}
and k ∈ ℕ. Using ln x ≤ x − 1, the difference of k satisfies

k+1 −k

=
M
∑

n=0

1
Δt

[

Sk+1n − Skn + S
∗ ln

(

Skn
Sk+1n

)

+ Ik+1n − Ikn − I
∗ ln

(

Ikn
Ik+1n

)

+ S∗g(I∗)Δt

(

Ik+1n

I∗
−
Ikn
I∗
+ ln

(

Ikn
Ik+1n

))

+
S∗f (V ∗)
dV

(

V k+1
n

V ∗ −
V k
n

V ∗ + ln

(

V k
n

V k+1
n

))

+ S∗f (V ∗)Δt

(

V k+1
n

V ∗ −
V k
n

V ∗ + ln

(

V k
n

V k+1
n

))

]

≤
M
∑

n=0

1
Δt

[(

1 − S∗

Sk+1n

)

(Sk+1n − Skn ) +
(

1 − I∗

Ik+1n

)

(Ik+1n − Ikn )

+ S∗g(I∗)Δt

(

Ik+1n

I∗
−
Ikn
I∗
+ ln

(

Ikn
Ik+1n

))

+
S∗f (V ∗)
dV V ∗

(

1 − V ∗

V k+1
n

)

(V k+1
n + V k

n )

+ S∗f (V ∗)Δt

(

V k+1
n

V ∗ −
V k
n

V ∗ + ln

(

V k
n

V k+1
n

))

]

=
M
∑

n=0

[(

1 − S∗

Sk+1n

)

(Λ − Sk+1n f (V k
n ) − S

k+1
n g(Ikn ) − dSS

k+1
n )

+
(

1 − I∗

Ik+1n

)

(Sk+1n f (V k
n ) + S

k+1
n g(Ikn ) − (
 + dI )I

k+1
n ) +

S∗f (V ∗)
dV V ∗

(

1 − V ∗

V k+1
n

)

(�Ik+1n − dV V k+1
n )

+ S∗g(I∗)

(

Ik+1n

I∗
−
Ikn
I∗
+ ln

(

Ikn
Ik+1n

))

+ S∗f (V ∗)

(

V k+1
n

V ∗ −
V k
n

V ∗ + ln

(

V k
n

V k+1
n

))

]

+k

where

k =
M
∑

n=0

1
(Δx)2

[

D1

(

1 − S∗

Sk+1n

)

(

Sk+1n+1 − 2S
k+1
n + Sk+1n−1

)

+D2

(

1 − I∗

Ik+1n

)

(

Ik+1n+1 − 2I
k+1
n + Ik+1n−1

)

+
S∗f (V ∗)D3

dV V ∗

(

1 − V ∗

V k+1
n

)

(

V k+1
n+1 − 2V

k+1
n + V k+1

n−1

)

]

=
M
∑

n=0

1
(Δx)2

[

D1
(

Sk+1n+1 − 2S
k+1
n + Sk+1n−1

)

− S∗D1

(

Sk+1n+1

Sk+1n
− 2 +

Sk+1n−1

Sk+1n

)

+D2
(

Ik+1n+1 − 2I
k+1
n + Ik+1n−1

)

− I∗D2

(

Ik+1n+1

Ik+1n
− 2 +

Ik+1n−1

Ik+1n

)
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+
S∗f (V ∗)D3

dV V ∗

(

V k+1
n+1 − 2V

k+1
n + V k+1

n−1

)

−
S∗f (V ∗)D3

dV

(

V k+1
n+1

V k+1
n

− 2 +
V k+1
n−1

V k+1
n

)

]

.

Using the similar arithmetic-geometric inequality (16) for S, I and V , we get

k ≤ 1
(Δx)2

[

D1
(

Sk+1M+1 − S
k+1
M + Sk+1−1 − Sk+10

)

− S∗D1

(

Sk+1−1

Sk+10

− 2 +
Sk+1M+1

Sk+1M

)

+D2
(

Ik+1M+1 − I
k+1
M + Ik+1−1 − Ik+10

)

− I∗D2

(

Ik+1−1

Ik+10

− 2 +
Ik+1M+1

Ik+1M

)

+
S∗f (V ∗)D3

dV V ∗

(

V k+1
M+1 − V

k+1
M + V k+1

−1 − V k+1
0

)

−
S∗f (V ∗)D3

dV

(

V k+1
−1

V k+1
0

− 2 +
V k+1
M+1

V k+1
M

)

]

= 0.

By assumption (C2), we have the following inequality

Φ

(

f (V k
n )

f (V ∗)

)

− Φ

(

V k
n

V ∗

)

=
f (V k

n )
f (V ∗)

−
V k
n

V ∗ + ln

(

V k
n f (V

∗)
V ∗f (V k

n )

)

≤
f (V k

n )
f (V ∗)

−
V k
n

V ∗ +
V k
n f (V

∗)
V ∗f (V k

n )
− 1)

=

(

f (V k
n )

f (V ∗)
−
V k
n

V ∗

)

(

1 −
f (V ∗)
f (V k

n )

)

≤ 0.

Similarly, we get

Φ

(

g(Ikn )
g(I∗)

)

− Φ

(

Ikn
I∗

)

≤

(

g(Ikn )
g(I∗)

−
Ikn
I∗

)

(

1 −
g(I∗)
g(Ikn )

)

≤ 0.

Hence, using above conditions, we conclude that

k+1 −k

=
M
∑

n=0

[

−
dS
Sk+1n

(Sk+1n − S∗)2 − S∗g(I∗)
(

Φ
(

S∗

Sk+1n

)

+ Φ

(

Sk+1n g(Ikn )I
∗

S∗g(I∗)Ik+1n

)

+ Φ

(

Ikn
I∗

)

− Φ

(

g(Ikn )
g(I∗)

)

)

− S∗f (V ∗)
(

Φ
(

S∗

Sk+1n

)

+ Φ

(

Sk+1n f (V k
n )I

∗

S∗f (V ∗)Ik+1n

)

+ Φ

(

V ∗Ik+1n

V k+1
n I∗

)

+ Φ

(

V k
n

V ∗

)

− Φ

(

f (V k
n )

f (V ∗)

)

)]

+k

≤
M
∑

n=0

[

−
dS
Sk+1n

(Sk+1n − S∗)2 − S∗g(I∗)
(

Φ
(

S∗

Sk+1n

)

+ Φ

(

Sk+1n g(Ikn )I
∗

S∗g(I∗)Ik+1n

)

)

− S∗f (V ∗)
(

Φ
(

S∗

Sk+1n

)

+ Φ

(

Sk+1n f (V k
n )I

∗

S∗f (V ∗)Ik+1n

)

+ Φ

(

V ∗Ik+1n

V k+1
n I∗

)

)]

≤ 0.

This implies thatk is a monotone decreasing sequence, then there exists a constant ̃ such that limk→∞k = ̃, and we have
limk→∞(k+1 −k) = 0.Which conclude that

lim
k→∞

Skn = S
∗, lim

k→∞

g(Ikn )I
∗

g(I∗)Ik+1n
= lim

k→∞

f (V k
n )I

∗

f (V ∗)Ik+1n
= lim

k→∞

V ∗Ik+1n

V k+1
n I∗

= 1.
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By the first equation of system (6), we obtain

Sk+1n − Skn
Δt

=D1

Sk+1n+1 − 2S
k+1
n + Sk+1n−1

(Δx)2
+ Λ − Sk+1n f (V k

n ) − S
k+1
n g(Ikn ) − dSS

k+1
n

=D1

Sk+1n+1 − 2S
k+1
n + Sk+1n−1

(Δx)2
+ Λ − dSSk+1n − Ik+1n

(

Sk+1n f (V k
n )

Ik+1n
+
Sk+1n g(Ikn )
Ik+1n

)

.

Taking k→ +∞ in the above equality, we have

0 = 0 + Λ − dSS∗ − lim
k→+∞

Ik+1n

(

S∗f (V ∗)
I∗

+
S∗g(I∗)
I∗

)

Using Λ − dSS∗ = S∗f (V ∗) + S∗g(I∗), we have

lim
k→+∞

Ik+1n = I∗.

Similarly, we get

lim
k→+∞

V k
n = V

∗.

This completes the proof.

Thus, using the Theorems 7 and 8, we conclude that the discretized system (6) exhibits dynamic consistency with the
continuous system (2) as well as the global asymptotic stability of both the uninfected and the infected steady states.

4 NUMERICAL RESULTS

In this section, we present numerical example that illustrate and confirm the findings of this study for the linear incidence
function such as f (V ) = �1V and g(I) = �2I . Thus the system (2) becomes

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

)S(x, t)
)t

= D1ΔS + Λ − �1SV − �2SI − dSS, x ∈ Ω, t > 0,

)I(x, t)
)t

= D2ΔI + �1SV + �2SI − (
 + dI )I, x ∈ Ω, t > 0,

)V (x, t)
)t

= D3ΔV + �I − dV V , x ∈ Ω, t > 0,

S(x, 0) = '1(x) ≥ 0, I(x, 0) = '2(x), V (x, 0) = '3(x), x ∈ Ω,
)S
)�

= )I
)�

= )V
)�

= 0, x ∈ )Ω, t > 0,

(17)

The basic reproduction number of the system (17) is

0 =
Λ��1

dSdV (
 + dI )
+

Λ�2
dS(
 + dI )

.

The system (17) possesses an uninfected steady state E0

(

Λ
dS
, 0, 0

)

and also has an infected steady state

E∗

(

Λ
dS0

,
Λ
(

1 − 1
0

)


 + dI
,
�Λ

(

1 − 1
0

)

dV (� + dI )

)

for0 > 1.

At first sensitivity analysis is used to determine the response of the model to variations in its parameter values. In the present
case, focus is given to determining how changes in the model parameters impact the basic reproduction number. This is done
through the Latin hypercube sampling (LHS) and the partial correlation coefficients (PRCC) to determine the relative importance
of the parameters in 0 for the disease transmission36. In such a scenario, it is more appropriate to treat each parameter as
a random variable, distributed according to an appropriate probability distribution. We assume that our model parameters are
normally distributed although it is quite possible that some parameters are constant towards a particular value such as recruitment
rate (Λ) and death rate (dT ) of susceptible cells. PRCC reduces the non-linearity effects by rearranging the data in ascending
order, replacing the values with their ranks and then providing the measure of monotonicity after the removal of the linear
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effects of each model parameter keeping all other parameters constant37. The corresponding Tornado plots based on a random
sample of 1000 points for the six parameters in0 are shown in Figure 1 . The horizontal lines represent the significant range of
correlation, i.e., |PRCC| > 0.5. The sensitivity analysis suggests that the most significant parameters are �1 and �2, an increase
in these values will have an increase in the spread of the disease. Hence, these parameters should be estimated with precision to
accurately capture the dynamics of the infection.

FIGURE 1 Partial rank correlation coefficient (PRCC) results for significance of parameters involved in0

Now, we numerically illustrate the results for global stability for both the steady states. Accordingly, we use two sets of system
parameters, one corresponding to 0 < 1 (when E0 is globally asymptotically stable for both the continuous and discretized
models) and the other for 0 > 1 (when E∗ is globally asymptotically stable for both the continuous and discretized models).
The numerical simulation is carried out using the NSFD scheme described by the system (6) with initial condition taken as

S(x, 0) = 107, I(x, 0) = 100ex, V (x, 0) = 100ex.

For the purpose of illustration of both the scenarios, we choose the equal diffusion coefficients as D1 = D2 = 1 mm2d−1 and
D3 = 1mm2d−1 38. The one-dimensional spatial domain is taken asΩ = [0, 50] and the simulation carried out for a time window
of 100 days. The grid sizes used in the spatial and temporal directions are Δx = 0.5 and Δt = 1, respectively. The parameter set
Λ = 107 cells d−1, �1 = �2 = 5 × 10−12 virion−1 d−1, dS = 0.1 d−1, 
 = 0.01 d−1, dI = 0.04 d−1, � = 100 d−1, dV = 5 d−1 26,
results in0 = 0.21 < 1. Thus, in this case, the uninfected steady state E0 is globally asymptotically stable. It can be observed
from Figure 2 that this is indeed the case and the system eventually approaches the uninfected steady state E0 = (108, 0, 0).
For the other scenario, all the parameter values are identical with the exception of �1 = �2 = 3 × 10−10 virion−1 d−1 26 which

renders0 = 12.59 > 1. In this case, the infected steady state is stable as can be observed numerically in Figure 3 , where the
state variables approach the infected steady state E∗ = (8 × 106, 1.8 × 108, 3.7 × 109). For both the sets of simulations it can
be easily seen that the steady states do not depend on the initial spatial points.
We have also shown that the global asymptotically stable results are dependent only on the parameters of the non-diffusive

system because of 0 and independent of the choices of the diffusion coefficients. This is also illustrated by way of numerical
simulations. For illustrative purpose we only show the case for 0 > 1 using the corresponding parameter values used above.
We extend our diffusion coefficient to D1 = D2 = D3 = 100 mm2d−1 and see from Figure 4 , that the steady states of the
model dynamics are very similar to each other in the long run. Similar results can be observed for different combinations of
(D1, D2, D3). Another crucial advantage of using the NSFD scheme over standard finite difference (SFD) scheme is that the
positivity of solutions for long time simulation which already been demonstrated in many works26,39.
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FIGURE 2 When0 = 0.21 < 1, the disease-free equilibrium E0 of system (17) is globally asymptotically stable.

FIGURE 3 When0 = 12.59 > 1,the disease-free equilibrium E∗ of system (17) is globally asymptotically stable.

5 CONCLUSION

In order to investigate the mechanism of virus infection and viral replication, we have carried out the mathematical analysis
for a diffusive intra-host virus dynamics model with cell-to-cell transmission, while allowing for a general nonlinear incidence
functions. The well posedness and linear stability of equilibria of this model is investigated. The basic reproduction number
0 is a threshold index which predicts the extinction and persistence of the disease. It is shown that the global stability of the
equilibria is completely determined by 0: if 0 ≤ 1, then the disease-free equilibrium E0 is globally asymptotically stable
stable, which means that the virus is eventually cleared and the infection dies out; if 0 > 1, then the endemic equilibrium
E∗ is globally asymptotically stable. From the expression of the basic reproduction number of virus, we can know that the
basic reproduction number could be under-evaluated without considering either the virus-to-cell transmission or cell-to-cell
transmission; it is not enough to eliminate the disease by decreasing the basic reproduction number of virus-to-cell transmission
due to the existence of cell-to-cell transmission. Our results also imply that diffusion coefficients have no effect on the global
behaviors of such virus dynamics model with homogeneous Neumann boundary conditions. Then, by using the NSFD scheme,
we derived the discrete counterpart of the continuous model. Our results show that the discretization scheme can preserve the



18 Shohel Ahmed and Shah Abdullah Al Nahian

FIGURE 4 Dynamics of system (17) under diffusion coefficients D1 = D2 = D3 = 1 mm2d−1 (left) and D1 = D2 = D3 =
100 mm2d−1 (right).

global properties of solutions for original continuous model, including the positivity, ultimate boundedness and global stability
of the equilibria with no restriction on the space and time step sizes.
In addition, the model proposed in this paper is an extension of some previous works40,41,42,43,44,45 and the obtained results

improve some known results. It is interesting to improve the model (2) by incorporating logistic growth term for uninfected
target cells and a more general infection function. We leave these for future consideration.
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