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Abstract. In this paper, we construct a class of global large solution to the three-
dimensional Navier-Stokes equations with the Coriolis force in critical Fourier-

Besov space ˙FB
2− 3

p

p,r (R3). In fact, our choice of special initial data u0 can be

arbitrarily large in ˙FB
s

p,r(R3) for any s ∈ R and 1 ≤ p, r ≤ ∞.

1. Introduction and main result

Rotating fluid equations have important applications in meteorology and oceanog-
raphy, particularly in the models describing large-scale ocean and atmosphere flows.
The Coriolis force, arising from the rotation of the Earth, plays a significant role in
such systems.

In 1868, Kelvin first observed that a sphere, moving along the axis of uniformly
rotating water, takes with it a column of liquid as if this were a rigid mass, and
pioneered the research on the motion of rotating fluid, see [10]. Later on, Taylor[28]
and Proudman[25] strictly proved that high-speed rotation brings about a vertical
rigidity in the fluid described by the Taylor-Proudman theorem: Under a fast rota-
tion the velocity of all particles located on the same vertical line is horizontal and
constant.

Mathematically, the Coriolis forces give rise to the so-called Poincaré waves, which
are dispersive waves. Poincaré waves propagate in both directions with extremely
fast speed in the propagation domain, and the waves with different wavenumber-
s move at different speeds. This makes that the nonlinear interactions between
different modes are typically less significant.

On the other hand, Poincaré waves are a kind of high frequency wave, whose
particles not only have vibrations parallel to the propagation direction, but also
have vibrations perpendicular to the propagation direction. Therefore, one of the
major difficulties encountered in understanding dynamics of rotating fluid is the
influence of the oscillations generated by Coriolis forces.

In the paper, we consider the following Cauchy problem of three-dimensional
incompressible Navier-Stokes equations with the Coriolis force:{

∂tu−∆u+ Ωe3 × u+ u · ∇u+∇p = 0,

divu = 0, u(0, x) = u0,
(1.1)

where the unknown functions u = (u1, u2, u3) and p denote velocity field and pres-
sure, respectively; Ω ∈ R is the Coriolis parameter, which is twice angular velocity
of the rotation around the vertical unit vector e3 = (0, 0, 1), and Ωe3 × u represents
the so-called Coriolis force; u0 is the given initial velocity.
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The behavior of fluid flows in rapidly rotating environments is fundamentally
different from that of non-rotating flows.

When Ω = 0, (1.1) reduces to the problem of classical three-dimensional incom-
pressible Navier-Stokes equations, which have been widely studied during the past
seventy years. It has been proved that (1.1) with Ω = 0 is globally well-posed for
small initial data, see [3, 11, 16, 17, 20, 21]. For more results of large initial data
with special structures in various scaling invariant spaces which generate unique
global solutions to (1.1), we refer the reader to see [5, 6, 7, 8, 22, 23, 24] and the
references therein. We note that the global regularity or global well-posedness issue
of the three-dimensional incompressible Navier-Stokes equations for arbitrarily large
initial data is still a challenging open problem.

When Ω 6= 0, it is a very remarkable fact that (1.1) admits a global solution
for arbitrary large initial data, provided that the speed of rotation is fast enough.
More precisely, when Ω is large enough, by taking the full exploration of dispersive
effects of the Coriolis forces, the existence and uniqueness of global solution has been
proved for the periodic large data in [1, 2], for the spatially almost periodic large
data in [29], and for the decay large data see [4, 14, 18, 26]. For any given and fixed
Ω, we refer to [12, 13, 15, 19] for the global well-posedness of (1.1) with uniformly
small initial data u0. Especially, it has been proved that (1.1) is globally well-posed

for small initial data in ˙FB
2− 3

p

p,r (R3) (1 < p, r ≤ ∞) and ˙FB
−1

1,r(R3) (1 ≤ r ≤ 2), and

is ill-posed in ˙FB
−1

1,r(R3) (r > 2), see [15, 19].
It is now a natural question to ask whether there exists a unique global solution

to (1.1) for any given and fixed Ω, if the initial data is not small in ˙FB
2− 3

p

p,r (R3)
(1 ≤ p, r ≤ ∞). Based on a full understanding of the structure of the equation
(1.1), we shall prove that (1.1) is globally well-posed for some special initial data u0

whose ˙FB
2− 3

p

p,r (R3)-norm can be arbitrarily large, namely, ||u0||
˙FB

2− 3
p

p,r

� 1, for any

1 ≤ p, r ≤ ∞.
We first recall the definition of the Fourier-Besov spaces ˙FB

s

p,r(R3). As usual we

denote by S (R3) the space of Schwartz functions on R3, and by S ′(R3) the space
of tempered distributions on R3. Choose radial function ψ ∈ S (R3) such that its

Fourier transform ψ̂ satisfies the following properties:

supp ψ̂ ⊂ C := {ξ ∈ R3 :
3

4
≤ |ξ| ≤ 8

3
},

and ∑
j∈Z

ψ̂(2−jξ) = 1 for all ξ ∈ R3 \ {0}.

Let ψj(x) := 23jψ(2jx) for j ∈ Z and S ′
h(R3) := S ′(R3)/P [R3], where P [R3]

denotes the linear space of polynomials on R3. The homogeneous dyadic blocks ∆j

is defined by

∆jf := ψj ∗ f

for j ∈ Z and f ∈ S ′(R3). Then the Fourier-Besov spaces ˙FB
s

p,r(R3) are defined
as follows:
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Definition 1.1. For s ∈ R and 1 ≤ p, r ≤ ∞, the Fourier-Besov space ˙FB
s

p,r(R3)

is defined to be the set of all tempered distributions u ∈ S ′
h(R3) such that

‖u‖ ˙FB
s
p,r

:=
∥∥∥{2js‖∆̂ju‖Lp

}
j∈Z

∥∥∥
`r(Z)

<∞.

Remark 1.2. It is easy to show that ||u|| ˙FB
0
1,1

= ||û||L1.

Let U satify the following linear system:{
∂tU −∆U + Ωe3 × U +∇p′ = 0,

divU = 0, U(0, x) = u0.

According to [13], we can show that U have the following explicit form:

Û = cos(Ω
ξ3

|ξ|
t)e−|ξ|

2tû0 + sin(Ω
ξ3

|ξ|
t)

1

|ξ|
e−|ξ|

2t

 ξ3û
2
0 − ξ2û

3
0

−ξ3û
1
0 + ξ1û

3
0

ξ2û
1
0 − ξ1û

2
0

 , (1.2)

and it is easy to check that

||U ||
L∞(0,∞; ˙FB

−1
1,1)

+ ||U ||
L1(0,∞; ˙FB

1
1,1)
≤ C||u0|| ˙FB

−1
1,1
.

The main result of this paper reads as follows:

Theorem 1.3. Then there exist two constants δ, C > 0 such that for any u0 ∈
˙FB
−1

1,1(R3) satisfying the condition∫ ∞
0

||U · ∇U || ˙FB
−1
1,1

dt · e
C||u0||2 ˙FB

−1
1,1 ≤ δ, (1.3)

then (1.1) admits a unique global solution

u ∈ L∞(0,∞; ˙FB
−1

1,1(R3))
⋂

L1(0,∞; ˙FB
1

1,1(R3)).

Corollary 1.4. Assume that the initial data fulfills

supp û0(ξ) ⊂ C̃ ,
{
ξ ∈ R3 : |ξ| ≥ 1

}
, (1.4)

then there exist a sufficiently small positive constant δ and a universal constant C
such that if

||u0|| ˙FB
−1
1,1

(
||u1

0 + u2
0, u

3
0|| ˙FB

1
3
2 ,1

+ ||∂3u0|| ˙FB
1
3
2 ,1

)
· e

C||u0||2 ˙FB
−1
1,1 ≤ δ, (1.5)

then the system (1.1) has a unique global solution.

Remark 1.5. Let two functions a(x1, x2) with â(x1, x2) = â(−x1,−x2) and b(x3)

with b̂(x3) = b̂(−x3) satisfying â, b̂ ∈ [0, 1],

supp b̂ ⊂ {ξ3 ∈ R| 1

2
ε < |ξ3| < ε},

b̂ = 1 on {ξ3 ∈ R| 5

8
ε < |ξ3| <

7

8
ε},

supp â ⊂ {ξ ∈ R2| |ξ1 − ξ2| ≤ ε,
11

8
≤ |ξ| ≤ 35

24
},
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and

â(ξ) = 1 on {ξ ∈ R2| |ξ1 − ξ2| ≤
1

2
ε,

67

48
≤ |ξ| ≤ 69

48
}.

Then, we have for all p ∈ [1,∞],

||â0||Lp ≈ ε
1
p , ||b̂0||Lp ≈ ε

1
p .

Let us consider the initial data u0 = (u1
0, u

2
0, 0) with

u1
0 = ε−2(log log

1

ε
)
1
2∂2a(x1, x2)b(x3), u2

0 = −ε−2(log log
1

ε
)
1
2∂1a(x1, x2)b(x3).

Direct calculation shows that

||u0|| ˙FB
1
1,1
≈ ||u0|| ˙FB

−1
1,1
≈ (log log

1

ε
)
1
2 ,

||u1
0 + u2

0|| ˙FB
1
3
2 ,1

+ ||∂3u0|| ˙FB
1
3
2 ,1

+ ||u3
0|| ˙FB

1
3
2 ,1
≈ ε

1
3 (log log

1

ε
)
1
2 .

Then, we can show that the left side of (1.5) becomes

Cε
1
3

(
log log

1

ε

)
exp

(
C log log

1

ε

)
,

which implies (1.1) have a global solution for ε sufficiently small. For small enough
ε, we can deduce that supp û0 ∈ {ξ ∈ R3| 4

3
≤ |ξ| ≤ 3

2
} and

∆ju0 = 0, j 6= 0; ∆0u0 = u0.

Therefore, we can conclude that for any s ∈ R and 1 ≤ p, r ≤ ∞

||u0|| ˙FB
s
p,r

& ||u0|| ˙FB
−1
1,∞
≈ ||û0||L1 ≈ log log

1

ε
.

2. Proof of the main results

Proof of Theorem 1.3 Introduce the quantity u = U + v, we can show that v
satisfies the following Cauchy problem:{

∂tv −∆v + Ωe3 × v + v · ∇v +∇p′′ = −U · ∇U − v · ∇U − U · ∇v,
divv = 0, v(0, x) = 0.

By the Duhamel principle, this problem is equivalent to the integral equation

v(t) = −
∫ t

0

TΩ(t− τ)P
[
U · ∇U + v · ∇v − v · ∇U − U · ∇v

]
dτ,

where P = (δij + RiRj)1≤i,j≤3 denotes the Helmholtz projection onto the diver-
gence free vector fields, and {TΩ(t)}t≥0 denotes the Stokes-Coriolis semigroup given
explicitly in [13].

By the similar argument of Lemma 2.2 in [27], we have for all t ∈ [0, T ] that

||v||
L∞t ( ˙FB

−1
1,1)

+ ||v||
L1
t ( ˙FB

1
1,1)

.
∫ t

0

||U · ∇U || ˙FB
−1
1,1

+ ||v · ∇v|| ˙FB
−1
1,1

+ ||U · ∇v|| ˙FB
−1
1,1

+ ||v · ∇U || ˙FB
−1
1,1

dτ

.
∫ t

0

||U · ∇U || ˙FB
−1
1,1

dτ + ||v||
L2
t ( ˙FB

0
1,1)
||v||

L2
t ( ˙FB

0
1,1)

+

∫ t

0

||v|| ˙FB
0
1,1
||U || ˙FB

0
1,1

dτ,
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where we have used Remark 1.2 and the fact ||âb||L1 ≤ ||â||L1||b̂||L1 in the last
inequality. Now, we define

Γ , sup
{
t ∈ [0, T ∗) : ||v||

L∞t ( ˙FB
−1
1,1)

+ ||v||
L1
t ( ˙FB

1
1,1)
≤ η � 1

}
,

where η is a small enough positive constant which will be determined later on. Then,
it yields

||v||
L∞t ( ˙FB

−1
1,1)

+ ||v||
L1
t ( ˙FB

1
1,1)
≤ C

∫ t

0

||U · ∇U || ˙FB
−1
1,1

dτ + C

∫ t

0

||v|| ˙FB
−1
1,1
||U ||2 ˙FB

0
1,1

dτ.

From Gronwall’s inequality, we have

||v||
L∞t ( ˙FB

−1
1,1)

+ ||v||
L1
t ( ˙FB

1
1,1)
≤ C

∫ t

0

||U · ∇U || ˙FB
−1
1,1

dτ · e
C

∫ t
0 ||U ||

2
˙FB

0
1,1

dτ

≤ Cδ.

Choosing η = 2Cδ, thus we can get

||v||
L∞t ( ˙FB

−1
1,1)

+ ||v||
L1
t ( ˙FB

1
1,1)
≤ η

2
for t ≤ Γ.

So if Γ < T ∗, due to the continuity of the solutions, we can obtain that there
exists 0 < ε� 1 such that

||v||
L∞t ( ˙FB

−1
1,1)

+ ||v||
L1
t ( ˙FB

1
1,1)
≤ η for t ≤ Γ + ε < T ∗,

which is contradiction with the definition of Γ.
Thus, we can conclude Γ = T ∗ and

||v||
L∞t ( ˙FB

−1
1,1)
≤ C <∞ for all t ∈ (0, T ∗),

which implies that T ∗ = +∞.
Proof of Corollary 1.4 Notice that divU=0, we have

U · ∇U1 = (U1 + U2)∂1U
1 + U2∂2(U1 + U2) + U2∂3U

3 + U3∂3U
1,

U · ∇U2 = (U1 + U2)∂2U
2 + U1∂1(U1 + U2) + U1∂3U

3 + U3∂3U
2,

U · ∇U3 = U1∂1U
3 + U2∂2U

3 − U3(∂1U
1 + ∂2U

2).

Using the fact ||ab|| ˙FB
0
3
2 ,1
≤ ||a|| ˙FB

0
3
2 ,1
||b|| ˙FB

0
1,1

, we have∫ t

0

||U · ∇U || ˙FB
−1
1,1

dτ .
∫ t

0

||U · ∇U || ˙FB
0
3
2 ,1

dτ

.
∫ t

0

||U1 + U2, U3|| ˙FB
0
3
2 ,1∩ ˙FB

1
3
2 ,1
||U1, U2|| ˙FB

0
1,1∩ ˙FB

1
1,1

dτ

From (1.2), the direct calculation shows that

|Û1(ξ)|+ |Û2(ξ)| ≤ e−t|ξ|
2|û0(ξ)|,

|Û3(ξ)| ≤ Ωte−t|ξ|
2 |ξ3|
|ξ|
|ûh0(ξ)|+ e−t|ξ|

2|û3
0(ξ)|,

|Û1(ξ) + Û2(ξ)| ≤ te−t|ξ|
2|û1

0 + û2
0|+ Ωte−t|ξ|

2 |ξ3|
|ξ|
|û0|.
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This along with the property (1.4) yield∫ ∞
0

||U1 + U2, U3|| ˙FB
0
3
2 ,1∩ ˙FB

1
3
2 ,1
||U1, U2|| ˙FB

0
1,1∩ ˙FB

1
1,1

dt (2.1)

. ||u0|| ˙FB
−1
1,1

(
||u1

0 + u2
0|| ˙FB

1
3
2 ,1

+ ||∂3u0|| ˙FB
1
3
2 ,1

+ ||u3
0|| ˙FB

1
3
2 ,1

)
.

Thus, (2.1) is ensured whenever (1.5) holds. We complete the proof of Corollary
1.4.
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